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We address the dynamics of a two-qubit system interacting with a classical dephasing environ-
ment driven by a Gaussian stochastic process. Upon introducing the concept of entanglement-
preserving time, we compare the degrading e®ects of di®erent environments, e.g. those described
by Ornstein–Uhlenbeck (OU) or fractional noise. In particular, we consider pure Bell states and
mixtures of Bell states and study the typical values of the entanglement-preserving time for both
independent and common environments. We found that engineering environments towards
fractional Gaussian noise is useful to preserve entanglement as well as to improve its robustness
against noise. We also address entanglement sudden death by studying the sudden-death time as
a function of the initial negativity. We found that: (i) the sudden-death time is bounded from
below by an increasing function of the initial negativity, (ii) the sudden-death time depends only
slightly on the process used to describe the environment and exhibits typicality. Overall, our
results show that engineering the environment has only a slight in°uence over the entanglement
sudden-death time, while it represents a valuable resource to increase the entanglement-pre-
serving time, i.e. to maintain entanglement closer to the initial level for a longer interaction time.
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1. Introduction

The unavoidable interaction of a quantum system with its environment generally
causes decoherence and a loss of quantumness. On the other hand, the possibility to
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perform quantum operations within the coherence time of a quantum system lies at
the heart of quantum information processing. A deep understanding of the deco-
herence mechanisms in quantum systems, together with the capability to engineer
the environment in order to reduce its detrimental e®ects, are thus essential steps
toward the development of quantum technologies.

The interaction of a quantum system with its environment may be described using
either a classical or a quantum mechanical picture of the latter. Understanding
whether and in which conditions the two descriptions are equivalent is still a debated
topic.1–4 When the environment has many degrees of freedom and/or a structured
noise spectrum, a quantum description may be challenging, and the approximations
may be crude enough to prevent a reliable description of the dynamics. In these
situations, a classical description may be convenient and also more accurate. Several
systems of interest belong to these categories and many e®orts have been devoted to
study situations where quantum systems are a®ected by classical noise. Examples
include the dynamics of quantum correlations,5–13 the simulation of motional aver-
aging,14 or decoherence in solid state qubits15–25 and the characterization of the
environment using quantum probes.26,27 When the environment a®ecting the quan-
tum system may be described as collection of °uctuators, a Gaussian statistics for the
noise can be assumed.28,29 Moreover, the Gaussian approximation is valid even in the
presence of non-Gaussian noise, as far as the coupling with the environment is
weak.30,31

In this paper, we address the dynamics of entanglement for a two-qubit system
subject to a classical noise induced by a Gaussian stochastic process. Speci¯cally, we
consider the case where the typical frequencies of the system are larger compared to
those of the environment, so that the system dynamics can be described as a pure
dephasing.32–36,24 Dephasing induced by classical noise has been studied previous-
ly,5,37 and it is known to induce a monotonic decay of entanglement, including the
phenomenon of sudden death38 i.e. the transition from an entangled to a separable
state after a ¯nite interaction time. Here we quantitatively compare the degrading
e®ects of di®erent kinds of environments by considering the entanglement-preserving
time and the entanglement sudden-death time and by studying their dependence on
the nature and on the parameters of the stochastic process that models the envi-
ronment. We focus on two paradigmatic examples of Gaussian processes describing
normal and anomalous di®usion processes: the Ornstein–Uhlenbeck (OU) pro-
cess25,39,40 and the fractional Gaussian noise.41

This paper is organized as follows: In Sec. 2, we describe the physical model that
accounts for the system-environment interaction and introduce the Gaussian pro-
cesses that drive the noise. In Sec. 3, we look at the dynamics of the system and
analyze in some detail the dependence of the entanglement-preserving time and the
entanglement sudden-death (ESD) time on the nature of the Gaussian process and
the initial state of the system. Section 4 closes the paper with some concluding
remarks.
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2. The Physical Model

We consider a system of two non-interacting, identical qubits, characterized by the
same energy splitting !0 and coupled to two external classical °uctuating ¯elds. The
e®ective Hamiltonian is thus of the form

