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Quantum-state engineering assisted by entanglement
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We suggest a general scheme for continuous variable quantum-state engineering based on conditional mea-
surements carried out on entangled twin beam of radiation. Realistic detection schemes such as on/off photo-
detection, homodyne detection, and joint measurement of two-mode quadratures are analyzed in detail. Imper-
fections of the apparatuses, such as nonunit quantum efficiency and finite resolution, are taken into account. We
show that conditional on/off photodetection provides a reliable scheme to verify nonclassicality, whereas
conditional homodyning represents a tunable and robust source of squeezed light. We also describe optical
continuous variable teleportation as a conditional measurement, and evaluate the degrading effects of finite
amount of entanglement, decoherence due to losses, and nonunit quantum efficiency.
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I. INTRODUCTION

Quantum-state engineering of radiation field plays a m
jor role in several fundamental tests of quantum mecha
@1#, as well as in applications such as high-precision m
surements and high-capacity communication channels@2#.
Generation of nonclassical light generally involves active
vices and nonlinear optical media, which couple two or m
modes of the field through the nonlinear susceptibility of
matter. Since the nonlinear susceptibilities are small, the
fective implementation of nonlinear interactions is expe
mentally challenging, and the resulting processes are ge
ally characterized by a low rate of success, i.e., by a
efficiency.

In quantum mechanics, the reduction postulate provi
an alternativeintrinsic mechanism to achieveeffectivenon-
linear dynamics. In fact, if a measurement is performed o
portion of a composite entangled system, e.g., the bipa
entangled systems made of two modes of radiation, the o
component is conditionallyreducedaccording to the out-
come of the measurement@3#. The resulting dynamics is
highly nonlinear, and may produce quantum states that c
not be generated by currently achievable nonlinear proces
The efficiency of the process, i.e., the rate of success in
ting a certain state, is equal to the probability of obtainin
certain outcome from the measurement. This is usu
higher than nonlinear efficiency, thus making condition
schemes possibly convenient even when a correspon
Hamiltonian process exists.

The nonlinear dynamics induced by conditional measu
ments has been analyzed for a large variety of tasks@4–18#,
among which we mention photon adding and subtract
schemes@5#, optical state truncation of coherent states@6#,
generation of catlike~macroscopic quantum interferenc!
states@7–9#, state filtering by active cavities@10,11#, synthe-
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sis of arbitrary unitaries@12#, and generation of optical qubi
by conditional interferometry@13#.

In this paper, we analyze in detail the use of condition
measurements on entangled twin beam of radiation~TWB!
to engineer quantum states, i.e., to produce, manipulate,
transmit nonclassical light. In particular, we will focus o
attention on realistic measurement schemes, feasible
current technology, and will take into account imperfectio
of the apparatuses such as detection quantum efficiency
finite resolution.

The reason to choose TWB as anentangled resourcefor
conditional measurements is twofold. On one hand, TW
are the natural generalization to continuous variable~CV!
systems of Bell states, i.e., maximally entangled states
qubit systems. On the other hand, and more importan
TWBs are the only CV entangled states that can be relia
produced with current technology, either by paramet
down-conversion of the vacuum in a nondegenerate para
ric amplifier @19#, or by mixing two squeezed vacua from
couple of degenerate parametric amplifiers in a balan
beam splitter@20,21#. Overall, our main goal is to establis
the current state of art for conditional engineering of C
quantum states assisted by entanglement.

The first kind of measurement we analyze is on/off ph
todetection. As a matter of fact, though recent proposals
encouraging@22#, the discrimination of, say,n photons from
n11 photons in the quantum regime is still experimenta
challenging. Therefore, we are led to consider the action
realistic avalanche on/off photodetectors, i.e., detectors
have no output when no photon is detected and a fixed ou
when one or more photons are detected. Our analysis sh
that on/off photodetection on TWB provides the generat
of conditionalnonclassical mixtures, which are not destroyed
by decoherence induced by noise and permits a robust te
the quantum nature of light. The second apparatus invo
homodyne detection, whose action on TWB represents a
able source of squeezed light, with high conditional proba
ity and robustness to experimental imperfections, such
nonunit quantum efficiency and finite resolution. The th
©2003 The American Physical Society04-1
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kind of measurement we are going to consider is the jo
measurement of the sum and difference quadratures of
modes corresponding to the measurement of the real and
imaginary parts of the complex photocurrentZ5a1b†, a
andb being two modes of the field. Such a measuremen
realized by generalized heterodyne detection if the t
modes have different frequencies, and by multiport hom
dyne detection if they have the same frequency. In our c
one of the two modes is a beam of the TWB, whereas
second mode is excited in a given reference state, usu
referred to as the probe of the measurement. As we will
this approach allows us to describe CV quantum telepo
tion as a conditional measurement, and to easily evaluate
degrading effects of finite amount of entanglement, deco
ence due to losses, and imperfect detection at receiver’s
cation.

