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Exploiting Gaussian steering to probe non-Markovianity due to the interaction
with a structured environment
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We put forward a measure based on Gaussian steering to quantify the non-Markovianity of continuous-
variable (CV) Gaussian quantum channels. We employ the proposed measure to assess and compare the
non-Markovianity of a quantum Brownian motion (QBM) channel, originating from the interaction with Ohmic
and sub-Ohmic environments with spectral densities described by a Lorentz-Drude cutoff, both at high and low
temperatures, showing that sub-Ohmic, high-temperature environments lead to highly non-Markovian evolution,
with cyclic backflows of Gaussian steerability from the environment to the system. Our results add to the
understanding of the interplay between quantum correlations and non-Markovianity for CV systems, and could
be implemented at the experimental level to quantify non-Markovianity in some physical scenarios.
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I. INTRODUCTION

It is well acknowledged that the unavoidable interaction
of quantum systems with their environment gives rise to de-
coherence and loss of information [1–3]. This phenomenon,
however, is not necessarily monotonic in time, and it is possi-
ble for some systems to recover previously lost information, at
least temporarily. The corresponding backflow of information
is one of the characteristic features of non-Markovianity, and
it has attracted large attention in recent years [4–6] because
of its potential applications to fight decoherence in quantum
information science. Mathematically speaking, the most gen-
eral way to capture the concept of non-Markovian quantum
dynamics is related to the completely positive (CP) divisi-
bility and semigroup properties of the dynamical map [7,8]
and, in turn, to the degree of accuracy used to derive the
master equation describing the dynamics of an open quantum
system [9,10]. On the other hand, from the physical point of
view, the non-Markovian character of a quantum map mostly
reveals itself through the appearance of memory effects in the
dynamics of the system, including information backflow from
the environment to the system [11,12].

Different methods have been proposed for the detection
and quantification of non-Markovianity [13–16]. Some of
the most important measures are the Breuer, Laine and Piilo
(BLP) measure, the Rivas, Huelga and Plenio (RHP) measure
[16,17] and, perhaps to a lesser extent, the Luo, Fu and Song
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(LFS) measure, termed after the names of the authors. Specifi-
cally, the BLP measure is based on the trace distance between
two suitably chosen states, whereas the LFS measure involves
the mutual information between the studied system and an
ancillary one. The nonmonotonic behavior of these quantities
reveals the non-Markovianity of the channel [4,17,18] and
may also be used to introduce a measure of non-Markovianity.

Another class of techniques developed to witness quantum
non-Markovianity relies upon the effects of non-Markovian
dynamics on quantum correlations [19–22]. Among these, the
notion of quantum steering, also known as Einstein-Podolski-
Rosen (EPR) steering in continuous-variable quantum infor-
mation, identifies a form of correlation between two spatially
separated parts of a bipartite quantum system, such that one
party may exploit local measurements to “steer” the quantum
state of the other one [23]. An analogous form of quantum
steering may be defined in the temporal domain, referring to
a single system measured at different times [24]. Recently,
the role of steering in various fields of quantum information,
including open quantum systems [25], has been investigated.
In particular, a non-Markovianity measure has been proposed
for discrete variable systems, based on the nonmonotonic
behavior of temporal steering, and its properties have been
analyzed [21,26,27].

Continuous-variable (CV) open quantum systems [28,29]
have an important role in quantum protocols. However, due
to the difficulty in evaluations, most of the studies on the
non-Markovianity of open quantum systems and the corre-
sponding suggested measures are limited to discrete variable
systems. Recently, three non-Markovianity measures have
been proposed for Gaussian channels based on fidelity, Gaus-
sian interferometric power, and divisibility of map [30–32].
Nonetheless, the study of non-Markovianity based on steering
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has not received the same attention. This is somehow sur-
prising for two reasons: On the one hand, quantum steering
is considered a strong type of quantum correlation of some
practical interest [33] and this is expected to induce a more
stringent measure of non-Markovianity, while, on the other
hand, it involves computable quantities. Furthermore, most
non-Markovianity measures in the literature are not specific
to CV systems, despite their relevance in experimental im-
plementations. In this paper, we aim at filling this gap by
proposing a non-Markovianity measure for Gaussian chan-
nels that exploits the concept of Gaussian steering. Besides
studying the opportunity of using this quantum correlation as a
probe for the non-Markovian character of a quantum channel,
our work adds to the current understanding of the effects of
environment interactions on the steering properties of bipartite
quantum states.