HðtÞ ¼ H1ðtÞ $ I2 þ I1 $H2ðtÞ; ð1Þ

where the local Hamiltonians are

HiðtÞ ¼ ½!0 þ !BiðtÞ'"z: ð2Þ

Here, ! is a coupling constant and BiðtÞ is an external classical ¯eld acting on each
qubit, which we describe by means of a zero-mean Gaussian stochastic process. We
consider both the case in which the two qubits are interacting with two independent
environments, i.e. B1ðtÞ and B2ðtÞ are totally uncorrelated, and the case in which the
two qubits are subject to a common environment, B1ðtÞ ¼ B2ðtÞ.

The Hamiltonian in Eq. (1) models an e®ective interaction between a quantum
system and a noisy environment having characteristic frequencies much smaller than
the typical frequencies of the system !0. The Hamiltonian in Eqs. (1) and (2) can also
describe a two-level quantum degree of freedom coupled to a classical degree of

freedom, for example the spin of a spin-12 particle undergoing a di®usion process in an

external ¯eld.
A Gaussian process can be described completely by its second order statistics, i.e.

by its mean # and its autocorrelation function K , in formula:

#ðtÞ ¼ E BðtÞ½ ' ¼ 0; ð3Þ

Kðt; t 0Þ ¼ E BðtÞBðt 0Þ½ '; ð4Þ

where E (½ ' denotes the average over all possible realizations of the process BðtÞ. The
characteristic function of a Gaussian process is de¯ned as42:

E exp i

Z t

0
dsfðsÞBðsÞ

! "# $
¼ exp ) 1

2

Z t

0

Z t

0
dsds 0fðsÞKðs; s 0Þfðs 0Þ

# $
; ð5Þ

where fðtÞ is an arbitrary function of time. If f ¼ $ is constant with respect to time,
Eq. (5) rewrites as:

E exp *i$

Z t

0
dsBðsÞ

! "# $
¼ exp ) 1

2
$2%ðtÞ

# $
; ð6Þ

where

%ðtÞ ¼
Z t

0

Z t

0
ds ds 0Kðs; s 0Þ: ð7Þ

In this work, we focus on two paradigmatic Gaussian processes: the OU process
and the fractional Gaussian noise (fGn). The OU process describes a di®usion process
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with friction and it is characterized by the autocorrelation function

KOUðt) t 0Þ ¼ &

2
expð)&jt) t 0jÞ; ð8Þ

where & ¼ ' )1 plays the role of a memory parameter and ' is the correlation time of
the process. For increasing & the noise spectrum becomes broader and in the limit
& + 1 one achieves white noise. The fGn describes anomalous di®usion processes,

with a di®usion coe±cient proportional to t2H , where H 2 ð0; 1Þ is known as the
Hurst parameter. The autocorrelation function may be written as:

KfGnðt) t 0Þ ¼ 1

2
ðjtj2H þ jt 0j2H ) jt) t 0j2HÞ: ð9Þ

When H ¼ 1=2 we have KfGnðt) t 0Þ ¼ minðt; t 0Þ and the fGn reduces to the Wiener

process (i.e. Brownian motion). When H > 1
2, the increments of the process have

positive correlation and the regime is called super-di®usive; when H < 1
2, we are in

the sub-di®usive regime and the increments are negatively correlated.
The % functions (7) for the OU and fGn processes are given by:

%OUðtÞ ¼
1

&
ðe)&t þ &t) 1Þ; ð10Þ

%fGnðtÞ ¼
t2Hþ2

2H þ 2
: ð11Þ

The evolution operator UðtÞ for a given realization of the process BiðtÞ, is expressed
as:

UðtÞ ¼ exp )i

Z t

0
HðsÞds

# $

¼ expf)i½!0tþ !’1ðtÞ'"zg$ expf)i½!0tþ !’2ðtÞ'"zg; ð12Þ

where we de¯ned the phase noise ’iðtÞ ¼
R t
0 dsBiðsÞ. If the system is initially pre-

pared in the state (0, the density matrix at a time t is given by the expected
value of the evolved density matrix over all possible realizations of the stochastic
processes, i.e.