The paper is structured as follows. In Sec. II, we estab
notation and describe the general measurement schem
are going to consider. In Sec. III, we consider the three ab
detection schemes as conditional measurements to eng
nonclassical states. In Sec. IV, we show how to evalu
detection probabilities and conditional states using Wig
functions. This approach allows us to analyze several
grading effects in CV teleportation, and to show the equi
lence of noisy teleportation to a Gaussian noisy chan
Section V closes the paper with some concluding remark

II. CONDITIONAL QUANTUM-STATE ENGINEERING

The general measurement scheme we are going to
sider is schematically depicted in Fig. 1. The first stage c
sists of a nondegenerate optical parametric amplifier~NOPA!
obtained by ax (2) nonlinear optical crystal cut either for typ
I or type II phase matching. In the parametric approximat
~i.e., pump remaining Poissonian during the evolution@29#!,
the crystal couples two modes of the radiation field acco
ing to the effective Hamiltonian

Hk5k~a†b†1ab!, ~1!

wherek represents the effective nonlinear coupling, som
times referred to as thegain of the amplifier, anda and b
denote modes with wave vectors satisfying the pha
matching conditionkWa1kWb5kW p , kW p being the wave vector o
the pump. For vacuum input we have parametric dow
conversion with the output given by the so-called twin-be
state of radiation,

ul&&5A12ulu2(
p50

`

lpupp&& upp&&5up&a^ up&b , ~2!

wherel5tanhukut and t represents an effective interactio
time. The TWB ul&& is an entangled state in the biparti
Hilbert spaceHa^ Hb , where Hj , j 5a,b, are the Fock
space of the two modes, respectively.

TWBs are pure states and therefore their degree of
tanglement can be quantified by the excess von Neum
entropy DS5 1

2 (S@%a#1S@%b#2S@%#) @23–26#. The en-
tropy of a two-mode state% is defined as S@%#5
04210
t
o

the

is
o
-
e,
e
lly
e,
a-
he
r-

lo-

h
we
e

eer
te
r

e-
-
l.

.

n-
-

n

-

-

e-

-

n-
nn

2Tr$% ln %%, whereas the entropies of the two modesa andb
are given by S@% j #52Trj$% j ln %j%, j 5a,b, with %a
5Trb$%% and %b5Tra$%% denoting partial traces@27#. The
degree of entanglement of the stateul&&, in terms of the
average number of photons of the TWBN52l2/(12l2), is
given by

DS5 lnS 11
N

2 D1
N

2
lnS 11

2

ND . ~3!

Notice that for pure states,DS represents the unique measu
of entanglement@28#. TWBs are the maximally entangle
states for a given average number of photons, and the de
of entanglement is a monotonically increasing function ofN.

A measurement performed on one of the two modesre-
ducesthe other one according to the projection postula
Each possible outcomex occurs with probabilityPx , and
corresponds to a conditional state%x on the other subsystem
We have

Px5Trab@ ul&&^^luIa^ Px#

5~12l2!(
q

l2q^quPxuq&

5~12l2!Trb@l2b†bPx
T#, ~4!

FIG. 1. Scheme for quantum-state engineering assisted by
tanglement. At first, a twin beam of the modesa andb is produced
by spontaneous down-conversion in a nondegenerate parametri
tical amplifier. Then, modeb is ~possibly! subjected to the unitary
transformationV and then revealed by a measurement appara
described by the probability operator-valued measure~POVM! Ex .
Overall, the quantum operation on the modeb is described by the
POVM Px5V†ExV. The conditional state of modea is given by
%x , and this state may be further modified by a unitary transform
tion Ux depending on the outcome of the measurement, wh
value may be sent to the receiver location by classical commun
tion. The overall conditional state is thussx5Ux%xUx

† . Through-
out the paper, we always takeV5I ~no transformation before the
measurement!, and consider three kinds of measurements: on
photodetection, homodyne detection, and joint measuremen
two-mode quadratures by multiport homodyne or heterodyne de
tion. In the case of on/off photodetection and homodyne detect
we do not consider further transformation~i.e.,Ux5I), whereas for
the joint measurement of two-mode quadratures, this will a be
placement operatorD(a), with amplitude equal to the result of th
measurement.
4-2
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%x5
1

