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Optical interferometry in the presence of large phase diffusion
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Phase diffusion represents a crucial obstacle toward the implementation of high-precision interferometric
measurements and phase-shift-based communication channels. Here we present a nearly optimal interferometric
scheme based on homodyne detection and coherent signals for the detection of a phase shift in the presence of
large phase diffusion. In our scheme the ultimate bound to interferometric sensitivity is achieved already for a
small number of measurements, of the order of hundreds, without using nonclassical light.
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I. INTRODUCTION

Optical interferometry represents a highly accurate mea-
surement scheme with wide applications in many fields of
science and technology [1–5]. Besides, the precise estimation
of an optical phase shift is relevant for optical communication
schemes where information is encoded in the phase of traveling
pulses. Several experimental protocols have been proposed and
demonstrated to estimate the value of the optical phase [6–11],
thus showing the possibility to attain the so-called Heisenberg
limit [12–22]. Recent developments also revealed the potential
advantages of nonlinear interactions [23]. However, in realistic
conditions, one has to retrieve phase information that has
been unavoidably degraded by different sources of noise,
which have to be taken into account in order to evaluate
the interferometric precision [24]. The effects of imperfect
photodetection in the measurement stage, or the presence
of amplitude noise in the interferometric arms, have been
extensively studied [25–35]. Only recently, the role of phase-
diffusive noise in interferometry has been theoretically inves-
tigated for the optical polarization qubit [36–38], condensate
systems [39,40], Bose-Josephson junctions [41], and Gaussian
states of light [42]. As a matter of fact, phase-diffusive noise is
the most detrimental for interferometry, and any signal that is
unaffected by phase-diffusion is also invariant under a phase
shift and thus totally useless for phase estimation.

In this paper, we present an experimental interferometric
scheme where phase diffusion may be inserted in a controlled
way, and demonstrate that homodyne detection and coherent
signals are nearly optimal for the detection of a phase shift
in the presence of large phase diffusion. Indeed, while in
ideal conditions a squeezed vacuum is the most sensitive
Gaussian probe state for a given average photon number [43],
for large phase-diffusive noise, coherent states become the
optimal choice, outperforming squeezed states [42]. In our
scheme the ultimate bound to interferometric sensitivity, as
dictated by the Cramér-Rao (CR) theorem, is achieved already
for a small number of repeated measurements, of the order
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of hundreds, using Bayesian inference on homodyne data and
without the need of nonclassical light.

The paper is structured as follows: In Sec. II we describe the
evolution of a light beam in a phase diffusing environment as
well as the bound to interferometric precision in the presence
of phase noise. In Sec. III we describe our experimental
apparatus, whereas the experimental results are reported and
discussed in Sec. IV. Section V closes the paper with some
concluding remarks.

II. INTERFEROMETRY IN THE PRESENCE
OF PHASE DIFFUSION

The evolution of a light beam in a phase diffusing
environment is described by the master equation

!̇ = "L[a†a]! ,

where L[O]! = 2O!O† − O†O! − !O†O and " is the
phase damping rate. An initial state !0 evolves as

!t = N#(!0) =
∑

n,m

e−#2(n−m)2
!n,m|n〉〈m| ,

where # ≡ "t , and !n,m = 〈n|!0|m〉. The diagonal elements
are left unchanged, in fact energy is conserved, whereas the
off-diagonal ones are progressively destroyed, together with
the phase information carried by the state. Phase diffusion
corresponds to the application of a random, zero-mean
Gaussian-distributed phase shift, i.e.,

!t =
∫

R
dβ g(β|#)Uβ!0U

†
β , g(β|#) = e−β2/(4#2)

√
4π#2

, (1)

where Uβ = exp{−iβ(a†a)} is the phase-shift operator.
We assume that the phase noise occurs between the

application of the phase shift and the detection of the signal,
and consider the estimation of a phase shift applied to a single-
mode coherent state. Homodyne detection is then performed
on the output state

!#,α(φ) = N#(Uφ|α〉〈α|U †
φ) ,
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and the value of the unknown phase shift φ is inferred
using Bayesian estimation applied to homodyne data. Notice,
however, that since the phase noise map and the phase-shift
operation commute, our results are valid also when the phase
shift is applied to an already phase-diffused coherent state. The
precision of the above procedure is then compared with the
benchmarks given by (i) the quantum CR bound for coherent
states and any quantum limited kind of measurement, and
(ii) the ultimate precision achievable with optimized Gaussian
states, i.e., the quantum CR bound for general Gaussian
signals, where, e.g., we allow for squeezing.