(ðtÞ ¼ E UðtÞ(0U †ðtÞ
% &

: ð13Þ

As initial state, we consider a system prepared in a Bell-state mixture:

(0 ¼ c1j"þih"þjþ c2j")ih")jþ c3j#þih#þjþ c4j#)ih#)j

¼ 1

4
Iþ

X3

i¼1

ai"i $ "i

 !

; ð14Þ

where j"*i ¼ 1ffiffi
2

p ðj00i* j11iÞ, j#*i ¼ 1ffiffi
2

p ðj01i* j10iÞ, and the "i are the three Pauli

matrices. The coe±cients ci satisfy the condition
P

ci ¼ 1, and are related to the ai
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through the equalities:

a1 ¼ c1 ) c2 þ c3 ) c4;
a2 ¼ )c1 þ c2 þ c3 ) c4;
a3 ¼ c1 þ c2 ) c3 ) c4:

ð15Þ

We evaluate the entanglement by means of the negativity

Nð(Þ ¼ 2
X

i

!)
i

(((((

(((((; ð16Þ

where !)
i are the negative eigenvalues of the partial transpose of the system density

matrix. Negativity is zero for separable states and one for maximally entangled
states, such as pure Bell states.

3. Results

3.1. Independent environments

Here, we consider the case of independent environments, i.e. each qubit is coupled to
its own environment, described by the stochastic ¯eld BiðtÞ. In order to obtain the
evolved density matrix of the system, we calculate the expectation value in Eq. (13)
over all possible realizations of the two uncorrelated processes B1ðtÞ and B2ðtÞ. The
evolved density matrix for the two qubits can be written explicitly by using Eq. (6).
We ¯nd

(ðtÞ ¼ 1

2

ðc1 þ c2Þ 0 0 e)4! 2%)4i!0tðc1 ) c2Þ
0 ðc3 þ c4Þ e)4! 2%ðc3 ) c4Þ 0

0 e)4!2%ðc3 ) c4Þ ðc3 þ c4Þ 0

e)4! 2%þ4i!0tðc1 ) c2Þ 0 0 ðc1 þ c2Þ

0

BBBB@

1

CCCCA
;

ð17Þ

that is, a pure dephasing map. By applying the local unitary transformation

ei!0t"z $ ei!0t"z , we can write (ðtÞ in the diagonal Bloch form

(ðtÞ ¼ 1

4
ðIþ e)4! 2%ðtÞa1"x $ "x þ e)4! 2%ðtÞa2"y $ "y þ a3"z $ "zÞ; ð18Þ

where a1; a2 and a3 are the components of the initial state (0. Since the density
matrix (18) depends on time only through the function %ðtÞ, the system will reach

the separable steady state (ðtÞ ¼ 1
4 ðIþ a3"z $ "zÞ for t ! 1. The trajectories of

the evolved states in the ai-parameter space are shown in Fig. 1(a). We notice
that, with the exception of initial Bell states, the trajectories of the system actually
enter the set of separable states at a ¯nite time, thus showing a sudden death
of entanglement.
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The negativity as a function of time, for an initial arbitrary Bell-state mixture, is
given by:

NðtÞ ¼ 1

2
c1 þ c2 þ e)4!2%ðtÞðc3 ) c4Þ
(( ((þ c1 þ c2 ) e)4! 2%ðtÞðc3 ) c4Þ

(( (()

þ e)4! 2%ðtÞðc1 ) c2Þ þ c3 þ c4
(( ((þ )e)4! 2%ðtÞðc1 ) c2Þ þ c3 þ c4

(( ((*) 1: ð19Þ

As we can see from Eq. (19), the evolution of negativity does not depend on the
energy splitting !0 of the two qubits.