Px
Trb@ ul&&^^luIa^ Px#

5
12l2

Px
(
pq

lp1q^puPx
Tuq&uq&^pu

5
la†aPx

Tla†a

Trb@l2b†bPx
T#

, ~5!

where Px is the probability operator-valued measu
~POVM! describing the measurement,$ %T denotes transpo
sition, andIa denotes the identity operator onHa . In the last
equalities of both Eqs.~4! and ~5!, we have already per
formed the trace over the Hilbert spaceHa . Also notice that
in the last expression for%x in Eq. ~5!, Px should be mean
as an operator acting onHa . Our scheme is general enoug
to include the possibility of performing any unitary operati
on the beam subjected to the measurement. In fact, ifEx is
the original POVM andV the unitary, the overall measure
ment process is described byPx5V†ExV, which is again a
POVM. In the following, we always considerV5I, i.e., no
transformation before the measurement. A further genera
tion consists in sending the result of measurement~by clas-
sical communication! to the reduced state location and th
performing a conditional unitary operationUx on the condi-
tional state, eventually leading to the statesx5Ux%xUx

† .
This degree of freedom will be used in Sec. III C, where
analyze CV quantum teleportation as a conditional meas
ment.

III. CONDITIONAL MEASUREMENTS ON TWIN BEAM

A. Geiger-like „onÕoff… photodetection

By looking at the expression~2! of TWB in the Fock
basis, it is apparent that ideal photocounting on one of
two beams, described by the POVMPn5un&^nu, is a con-
ditional source of Fock number stateun&, which would be
produced with a conditional probabilityPn5(12l2)l2n.
However, as mentioned above, photocounting cannot be
sidered a realistic kind of measurement. Therefore, we n
consider the situation in which one of the two beams,
mode b, is revealed by an avalanche on/off photodetec
i.e., a detector which has no output when no photon is
tected and a fixed output when one or more photons
detected. The action of an on/off detector is described by
two-value POVM$P0 ,P1%, where

P08 (
k50

`

~12h!kuk&^ku, P18I2P0 , ~6!

h being the quantum efficiency. The outcome ‘‘1’’~i.e., reg-
istering a ‘‘click’’ corresponding to one or more incomin
photons! occur with probability

P15^^luI^ P1ul&&5
hl2

12l2~12h!
5

hN

21hN
~7!

and correspondingly, the conditional output states for
modea is given by
04210
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%15
12l2

P1
(
k51

`

l2k@12~12h!k#uk&^ku. ~8!

The density matrix in Eq.~8! describes a mixture: apseudo-
thermal state, where the vacuum component has been
moved by the conditional measurement. Such a state
highly nonclassical, as also discussed in Refs.@30,32#. No-
tice that the nonclassicality is present only when the s
exiting the amplifier is entangled. In the limit of low gain
i.e., for small TWB photon numberN, the conditional state
%1 approaches the number stateu1&^1u with one photon.

The Wigner function of%1

W~a!5E d2g

p2
eḡa2āgTr@%1D~g!#, ~9!

whereD(g)5exp@ga†2ḡa# is the displacement operator, ex
hibits negative values for any value ofl andh. In particular,
in the origin of the phase space, we have

W~0!52
2

p

1

N11

21hN

2~11N!2hN
. ~10!

One can see that also the generalized Wigner function fs
ordering,

Ws~a!52
2

p sE d2gW0~g!expF2

s
ua2gu2G ,

shows negative values forsP(21,0). In particular, one has

Ws~0!52
2~11s!~21hN!

p~11N2s!@2~11N2s!2hN~11s!#
.

~11!

A good measure of nonclassicality is given by the low
index s!, for which Ws is a well-behaved probability, i.e.
regular and positive definite@31#. Equation~11! says that for
%1 we haves!521, that is,%1 describes a state as noncla
sical as a Fock number state.

The Fano factor

F5
^@b†b2^b†b&#2&

^b†b&

of %1 is given by

F5
1

2
~21N!S 11

2

21N h
2

4~21N!

41N~41N h! D . ~12!

Therefore, we have that the beamb is always sub-Poissonia
for ~at least! N,2. The verification of nonclassicality can b
performed, for any value of the gain, by checking the ne
tivity of the Wigner function through quantum homodyn
tomography@32#, and in the low-gain regime, also by ver
fying the sub-Poissonian character by measuring the F
factor via direct noise detection@33,34#.