A. Interferometric precision in the presence of phase noise

The quantum CR bound [44–48] is obtained starting
from the Born rule p(x|φ) = Tr[(x!φ], where {(x} is the
operator-valued measure describing the measurement, and !φ

the density operator of the family of phase-shifted states under
investigation. Upon introducing the (symmetric) logarithmic
derivative Lφ as the operator satisfying

2∂φ!φ = Lφ!φ + !φLφ ,

one proves that the ultimate limit to precision (independently
on the measurement used) is given by the quantum CR bound

Var(φ) ! [MH (φ)]−1 ,

where H (φ) = Tr[!φ L2
φ] is the quantum Fisher information

(QFI). The ultimate sensitivity of an interferometer thus
depends on the family of signals used to probe the phase
shift, and thus, as said above, we are going to compare the
precision of our interferometer with the maximum achievable
with coherent states, and with the ultimate precision achiev-
able with optimized Gaussian states (for more details about
the derivation of the corresponding quantum CR bounds,
see [42]).

Homodyne detection measures the field quadrature

xθ = 1
2 (ae−iθ + a†eiθ ) ,

where θ = arg α + π/2 is set to the optimal value to detect
the imposed phase shift. The likelihood of a set of homodyne
data,

X = {x1,x2, . . . ,xM} ,

is the overall probability of the sample given the unknown
phase φ, i.e.,

L(X|φ) =
M∏

k=1

p(xk|φ) ,

where

p(x|φ) = e−2x2

π#

∫

R
dβ e− β2

2#2 +4αx cos(β+φ)−2α2 cos2(β+φ) .

Assuming that no a priori information is available on the value
of the phase shift (i.e., uniform prior), and using the Bayes
theorem, one can write the a posteriori probability

P (φ|X) = 1
N

L(X|φ), N =
∫

+

dφ L(φ|X) , (2)

+ = [0,π ] being the parameter space. The probability P (φ|X)
is the expected distribution of φ given the data sample X.

The Bayesian estimator φB is the mean of the a posteriori
distribution, whereas the sensitivity of the overall procedure
corresponds to its variance

Var[φB] =
∫

+

dφ (φ − φB)2 P (φ|X) .

Bayesian estimators are known to be asymptotically unbiased
and optimal, namely, they allow one to achieve the CR bound
as the size of the data sample increases [49,50]. On the other
hand, the number of data needed to achieve the asymptotic
region may depend on the specific implementation [51]. In the
following we will experimentally show that our setup achieves
optimal estimation already after collecting a few hundreds of
measurements.

III. EXPERIMENTAL APPARATUS

A schematic diagram of the interferometer is reported in
Fig. 1. The principal radiation source is provided by a He:Ne
laser (12 mW, 633 nm) shot-noise limited above 2 MHz. The
laser emits a linearly polarized beam in a TEM00 mode. The
beam is split into two parts of variable relative intensity by
a combination of a half wave plate (HWP) and a polarizing
beam splitter (PBS). The strongest part is sent directly to the
homodyne detector where it acts as the local oscillator, whereas
the remaining part is used to encode the signal and will undergo
the homodyne detection. The optical paths traveled by the
local oscillator and the signal beams are carefully adjusted to
obtain a visibility typically above 90% measured at one of the
homodyne output ports. The signal is amplitude modulated at
4 MHz with a defined modulation depth to control the average
number of photons in the generated state.