We apply the proposed measure to address the non-
Markovian character of a relevant Gaussian channel, namely
the quantum Brownian motion (QBM) channel, originating
from the interaction with Ohmic and sub-Ohmic environments
characterized by a Lorentz-Drude cutoff. In order to assess
the properties of the sole channel, we assume that the probe
is initially in a quantum correlated, pure bipartite state, i.e., a
two-mode squeezed vacuum state.

The paper is structured as follows. Two-mode Gaussian
states are briefly reviewed in Sec. II, whereas the concepts of
quantum steering and Gaussian steerability are summarized
in Sec. III, where we also introduce our non-Markovianity
measure in three variants. The Gaussian channel under inves-
tigation and the properties of the environment are detailed in
Sec. IV, while our results about the non-Markovianity of the
channel are reported in Sec. V. In Sec. VI, we discuss the main
findings and we look closer at the time behavior of Gaussian
steerability to assess the strengths and the weaknesses of the
suggested non-Markovianity measures. Section VI closes the
paper with a summary from a broader perspective and some
concluding remarks.

II. GAUSSIAN STATES

A two-mode CV quantum system is described on the
Hilbert space H = H1 ⊗ H2, where each Hk is the infinite-
dimensional Hilbert space of a bosonic harmonic oscillator.
Quadrature operators for each mode are denoted by qi = (âi +
â†

i ) and p̂i = −i(âi − â†
i ), where ai and â†

i are the annihila-
tion and creation operators, respectively, obeying the bosonic
commutation relations [â j, â†

k] = δ jk with i, j, k = 1, 2. These
quadratures can be grouped in the vector of operators X̂ =
(q̂1, p̂1, q̂2, p̂2), and the canonical commutation relations may
be rewritten as follows [31]:

[X̂k, X̂l ] = 2i�kl , � = N⊕
k=1

ω, ω =
(

0 1
−1 0

)
, (1)

where ω is usually referred to as the one-mode standard sym-
plectic form. Two-mode Gaussian CV states are those that
can be fully characterized by the vector of expectation values
of the quadrature operators, 〈X̂ 〉, and by second statistical
moments of them:

[σ ] jk = 〈{X̂ j, X̂k}〉 − 〈X̂ j〉〈X̂k〉/2,

where {·, ·} is the anticommutator and 〈Â〉 = TrρÂ. These
moments constitute a matrix σ , the covariance matrix (CM),
which is usually written in the following block form for two-
mode states,

σ AB =
(

A C
CT B

)
, (2)

where A and B are the covariance matrices corresponding
to each mode and C is the correlation matrix between them.
The blocks A, B, and C give rise to a covariance matrix σ AB

of a physical two-mode Gaussian state if and only if the
uncertainty relations are satisfied, i.e., [31]:

σ AB + i � � 0 . (3)

In our study, we consider a pure Gaussian state as input
of the channels under investigation. Up to local transfor-
mations, this choice corresponds to the so-called two-mode
squeezed vacuum or twin-beam state (TWB), with a CM given
by A = B = aI and C = Diag(c,−c). Upon employing the
usual parametrization for them [34] in terms of the real two-
mode squeezing parameter r, Eq. (3) is satisfied by writing
a = cosh 2r and c = sinh 2r and the corresponding CM of the
two modes at the initial time will be denoted by σ AB

0 from
now on.

III. WITNESSING AND MEASURING
NON-MARKOVIANITY WITH GAUSSIAN STEERING

Quantum steering (often called EPR steering for CV states)
denotes a form of nonlocal correlations that allow one party
of a bipartite quantum system to influence, or to steer, the
quantum state of the other party using local measurement [35],
recalling that postmeasurement communication between the
parties has to occur for the second one to be able to actually
detect this influence, in compliance with the no-signaling
theorem. EPR steering stands in between Bell nonlocality
and entanglement: Steerable quantum states are a subset of
entangled states, but not all of them are Bell nonlocal states.
Notwithstanding this difference, there is no local hidden vari-
able model on the steered side that can account for the effect
of EPR steering [36], and thus the steerable states do not
admit a classical counterpart. Moreover, EPR steering is an
asymmetric correlation, unlike the other two [37,38]. Due
to this asymmetry, steering is useful in quantum information
processes whose measurement results are not specified by one
of the subsystems [33]. In particular, for bipartite Gaussian
states, the final state of the steered party does not depend
on the outcome of the Gaussian measurement performed by
the steering party, but just on the type of measurement that
was performed [39]. Several methods have been devised to
demonstrate its asymmetry, both theoretically and experimen-
tally [38,40]. In addition, various criteria and measures have
been discussed for its recognition and quantification, such as
the quantity introduced by Adesso et al. for CV systems [39].
According to them, Gaussian steering of mode B by mode A
of a two-mode CV state can be quantified by the following
measure, named Gaussian A → B steerability:

SA→B = Max

{
0,

1

2
ln

det A
det σ AB

}
, (4)
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where, as before, A is the diagonal block in σ AB pertain-
ing to mode A. Note that SA→B is a dimensionless quantity;
whenever it is positive, it indicates the amount by which the
state of mode A has a smaller purity than the overall state of
the two modes. As shown in Ref. [39], for Gaussian states it is
positive if and only if mode A can steer mode B. By exchang-
ing the labels A and B, one readily obtains SB→A, a measure of
Gaussian steering of mode A by measuring mode B. Consider
now a two-mode Gaussian state that is described by a CM
σ (0) at the initial time. Under Gaussian, Markovian CPTP
maps acting independently on each one of the modes, the time
derivative of the steering measure is always nonpositive:

D→
E (t ) := dSA→B(σ (t ))

dt
� 0, (5)

where σ (t ) is the CM at time t and Et is a Gaussian, single-
mode CPTP quantum evolution under scrutiny, acting on
the steering mode A. This is a simple consequence of the
CP divisibility of Markovian maps and the known fact that
SA→B cannot exceed its initial value under generic local
Gaussian operations on the modes and classical communi-
cation [41]. Similarly, one can define D←

E when Et acts on
the steered mode B and D↔

E for Et acting independently on
both modes: Also these quantities will be non-negative if Et

describes a Markovian quantum evolution. However, if the
quantum evolution Et is not CP divisible in time, i.e., it is
non-Markovian, the map that evolves the state between any
two consecutive time instants need not be a CPTP map, and
consequently, SA→B can behave nonmonotonically during the
whole time evolution. Therefore, any positive value of D�

Et
,

with � =→,←,↔, indicates the violation of Markovianity
for the channel under study [21]. Building on this fact, a
measure of non-Markovianity can be defined for Gaussian
quantum channels. With this goal in mind, recall that, at fixed
energy, the maximally correlated two-mode Gaussian state is a
TWB state, with two-mode squeezing parameter r fixed by the
total energy. Moreover, assuming a fixed energy is necessary
to have a well-posed problem in CV systems, since it can
become unbounded otherwise. Thus, taking a TWB state with
two-mode squeezing parameter r and CM σ AB

0 as the initial
state, our measure of non-Markovianity for a single-mode
Gaussian channel E is defined as follows:

N �[Et ](r) =
∫
DE>0

D�
E (t ; r)dt, (6)

where it is assumed that Et acts on the steering mode, the
steered mode, or both of them independently, depending on
� =→,←,↔. In the case of a Gaussian quantum evolution
E (n)

t acting on n modes, one can extend the previous defi-
nitions in the following way. Consider n modes labeled by
a1, ..., an and call them subsystem A, and additional n modes
labeled by b1, ..., bn composing subsystem B. As initial state,
one can take the tensor product of n TWB states, each of
which involves mode ai from system A and mode bi from
system B, all with the same two-mode squeezing parameter
r. Subsystem A will be the steering party, while subsystem
B will be the steered party. Using the general definition of
Gaussian steerability in terms of the symplectic eigenvalues of
the Schur complement [39], we can define as before D�

E (n) and
N �[E (n)

t ](r) for � =→,←,↔ and E (n)
t acting respectively

on subsystem A, subsystem B, or independently on both of
them. This achieves the goal of defining a generic measure
of non-Markovianity for any Gaussian quantum evolution. In
the following, we will test N �(r) by studying its behavior for
Gaussian channels arising from interactions with structured
environments.