Notice that besides quantum efficiency, i.e., lost photo
the performance of a realistic photodetector may be degra
4-3
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by the presence of dark count, i.e., by ‘‘clicks’’ that do n
correspond to any incoming photon. In order to take in
account both these effects, a real photodetector can be m
eled as an ideal photodetector~unit quantum efficiency, no
dark count! preceded by a beam splitter~of transmissivity
equal to the quantum efficiency!, whose second port is in a
auxiliary excited state~e.g., a thermal state, or a random
phase coherent state!, which accounts for the backgroun
noise~thermal or Poissonian!. However, at optical frequen
cies, the number of dark counts is negligible and we are
going to take into account this effect, which has been a
lyzed in detail in Ref.@32#.

We conclude that conditional on/off photodetection
TWB provides a reliable scheme to check nonclassical lig
The nonclassicality, as well as its verification, are rob
against amplifier gain and detector efficiency.

B. Homodyne detection

In this section, we consider the kind of conditional sta
that can be obtained by homodyne detection on one of
two beams exiting the NOPA. We will show that they a
squeezed states. We first consider ideal homodyne dete
described by the POVMPx5ux&^xu, where

ux&5S 2

p D 1/4

e2x2

(
n50

`
Hn~A2x!

An!2n
un&,

with Hn(x) denoting thenth Hermite polynomials, is an
eigenstate of the quadrature operatorxb5 1

2 (b1b†). Then in
the second part of the section, we will consider two kinds
imperfections: nonunit quantum efficiency and finite reso
tion. As we will see, the main effect of the conditional me
surement, i.e., the generation of squeezing, holds also
these realistic situations.

The probability of obtaining the outcomex from a homo-
dyne detection on the modeb is obtained from Eq.~4!. We
have

Px5~12l!2(
q50

`

l2qu^xuq&u25

expH 2
x2

2sl
2J

A2psl
2

, ~13!

where

sl
25

1

4

11l2

12l2
5

1

4
~11N!. ~14!

Px is Gaussian with variance that increases asl is approach-
ing unit. In the~unphysical! limit l→1, i.e., infinite gain of
the amplifier, the distribution forx is uniform over the real
axis. The conditional output state is given by Eq.~5!, and
sincePx is a pure POVM, it is a pure state%x5ucx&^cxu,
where

ucx&5A12l2

Px
la†aux&5(

k
ckuk&. ~15!
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The coefficients ofucx& in the Fock basis are given by

ck5S l2

2 D k/2 1

Ak!
~12l4!1/4e22l2x2/(11l2)Hk~A2x!,

~16!

which means thatucx& is a squeezed state of the form

ucx&5D~ax!S~z!u0&, ~17!

where

ax5
2xl

11l2
5

xAN~N12!

11N
,

z5arctanhl25arctanh
N

N12
. ~18!

The quadrature fluctuations are given by

Dxa
25

1

4

1

11N
, Dya

25
1

4
~11N!, ~19!

where xa5 1
2 (a†1a), ya5( i /2)(a†2a), and DO2

5Tr@%O2#2(Tr@%O#)2. Equation~19! confirms thatucx& is
a minimum uncertainty state. Notice that~i! the amount of
squeezing is independent of the outcome of the meas
ment, which only influences the coherent amplitude;~ii ! ac-
cording to Eq.~13!, the most probable conditional state is
squeezed vacuum. The average number of photon of the
ditional state is given by

Nx5^cxua†aucx&5x2
N~N12!

~11N!2
1

1

4

N2

11N
. ~20!

The conservation of energy may be explicitly checked
averaging over the possible outcomes,

E dxPxNx5
1

4

N2

11N
1sl

2N~N12!

~11N!2
5

N

2
, ~21!

which correctly reproduces the number of photon pertain
each part of the TWB.

We now take into account the effects of nonunit quant
efficiency at the homodyne detector on the conditional st
We anticipate that%xh will be no longer pure states, and i
particular, they will not be squeezed states of the form~17!.
Nevertheless, the conditional output states still exh
squeezing, i.e., quadrature fluctuations below the cohe
level, for any value of the outcomex, and for quantum effi-
ciency larger thanh.1/2.

The POVM of a homodyne detector with quantum ef
ciencyh is given by

Pxh5E dt

A2pDh
2

expH 2
~x2t !2

2Dh
2 J P t , ~22!

where

Dh
25

12h

4h
. ~23!
4-4
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The nonideal POVM is a Gaussian convolution of the id
POVM. The main effect is thatPxh is no longer a pure
orthogonal POVM. The probabilityPxh of obtaining the out-
comex is still a Gaussian, now with variance

Dlh
2 5sl

21Dh
2 . ~24!