3.2. Common environment

If the two qubits interact with the same environment, we can assume that B1ðtÞ ¼
B2ðtÞ ¼ BðtÞ and thus

UðtÞ ¼ expf)i½!0tþ !’ðtÞ'"zg$ expf)i½!0tþ !’ðtÞ'"zg: ð20Þ

The evolved density matrix at time t is given by

(ðtÞ ¼ 1

2

ðc1 þ c2Þ 0 0 e)8!2%)4i!0tðc1 ) c2Þ
0 ðc3 þ c4Þ ðc3 ) c4Þ 0

0 ðc3 ) c4Þ ðc3 þ c4Þ 0

e)8!2%þ4i!0tðc1 ) c2Þ 0 0 ðc1 þ c2Þ

0

BBB@

1

CCCA ð21Þ

(a) (b)

Fig. 1. (Color online) Trajectories of the system in the space of parameters fa1; a2; a3g, for two inde-
pendent environments (a) and for a common environment (b). The Bell-state mixtures, Eq. (14), form a
tetrahedron. The set of separable states is the dark-blue octahedron. The initial states are Bell-state
mixtures that lie on the surface of the tetrahedron. For independent environments, the trajectories con-
verge to the green line a1 ¼ a2 ¼ 0. For a common environment, the trajectories are directed orthogonally
to the plane a1 ¼ a2, shown in green. In both cases, a3 remains constant.
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and the Bloch-diagonal form of the state (after a local unitary transformation

ei!0t"z $ ei!0t"z) is

(ðtÞ ¼ 1

4
Iþ 1

2
½e)8! 2%ðtÞða1 ) a2Þ þ a1 þ a2'"x $ "x

+

þ 1

2
½e)8! 2%ðtÞða2 ) a1Þ þ a1 þ a2'"y $ "y þ a3"z $ "z

,
: ð22Þ

In this case, the negativity as a function of time for an initial arbitrary mixture of Bell
states, is

NðtÞ ¼ 1

2
je)8! 2%ðtÞðc1 ) c2Þ þ c3 þ c4jþ je)8! 2%ðtÞðc2 ) c1Þ þ c3 þ c4j
%

þ j1) 2c3jþ j1) 2c4j) 2': ð23Þ

The trajectories in the Bell-state tetrahedron are shown in Fig. 1(b). They run
orthogonally to the plane a1 ¼ a2. By looking at the ¯gure, we notice that the system
experiences ESD when the initial state has a3 > 0, except for mixtures of j"þi and
j")i, for which NðtÞ ! 0 only for t ! 1. For those Bell-state mixtures that are
entangled and for which a3 < 0, the trajectory runs parallel to the surface of the
octahedron and hence negativity is constant over time. This set also includes the two

Bell states j#*i which are stable states for the dephasing dynamics.

3.3. Entanglement-preserving time

The e®ect of the longitudinal ¯eld is to induce decoherence in the form of a dephasing.
The entanglement, computed by the negativity, decays monotonically in time, as
shown in Fig. 2. In particular, depending on the initial state di®erent behaviors
of quantum correlations appear: for initial Bell states, the negativity goes

(a) (b)

Fig. 2. (Color online) Negativity as a function of the interaction time for an initially pure Bell state (a)

and for the mixture ( ¼ 1
10j"þih"þjþ 9

10j#þih#þj (b) interacting with independent environments driven

by di®erent stochastic processes: white noise (solid blue), OU with & ¼ 1 (red dashed), Wiener (green
dotted), fGn with H ¼ 0:9 (dot-dashed black). For pure Bell states, the negativity decreases smoothly to
zero, while for mixtures of Bell states ESD appears.
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asymptotically to zero, as a smooth function of time; on the contrary, if the initial
state is a mixture of Bell states, entanglement displays sudden death, reaching zero
abruptly. For a ¯xed initial state, the robustness of quantum correlations depends on
the nature of the considered stochastic process: di®erent expressions of the % function
give di®erent decaying velocities for entanglement.