IV. THE CHANNEL

This section is devoted to a description of the Gaussian
channel studied in this work, the quantum Brownian motion
(QBM) channel, which is a paradigmatic model of interaction
with an environment, that allows us to explore our measure
of non-Markovianity in the analytically approachable setting
of Gaussian states and enables comparisons with other exist-
ing measures. Besides, it finds application, e.g., in quantum
optomechanics [42]. The CV system of interest is a quantum
harmonic oscillator with frequency ω0 and unit mass, and it
is coupled to a bath consisting of an ensemble of harmonic
oscillators [43]. An initially factorized state for the system
and the bath evolves unitarily under the Hamiltonian of the
channel, which is [43]

Ĥ1 = p̂2

2
+ 1

2
ω2

0q̂2 +
∑

n

(
P̂2

n

2mn
+ 1

2
mnω

2
nQ̂2

n

)

+ αq̂
∑

n

knQ̂n, (7)

where p̂ and q̂ (respectively, P̂ and Q̂) are quadrature operators
of the system (respectively, of the bath). The relative strengths
of interaction and the coupling constant are denoted by kn and
α, respectively. Then the environment is traced out to find the
state of the system at each time. The initial state of the bath is
assumed to be a thermal state at temperature T = β−1 with
respect to the corresponding free Hamiltonian of the bath.
Assuming weak coupling and secular approximation, with the
help of time-convolutionless projection operator techniques,
the master equation can then be recast in this form [31,44,45]:

dρ

dt
= 
(t ) + γ (t )

2
[2âρâ† − â†âρ − ρâ†â]

+ 
(t ) − γ (t )

2
[2â†ρâ − ââ†ρ − ρââ†], (8)

where the free evolution term is implicitly taken into account
by considering all operators in the interaction picture. The
time-dependent terms 
(t ) and γ (t ) represent the diffusion
and damping coefficients, respectively. Assuming a thermal
environment at temperature T , described by a spectral den-
sity J (ω), these coefficients γ (t ) and 
(t ) can be computed
by [1,43]:

γ (t ) = α2
∫ t

0
dτ

∫ ∞

0
dωJ (ω) sin(ωτ ) sin(ω0τ ), (9)


(t ) = α2
∫ t

0
dτ

∫ ∞

0
dω J (ω) coth

[ ω

2T

]
cos(ωτ ) cos(ω0τ ),

(10)

where coth[ βω

T ] = 2N (ω) + 1 and N (ω) = (1 + exp
{−βω})−1 is the mean number of thermal photons in the
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bath at frequency ω. The master equation, Eq. (8), is time
local, but it does not satisfy the semigroup property, since
the damping and diffusion coefficients are time dependent.
Depending upon the form of the spectral density J (ω) of the
environment, the coefficients 
(t ) ± γ (t ) may or may not
describe a Markovian Gaussian map. In particular, it is known
that the quantum map described by Eq. (8) is non-Markovian
if 
(t ) < |γ (t )| at some point in time; in that case, it is said
to be in non-Lindblad form, but it still preserves the positivity
of the density matrix [44,46]. In this study, the origin of the
purported non-Markovianity is a spectral density for the bath
with Lorentz-Drude cutoff [1,2,31]:

J (ω) = 2ωs

π

ω3−s
c

ω2
c + ω2

, (11)

where ωc is the cutoff frequency. In Eq. (11), the cases s = 1
and s < 1 correspond to an Ohmic and sub-Ohmic spectral
density, respectively, while the super-Ohmic case cannot be
dealt with Lorentz-Drude cutoff due to ultraviolet divergence
of the frequency integrals. Whenever ω0/ωc 
 1, at least in
the Ohmic case, the dynamics of the system is expected to
be Markovian on the ground of the longer characteristic time
of the system compared to the relaxation time of the bath.
Therefore, in the following we will assume ω0 > ωc and con-
sider an environment both at low and high temperatures, each
in the Ohmic s = 1 and sub-Ohmic s = 1

2 scenarios. These
assumptions not only provide a suitable framework to discuss
non-Markovianity, but also correspond to relevant physical
examples [47–49]. Explicit formulas for γ (t ) and 
(t ) in the
Ohmic cases can be derived, while for the s = 1

2 sub-Ohmic
spectral density we resorted to numerical integration.