The amplitude modulation system consists of a potassium
dihydrogen phosphate (KDP) nonlinear crystal with the xy
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FIG. 1. (Color online) Schematic diagram of the experimental
setup. A He:Ne laser is divided into two beams, one acts as the
local oscillator and the other represents the signal beam. The signal
is modulated at 4 MHz with a defined modulation depth to control
the average number of photons in the generated state. One of the
mirrors in the signal path is piezo mounted to obtain a variable
phase difference between the two beams. The data are recorded by
a homodyne detector whose difference photocurrent is demodulated
and then acquired by a computer after a low pass filter. We also
show the typical homodyne samples obtained for coherent signals of
different amplitudes by varying the phase of the local oscillator (these
are used to check the calibration of the piezo, which is performed
using signals with a larger number of photons).
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axes at 45◦, and a PBS. The modulation is applied at the
KDP crystal by means of a Rohde & Schwarz wave form
generator and a Mini-Circuits ZHL-32A power amplifier. The
modulation depth is imposed at the proper level by a computer
that sends a constant voltage to a mixer (M1) located between
the wave form generator and the power amplifier. One of
the mirrors in the signal path is piezo mounted to obtain a
variable phase difference between the two beams. The piezo
is preloaded and its resonance frequency is 13.5 kHz.

The phase difference is controlled by the computer after a
calibration stage. The computer sends a voltage signal between
0 and 10 V that corresponds at the phase diffusion with a
frequency of 5 kHz to a power amplifier based on an LM675
integrated circuit that is able to drive the piezo at this frequency.
With this system it is possible to generate any kind of phase
modulation.

The detector is composed by a 50:50 beam splitter (BS) and
a balanced amplifier detector with a bandwidth of 50 MHz.
The difference photocurrent is filtered with high pass filters,
amplified and demodulated at 4 MHz by means of an electrical
mixer (M2). In this way the detection occurs outside any
technical noise and, more importantly, in a spectral region
where the laser does not carry excess noise. The signal is
filtered by a low pass filter with a bandwidth of 300 kHz
and sent to the computer through the National Instrument
multichannel data acquisition 6251 with a 16-bit resolution
and a 1.25 MS/s sampling rate. The same device is used to
send diffusion parameters to the phase modulator and signal
parameters to the amplitude modulator.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results, ob-
tained with signals of different energies and different levels
of noise. At first we show homodyne samples with the
corresponding a posteriori distributions and then compare
the precision obtained in our scheme with the ultimate bound
imposed by the (quantum) Cramér-Rao theorem. Finally, we
analyze the dependence of precision on the signal energy and
the noise in order to illustrate how in the limit of large phase
diffusion, coherent states becomes the optimal Gaussian probe
states. In fact, they outperform squeezed vacuum states, whose
nonclassical features are degraded by the phase diffusion
process, to an extent that make them useless for quantum
metrology.

In Fig. 2 we report typical examples of homodyne samples,
referred to a coherent signal with N = |α|2 mean photon
number measured at fixed optimal θ , together with the
corresponding Bayesian a posteriori distribution for the phase
shift. The yellow areas denote the portions of data used to infer
the phase shifts. We choose this range in order to emphasize
that the optimality region is achieved already in that region.
In fact, upon considering larger samples, precision would
be improved, due to the statistical scaling of the variance
Var[φ] = C/M , C being a proportionality constant. On the
other hand, optimality, i.e., the fact that

C ' 1/Hα ,

where Hα is the QFI for phase-diffused coherent signals, is
achieved for M ∼ 100 measurements. In the noiseless case the
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FIG. 2. (Color online) Typical examples of homodyne samples
measured at fixed optimal θ , together with the corresponding
Bayesian a posteriori distribution for the phase shift. The phase
diffusion is # = π/6 rad, and the yellow areas denote the portions of
the data used to infer the phase shifts.