We now investigate the role of the di®erent considered processes in enhancing the
system's ability to retain its coherence. To be quantitative, we de¯ne the entangle-
ment-preserving time t, as the time at which the negativity of the system falls below
a certain threshold, that we ¯x at the ratio r ¼ 99% of the initial negativity. We ¯rst
consider the case in which the initial state is a Bell state. In this case, the negativity
as a function of time is easily found to be

NseðtÞ ¼ exp½)4!2%ðtÞ'; ð24Þ

NceðtÞ ¼ exp½)8!2%ðtÞ'; ð25Þ

for the independent-environment and common-environment case, respectively.
Hereafter, we ¯x the value of the coupling constant to ! ¼ 1. Upon introducing the
quantity %, ¼ )1=4 logðrÞ ’ 0:0025, we may write the entanglement-preserving time
as in Table 1, where we show the dependencies of t, on the parameters of the
processes, i.e. the inverse of the correlation time & for the OU process and the Hurst
parameter H for the fractional noise. We also report the results for white noise (i.e.

OU for & ! 1) and the Wiener process (i.e. fGn with H ¼ 1
2).

The entanglement-preserving time for OU and fGn is shown in Fig. 3 as a function
of the characteristic parameters & and H . For the OU process, in the limit of a quasi-
static ¯eld, i.e. & ! 0, the entanglement-preserving time diverges, t, ! 1, such that
the system retains its coherence inde¯nitely, while in the Markovian limit, & ! 1,
t, ! % ,, recovering the behavior typical of the white noise. In the case of fGn, the
dependence of t, on H is well approximated by a linear relation and the higher the
di®usion coe±cient, the longer the entanglement-preserving time. We also notice
that, for vanishing H , t, is comparable to the OU process with & ¼ 1. Indeed, we have

that %OUðtÞ ’ 1
2 &t

2 for small t and %fGnðtÞ ’ 1
2 t

2 for vanishing H . For general mix-

tures of Bell states, t, is always smaller than the case of pure Bell states.

Table 1. The entanglement-preserving time t, for
di®erent environments and for an initial pure Bell
state. The quantity % , is given by % , ¼ )1=4 log
ðrÞ ’ 0:0025 and WðzÞ is the Lambert function,
i.e. the principal solution of z ¼ W expW .

Process t,

OU 1
& ½&% , þWð)e)&% ,)1Þ þ 1'

White noise % ,

fGn ½ð2H þ 2Þ% ,' 1
2Hþ2

Wiener ½3% ,'1=3

M. A. C. Rossi, C. Benedetti & M. G. A. Paris
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In Fig. 4, we show t, as a function of the initial negativityN0 for a set of randomly
generated initial Bell-mixed states interacting with OU and fGn external ¯elds (blue
and red points respectively) either independently Fig. 4(a) or as a common envi-
ronment Fig. 4(b). As it is apparent from the plots, the larger is the initial entan-
glement, the longer is the preserving time. This is true both in the case of independent
and common environments. In the former case, the entanglement-preserving time is
longer than in case of a common bath, for a ¯xed value of the initial negativity. In
both scenarios, the entanglement is more robust in the case of fGn, rather than the
OU process, with longer values of the preserving time t,.

By looking at Fig. 4 we see that the values of t, are not much dispersed. Rather,
they concentrate around typical values which strongly depend on the kind of envi-
ronment and only slightly on the initial negativity itself. Besides, the value of t, is

(a) (b)

Fig. 4. (Color online) The entanglement-preserving time t, (for a ratio r ¼ 0:99 to the initial negativity)
as a function of the initial negativity N0 for randomly chosen initial Bell-state mixtures. We show results
for the OU process with & ¼ 1 (blue points) and the Wiener process, i.e. fractional Gaussian noise with
H ¼ 1=2 (red points). The solid and dashed black lines are the lower bounds for t, for the OU and Wiener
process respectively, obtained from Eq. (26). (a) Independent environments, (b) common environment.