The conditional output state is again given by Eq.~5!. After
some algebra, we get the matrix element in the Fock ba

^nu%xhum&5
~12l2!ln1m

An!m!2n1m
Ah

22h~12l2!

12l2

3expH 24x2
h2l2

12l2~122h!
J

3 (
k50

min(m,n)

2kk! S m
k D S n

kDh (m1n)/22k

3Hm1n22k~A2hx!. ~25!

The quadrature fluctuations are now given by

Dxa
25

11N~12h!

4~11hN!
, Dya

25
1

4
~11N!. ~26!

As a matter of fact,Dya
2 is independent ofh, whereasDxa

2

increases for decreasingh. Therefore, the conditional outpu
%xh is no longer a minimum uncertainty state. However,
h large enough, we still observe squeezing in the direct
individuated by the measured quadrature. The form of
output state can be obtained by the explicit calculation of
matrix elements or, more conveniently, by evaluating
Wigner function~see Sec. IV!. We have

%xh5D~axh!S~zh!n thS†~zh!D†~axh!, ~27!

where

n th5~11nth!21(
p50

` S nth

11nth
D p

up&^pu

is a thermal state with average number of photons given

nth5
1

2 HA~11N!@11N~12h!#

11hN
21J , ~28!

and the amplitude and squeezing parameters read as foll

axh5
hAN~N12!

11hN
x, ~29!

zh5
1

4
ln

~11N!~11hN!

11N~12h!
. ~30!

From Eqs.~26! and ~30!, we notice that%xh shows squeez
ing if h.1/2, independent of the actual valuex of the ho-
modyne outcome. In Fig. 2, we illustrate the effects of qu
tum efficiency on the matrix elements of the condition
state. In particular, we plot the matrix elements for two v
04210
l

r
n
e
e
e
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l
-

ues of the homodyne outcomex50.0,0.6, and three value
of the quantum efficiencyh51.0,0.8,0.4.

The outcome of homodyne detection is, in principle, co
tinuously distributed over the real axis. However, in practi
one has always to discretize data, mostly because of fi
experimental resolution. The POVM describing homody
detection with binned data is given by

Pxh~d!5
1

dEx2d/2

x1d/2

dtP th , ~31!

whereP th is given in Eq.~22!, and d is the width of the
bins. The probability distribution is now given by

Pxh~d!5
1

2d
F erfS x1

d

2

A2Dlh
2
D 2erfS x2

d

2

A2Dlh
2
D G

5

expH 2
x2

2Dlh
2 J

A2pDlh
2 H 12

x22Dlh
2

24Dlh
2

d2J 1O~d3!,

~32!

FIG. 2. Matrix elements in the Fock basis of the condition
state%xh after homodyne detection on TWB. In the first row, th
matrix elements forx50.0 andh51.0,0.8,0.4. In the second row
the matrix elements forx50.6 and the same values of quantu
efficiency.

FIG. 3. Probability distributionPxh(d) of homodyne outcomes
x for quantum efficiencyh50.7, TWB photon numberN520, and
width of the binsd50.25. The threshold valuexd.5.16 to obtain a
conditionally squeezed state is shown. The gray-shaded area r
sents the overall probabilityQd.97% of producing a squeeze
state by the conditional measurement.
4-5
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whereDlh
2 is given in Eq.~24! and

erf~x!52/ApE
0

x

dt exp$2t2%

denotes the error function. The conditional state is modifi
accordingly. Concerning the quadrature fluctuations of
conditional state, we have, up to second order ind,

Dxa
2~d!5Dxa

21x2
d2

12

h2N~N12!

~11hN!2
, ~33!

which is below the coherent level forh.1/2 and for

uxu,xd[
1

d
A3~11hN!~2h21!

h2~N12!
. ~34!

Therefore, the effect of finite resolution is that the con
tional output is squeezed only for the subsetuxu,xd of the
possible outcomes which, however, represents the ra
where the probability is higher. In Fig. 3, as an example,
show Pxh(d) as a function ofx for h50.7, d50.25, and
N520. The thresholdxd is shown as well as the overa
probability Qd of producing a squeezed state which, up
second order ind, is given by

Qd5E
2xd

xd
dxPxh~d!5H 0, N50

erfF1

d
g~h,N!G , NÞ0,

~35!

where

g~h,N!5A6~2h21!

h~N12!
. ~36!