QFI is given by Hα = 4N , whereas it decreases monotonically
by increasing the value of the noise parameter #. Notice that
using optimized Gaussian signals, i.e., the squeezed vacuum
state, one has a QFI given by Hg = 8N2 + 8N in the noiseless
case. However, in the presence of large phase diffusion, i.e., for
large values of #, Hα is larger than the QFI obtained for phase-
diffused squeezed vacuum states. In other words, coherent
states turn out to be the optimal Gaussian probe states [42].
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FIG. 3. (Color online) The noise ratio KM = (Var[φB]MHα) as
a function of the number of data M and for different values of the
number of photons N and the noise parameter #. Blue circles: N =
0.90, # = π/18 rad; red squares: N = 0.90, # = π/9 rad; yellow
diamonds: N = 4.12, # = π/18 rad; green triangles: N = 4.12, # =
π/9 rad.
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In Fig. 3 we plot the quantity

KM = M Var[φB]Hα ,

i.e., the variance of the Bayesian estimator from homodyne
data multiplied by the number of data (measurements) and by
the coherent states quantum Fisher information, as a function
of M . KM is by definition larger than 1 and expresses the
ratio between the actual precision of the interferometric setup
and the CR bound. As it is apparent from the plot KM

rapidly decreases with the number of measurements, almost
independently of the value of the number of photons N
and of the noise parameter #. The optimality region, i.e.,
KM ' 1 is achieved already for M ' 100 measurements, and
the asymptotic value of KM is closer to 1 for increasing N
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FIG. 4. (Color online) Variance VM = MVar[φB] of the Bayesian
estimator from homodyne data after M = 100 measurements
(points), together with the CR bound for coherent states (solid lines)
and for optimized Gaussian states (dashed lines). The top panel shows
the behavior of V100 as a function of # for different values of the
number of photons (top red lines/squares: N = 0.90; bottom blue
lines/circles: N = 14.11). The bottom panel shows V100 as a function
of the number of photons N and for different values of the noise
(top blue lines/squares: # = π/9 rad; bottom green lines/circles:
# = π/18 rad).

and #. Furthermore, the number of measurements needed to
achieve the optimal region may be (slightly) reduced by using
the Jeffreys prior [52]

p(φ) ∝
√

F (φ)

instead of the uniform one, where

F (φ) =
∫

dx p(x|φ)[∂φ ln p(x|φ)]2

is the Fisher information of the homodyne distribution.
In Fig. 4 we show the variance of the Bayesian estimator

from homodyne data,

VM = MVar[φB],

obtained after M measurements, together with the CR bound
1/Hα for coherent states, and for the (phase-diffused) opti-
mized Gaussian states, i.e., 1/Hg . In particular, the top panel
shows the behavior as a function of # for different values of
the number of photons N , while in the bottom panel we plot
the same quantities as a function of the number of photons N
and for different values of the noise #. As it is apparent from
the plots, nearly optimal interferometric precision is achieved
for increasing energy or phase diffusion, i.e., for larger values
of N or #.

V. CONCLUSIONS

In conclusion, we have demonstrated a nearly optimal inter-
ferometric scheme based on homodyne detection and coherent
signals for the detection of a phase shift in the presence of large
phase diffusion. Our scheme does not require nonclassical light
and achieves the ultimate bound to interferometric sensitivity
using Bayesian analysis on small samples of homodyne data,
where the number of measurements is of the order of a few
hundreds.

It is worth noting that for large phase diffusion, coherent
states are the optimal Gaussian probe states. Indeed they out-
perform squeezed vacuum states, whose nonclassical features
are degraded by the phase diffusion process, such that they
become completely useless for quantum metrology.

Optical interferometry represents a highly accurate mea-
surement scheme with wide applications in many fields of sci-
ence and technology, including high-precision measurements
and communication channels. On the other hand, phase diffu-
sion represents a crucial obstacle toward the implementation of
high-precision interferometric measurements and phase-shift-
based communication channels. Our results allow one to de-
sign feasible, high-performance, communication channels also
in the presence of phase noise, which cannot be effectively con-
trolled in realistic conditions. Therefore, besides fundamental
interest, our results also represent a benchmark for realistic
phase based communication or measurement protocols.
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