(a) (b)

Fig. 3. (Color online) The entanglement-preserving time t, as a function of the characteristic parameter
of the external ¯eld. We show results for OU (a) and fractional Gaussian noise (b) and for the case of
independent (solid blue) and common (red dashed) environments.
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bounded from below by an increasing function of the initial negativity, the analytical
expression of which can be obtained by determining the entanglement-preserving
time for mixtures of a " and a # Bell state. In this case, for a given ratio r to the
initial negativity, t, satis¯es the equation

%ðt,Þ ¼ 1

4A
log

N0 þ 1

N0ð2r) 1Þ þ 1

# $
; ð26Þ

where A ¼ 1 for independent environments and A ¼ 2 for a common environment.
From Eq. (26) we obtain lower bounds to t, as a function of N0, which are shown
(solid and dashed black lines) in Fig. 4.

3.4. Entanglement sudden-death time

As previously discussed, the interaction of the two-qubit system with the external
classical ¯eld induces a sudden death of entanglement for most of the Bell-state
mixtures. In this section we study how the nature of the stochastic Gaussian process
a®ects the entanglement sudden-death time, tESD, i.e. the time at which the state
becomes separable and its negativity goes to zero.

In Fig. 5, we show tESD versus the initial negativity N0 for randomly generated

Bell-state mixtures for the OU process and the fGn with H ¼ 1
2. We can see that tESD

is bounded from below by a monotonically increasing function of negativity, which
itself diverges for N0 ! 1, i.e. as the initial state gets closer to a pure Bell state. The
analytical expression of this function is obtained by considering initial states be-
longing to a face of the Bell-state tetrahedron, and thus easily follows from Eq. (26)
by substituting r ¼ 0. We have

%ðtESDÞ ¼
1

4A
log

1þN0

1)N0

! "
; ð27Þ

(a) (b)

Fig. 5. (Color online) The entanglement sudden-death time tESD as a function of the initial negativity N0

for randomly chosen (initial) Bell-state mixtures, for the OU process with & ¼ 1 (blue) and the Wiener
process, i.e. fractional Gaussian noise with H ¼ 1=2 (red). (a) Independent environments. The solid and
dashed lines are the lower bounds for tESD for the OU and Wiener process respectively, obtained from
Eq. (27). (b) Common environment.
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where A ¼ 1 for the independent-environments case and A ¼ 2 for the common-
environment case. Survival time is thus longer for larger values of the initial entan-
glement. In the case of independent environments the lower bound is larger than in
the case of a common environment, con¯rming the tendency of entanglement to be
more robust in the case of independent noises a®ecting the two qubits. As opposed to
the entanglement-preserving time, the behavior of tESD is comparable for the two
considered processes.

4. Conclusion

The decoherence caused by the interaction of a quantum system with the external
environment is one of the main obstacles to the large scale deployment of quantum
communication protocols and quantum information processing. A deep under-
standing of the decoherence mechanisms and the ability to engineer the environment
are thus in order to obtain more robust quantum correlations and to design robust
implementations of quantum technologies.

In this paper, we have addressed the dynamics of a two-qubit system interacting
with classical noise generated by a stochastic Gaussian process and leading to a
dephasing time evolution. In particular, we considered two di®usion processes:

the OU process, characterized by a decoherence time &)1 and the fGn, character-
ized by the Hurst parameter H . We computed the time evolved density matrix
of the two-qubit system by performing the average over the stochastic processes,
both in the case of independent and common environments. We have characterized
the trajectories of the system inside the set of mixtures of Bell-states and shown
the occurence of sudden death of entanglement for certain sets of initial quantum
states.

We introduced the entanglement-preserving time t, and the ESD time tESD in
order to analyze the e®ects of the nature of noise on the decoherence mechanism. We
found that t, is larger for fGn than OU process and that a larger initial entanglement
corresponds to a longer preserving time. We also found that t, is bounded from below
by an increasing function of the initial negativity and that independent environments
degrade quantum correlations more weakly than a common one. Also the entangle-
ment sudden-death time tESD is bounded from below by a (di®erent) increasing
function of the initial negativity but, contrarily to the preserving time, has compa-
rable values for the two considered processes.

Overall, our results indicate that engineering the environment has only a slight
in°uence over the ESD time, while it represents a valuable resource to increase the
entanglement-preserving time, i.e. to maintain entanglement closer to the initial level
for a longer interaction time.
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