In Fig. 4, we showg(h,N) as a function ofh for different
values of the TWB photon numberN. As it is apparent from
the plot,g(h,N) is a monotonically increasing function ofh
and a monotonically decreasing function ofN. Notice that
the largerg(h,N) is, the smaller is the effect of finite reso
lution in decreasing the probability for obtaining squeez
states. In principle, using small value ofN ~i.e., less en-

FIG. 4. The functiong(h,N) in Eq. ~36! vs the quantum effi-
ciency for different values of the TWB photon numberN. From top
to bottom, we have the curves forN51,2,5,10.
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tanglement! increases the probability of getting squeez
states. However, such states would be only slightly squee
i.e., Dxa

2& 1
4 . Therefore, since the scheme is aimed to b

tunable source of squeezing, the best strategy is to use
values ofN, while accepting a slightly decreased condition
probability.

C. Joint measurement of two-mode quadratures

In this section, we assume that modeb is subjected to the
measurement of the real and the imaginary part of the c
plex operatorZ5b1c†, wherec is an additional mode ex
cited in a reference stateS. The measurements of Re@Z# and
Im@Z# correspond to measuring the sum and differen
quadraturesxb1xc andyb2yc of the two modes, and can b
experimentally implemented by multiport homodyne dete
tion if the two modes have the same frequencies@35–37#, or
by heterodyne detection otherwise@38#. The measurement is
described by the following POVM@39#:

Pa5
1

p
D~a!STDT~a!, ~37!

where a is a complex number,D(a) is the displacemen
operator, and (•••)T stands for the transposition operatio
The present scheme is equivalent to that of CV teleportat
which can be viewed as a conditional measurement, with
state to be teleported playing the role of the reference staS
of the apparatus. In order to complete the analogy, we
sume that the result of the measurement is classically tr
mitted to the receiver’s location, and that a displacem
operationD†(a) is performed on the conditional state%a .
Equations~4! and ~5! are rewritten as

pa5~12l2!Tr2@l2a†aPa
T#, ~38!

%a5
la†aPa

Tla†a

Tr2@l2a†aPa
T#

, ~39!

sa5DT~a!%aD~a!, ~40!

while the teleported state is the average over all the poss
outcomes, i.e.,

s5E d2apasa5E d2aD†~a!^^luI^ Paul&&D~a!.

~41!

After performing the partial trace, and some algebra, one

s5E d2a

pK0
expH 2

uau2

K0
J D~a!SDT~a!, ~42!

whereK0511N2AN(N12). The output state% coincides
with the input only in the limitN→`, i.e., for infinite energy
of the TWB. Equation~42! shows that CV teleportation with
finite amount of entanglement is equivalent to a Gauss
displacement channel withK0 background photons applie
to the input state. This result has been also obtained in R
@40,41# by different methods. In the following section, w
will show that this result still holds taking into account th
4-6
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effects of decoherence due to losses, and nonunit quan
efficiency of the measurement, either multiport homodyne
heterodyne detection.

IV. CONDITIONAL MEASUREMENTS IN THE PHASE
SPACE

The results of the previous sections can be derived,
for CV teleportation also extended, using Wigner functio
in the phase space. The analysis is based on the fact tha
trace between two operators can be written as@43#

Tr@O1O2#5pE d2bW@O1#~b!W@O2#~b!, ~43!

where the Wigner function for a generic operatorO is de-
fined analogously to that of a density matrix, i.e.,

W@O#~a!5E d2g

p2
eaḡ2āg Tr@OD~g!#, ~44!

wherea is a complex number andD(g) is the displacemen
operator. The inverse transformation reads as follows@42#:

O5E d2aW@O#~a!e22uau2e2aa†
~21!a†ae2āa. ~45!

The Wigner functionW@l#(x1 ,y1 ;x2 ,y2) of a TWB is
Gaussian~we omit the argument!:

W@l#5~2ps1
2 2ps2

2 !21expF2
~x11x2!2

4s1
2

2
~y11y2!2

4s2
2

2
~x12x2!2

4s2
2

2
~y12y2!2

4s1
2 G , ~46!

where the variances are given by

s1
2 5

1

4
@11N1AN~N12!#, ~47!

s2
2 5

1

4
@11N2AN~N12!#. ~48!

Using Eq.~43!, we rewrite the probability distribution~4! as
follows:

Px5E E dx1dy1E E dx2dy2W@l#~x1 ,y1 ;x2 ,y2!

3W@Px#~x2 ,y2! ~49!

5~12l2!E E dx2dy2W@l2b†b#~x2 ,y2!W@Px#~x2 ,y2!,

~50!

whereW@Px#(x2 ,y2) is the Wigner function of the POVM
describing the measurement andW@l2b†b# is given by
04210
m
r
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W@l2b†b#~x2 ,y2!5
1

p~11N!
expS 2

x2
21y2

2

11N D . ~51!

Analogously, the Wigner function of the conditional outp
state~5! can be written as

W@%x#~x1 ,y1!5
1

Px
E E dx2dy2W@l#~x1 ,y1 ;x2 ,y2!

3W@Px#~x2 ,y2!. ~52!

Once the Wigner function for the POVMPx of the detector
is known, one may reproduce the results of previous sect
using Eqs.~50! and ~52! together with Eq.~45!. For on/off
photodetection, one has

W@P0#~x2 ,y2!5
2h

p~22h!
expS 22

x2
21y2

2

22h D ,

W@P1#~x2 ,y2!512W@P0#~x2 ,y2!, ~53!

whereas the POVM of a homodyne detector with quant
efficiencyh corresponds to the Wigner function given by

W@Pxh#~x1 ,y1![W@Pxh#~x1!

5~2pDh
2 !21/2expH 2

~x12x!2

2Dh
2 J , ~54!

whereDh
2 is given in Eq.~23!.

Let us now focus our attention on the situation where
conditional measurement on TWB is the joint measurem
of the sum and difference quadratures of two modes. In
case, the Wigner approach may be convenient, in particu
in the description of optical teleportation as a condition
measurement, since it makes it easier to include the deg
ing effects of nonunit quantum efficiency and of losses alo
the transmission channel.

At first, we consider the ideal POVMPa of Eq. ~37!. By
taking into account that for any density matrix

W@%T#~x,y!5W@%#~x,2y!,

W@D~a!%D†~a!#~x,y!5W@%#~x2xa ,y2ya!, ~55!

with xa5Re@a# andya5Im@a#, it is easy to show that

W@Pa
T#~x2 ,y2!5W@S#~x22xa ,ya2y2!. ~56!

Inserting Eq.~56! in Eqs. ~50! and ~52!, and changing the
integration variables, we obtain the Wigner function of t
teleported states of Eq. ~40!:

W@s#~x2 ,y2!5E E dx1dy1E E dxadyaW@l#~x21xa ,y2

1ya ;x11xa ,2y12ya!W@S#~x1 ,y1!

5E E dx1dy1

pK0
expH 2

x1
21y1

2

K0
J

3W@S#~x22x1 ,y22y1!, ~57!
4-7
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which corresponds to the state given by Eq.~42!. We now
proceed by taking into account nonunit quantum efficien
of the detector and losses due to propagation of TWB. N
unit quantum efficiency at either double homodyne or h
erodyne detectors modifies the POVM of the sender, wh
becomes a Gaussian convolution of the ideal POVMPa ,

Pah5E d2b

pDh
2

expH 2
ua2bu2

Dh
2 J Pb , Dh

25
12h

h
,

~58!

leading to

W@Pah#~x2 ,y2!5E E dxbdyb

pDh
2

expS 2
xb

21yb
2

Dh
2 D

3W@S#~xb1x22xa ,ya2y22yb!.

~59!

On the other hand, losses that may occur during the pro
gation of TWB degrade the entanglement. This effect can
described as the coupling of each part of the TWB with
nonzero temperature reservoir. The dynamics is describe
the two-mode master equation,

dRt

dt
[LRt5G~11M !L@a#Rt1G~11M !L@b#Rt

1GML@a†#Rt1GML@b†#Rt , ~60!

whereRt[R(t), R05ux&&^^xu, G denotes the~equal! damp-
ing rate,M the number of background thermal photons, a
L@O# is the Lindblad superoperatorL@O#Rt5ORtO

†

2 1
2 O†ORt2

1
2 RtO

†O. The terms proportional toL@a# and
L@b# describe the losses, whereas the terms proportiona
L@a†# andL@b†# describe a linear phase-insensitive ampl
cation process. This can be due to either optical media
namics or thermal hopping; in both cases, no phase infor
tion is carried. Of course, the dissipative dynamics of the t
channels are independent of each other. The master equ
~60! can be transformed into a Fokker-Planck equation
the two-mode Wigner function of the TWB. Using the di
ferential representation of the superoperators in Eq.~60!, the
corresponding Fokker-Planck equation reads as follows:

]tWt5F1

8 S (
j 51

2

]xjxj

2 1]yj yj

2 D 1
g

2 S (
j 51

2

]xj
xj1]yj

y j D GWt ,

~61!

where t denotes the rescaled timet5G/gt, and g5(2M
11)21 the drift term. The solution of Eq.~61! can be written
as

Wt5E dx18E dx28E dy18E dy28W@l#~x18 ,y18 ;x28 ,y28!

3)
j 51

2

Gt~xj uxj8!Gt~yj uyj8!, ~62!
04210
y
-

t-
h

a-
e

a
by

d

to

y-
a-
o
ion
r

whereW@l# is initial Wigner function of the TWB, and the
Green functionsGt(xj uxj8) are given by

Gt~xj uxj8!5
1

A2pD2
expF2

~xj2xj8e
2(1/2)gt!2

2D2 G ,

D25
1

4g
~12e2gt!. ~63!

The Wigner functionWt can be obtained by the convolutio
~62!, which can be easily evaluated since the initial Wign
function is Gaussian. The form ofWt is the same ofW@l#
with the variances changed to

s1
2 →~e2gts1

2 1D2!,

s2
2 →~e2gts2

2 1D2!. ~64!

Inserting the Wigner functions of the POVMPah and of the
evolved TWB in Eq.~52!, we obtain the teleported state i
the general case. This still has the form~42!, however with
the parameterK now given by

K5K0e2Gt1~2M11!~12e2Gt!1Dh
2 . ~65!

Equations~42! and ~65! summarize the possible effects th
degrade the quality of teleportation. In the special case
coherent-state teleportation, one hasS5uz&^zu, which corre-
sponds to original optical CV teleportation experiments@20#.
The fidelity F5^zusuz& can be evaluated straightforward
as the overlap of the Wigner functions. SinceW@z#(a)
5(2/p)e22ua2zu2 is the Wigner function of a coherent stat
we have

F5
1

11K0e2Gt1~12e2Gt!~2M11!1~12h!/h
.

In order to verify quantum teleportation, i.e., to show that t
scheme is a truly nonlocal protocol, the fidelity should fulfi
the boundF.1/2 @20#, i.e.,

K0e2Gt1~12e2Gt!~2M11!1~12h!/h,1.

Therefore, given the value of the parametersG, M, andh in
order to verify quantum teleportation, one should use TW
with an average number of photons large enough to sat
the inequality

K0,eGtF22
1

h
2~2M11!~12e2Gt!G , ~66!

where, for largeN, K0511N2AN(N12) decreases a
(2N)21.
4-8
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V. SUMMARY AND CONCLUSIONS

A measurement performed on one beam of a TWB
duces the other one according to the projection postul
This effect is an intrinsic quantum mechanism to achie
effective nonlinear dynamics. We have analyzed in detail
use of conditional measurement on TWB to generate
manipulate quantum states of light. In particular, we ha
studied realistic measurement schemes taking into acc
imperfections of the apparatuses, such as detection qua
efficiency and finite resolution.

The first kind of measurement we have analyzed is on
photodetection which provides a reliable scheme to ch
nonclassical light. The nonclassicality and its verification
robust against the TWB energy and the detector efficien
The second apparatus is a homodyne detector, whose a
on TWB represents a tunable source of squeezed light,
high conditional probability and robustness to experimen
imperfections. In particular, in the ideal case, the conditio
output state is a pure minimum uncertainty state with t
features: the amount of squeezing is independent of the
come of the measurement, which only influences the co
ent amplitude, and the most probable conditional state
squeezed vacuum. Taking into account the effect of non
quantum efficiency and finite resolution, we have that
conditional state is no longer a pure state, however,
showing squeezing for quantum efficiency larger thanh
ed
ue
e
ia

I

-
.

-

.
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51/2 and for a large range of the homodyne outcomes.
Finally, we have shown how to describe optical CV te

portation as a conditional measurement of the sum and
ference quadratures of two modes. We found that reali
CV teleportation with finite amount of entanglement
equivalent to a Gaussian channel withK0.(2N)21 back-
ground photons applied to the input state,N being the aver-
age photon number of the TWB. Using Wigner functions w
have also shown that the teleportation in the general c
i.e., taking into account the degrading effects of fin
amount of entanglement, decoherence due to losses, and
perfect detection, still corresponds to a Gaussian chan
however with an increased number of background phot
@see Eq.~65!#. A bound on the average TWB energy, in ord
to verify quantum teleportation of coherent states, has b
derived.

We conclude that performing conditional measureme
on entangled twin beam is a powerful and robust method
engineering nonclassical states of light.
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