To discuss our measures of non-Markovianity N �, two
situations must be considered; in the first one, only one mode
of the initial TWB state exploited to probe non-Markovianity
is subjected to the QBM channel, while the second mode
undergoes the free unitary evolution. In this first scenario,
adopting the notation

�(t ) =
∫ t

0
2γ (s)ds, (12)


� (t ) = e−�(t )
∫ t

0
e�(s)
(s)ds, (13)

the evolution of the covariance matrix, which is the TWB CM
σ AB

0 at the initial time, when mode A is subjected to the QBM
channel is as follows [31]:

σ AB
t = [

e− �(t )
2 IA ⊕ IB

]T
σ AB

0

[
e− �(t )

2 IA ⊕ IB
] + 
� (IA ⊕ OB)

(14)

with the obvious changes when the QBM channel acts on
mode B instead. Finally, to evaluate N↔ both modes are in-
dividually and locally subjected to the channel. The evolution
of the covariance matrix is now [31]:

σ AB
t = [

e− �(t )
2 IA ⊕ e− �(t )

2 IB
]T

σ AB
0

[
e− �(t )

2 IA ⊕ e− �(t )
2 IB

]
+ 
� (IA ⊕ IB). (15)

In the weak coupling regime α 
 1 that was already implicit
in the derivation of the master equation, we can expand 
�

to first order in �(t ); then, recalling that �(t ) ∼ O(α2) and

truncating the expansion up to second order in α, we can
simply write


� �
∫ t

0

(s)ds. (16)

From the structure of Eqs. (14) and (15), it is clear that
the blocks A, B, C will still be diagonal and we can write
them at any time as A(t ) = a(t ) I2, B(t ) = b(t ) I2, and C(t ) =
c(t ) diag(1,−1), where I2 is the 2 × 2 identity matrix. In
particular, the reduced CMs for modes A and B will stay
proportional to the identity at all times, and therefore the free
evolution of the modes will not have any effect. In particu-
lar, the evolved state will be a two-mode squeezed vacuum
state (TMSV), whose Gaussian steerability can also be con-
veniently judged through the recent concept of nonclassical
steering [50]. Our task thus boils down to computing the
three functions a(t ), b(t ), c(t ) for the three scenarios (bath
interacting with mode A, bath interacting with mode B, and
independent, identical bath interacting with both modes at
the same time) and then the corresponding non-Markovianity
measures. Explicit expressions are collected in the Appendix.
Additionally, let us remark that Eqs. (14) and (15), being
referred just to covariance matrices, make it possible to easily
check the complete positivity of the channel under investiga-
tion in the Gaussian sector, and the present work considers the
QBM channel always under this assumption.

V. TESTING THE NON-MARKOVIANITY MEASURES

Using Eqs. (14) and (15) and the definitions in Eq. (6),
we now evaluate the non-Markovianity measures N→,N←,
and N↔ for Ohmic and sub-Ohmic environments both at low
and high temperatures. We assume a cutoff frequency ωc = 1
and we fix ω0 = 7 as the frequency of the system modes.
Since ωc is significantly smaller than ω0, we expect to de-
tect a non-Markovian behavior, as previously discussed. The
two-mode squeezing parameter of the TWB initial state of the
system will be fixed at r = 2, which is both an experimentally
achievable value in quantum optics and a good representative
for the whole class of TWB states: Indeed we checked that
for any r � 2 the qualitative behavior that we shall discuss is
essentially unaltered.

A. Non-Markovianity of an Ohmic environment

In this scenario, we have s = 1 in the spectral density,
Eq. (11). In Fig. 1, the low temperature (T = 1.5) case is dis-
played. The measure N→ corresponding to the steering mode
only (mode A) interacting with the environment is the smaller
one for all considered values of the coupling constant (red,
dashed curve), while N↔ is always the larger one (black, solid
curve), corroborating the intuition that the sensitivity of the
system to the non-Markovian character of the QBM channel
is stronger when both modes can interact with two indepen-
dent copies of the same structured environment. Moreover,
all of the measures are monotonically increasing functions of
the coupling and behave as ∼α2 in the α → 0 limit. There-
fore, for low-temperature Ohmic environments, the larger the
coupling, the better the estimation of non-Markovianity by
Gaussian steering with TWB states. Notice that our measure is

052203-4



EXPLOITING GAUSSIAN STEERING TO PROBE … PHYSICAL REVIEW A 104, 052203 (2021)

FIG. 1. Non-Markovianity (N ) vs coupling constant (α) for a
QBM channel with a structured environment described by an Ohmic
spectral density with cutoff frequency ωc = 1 at temperature T =
1.5. The CV system at initial time is a TWB state with frequency
ω0 = 7 and two-mode squeezing parameter r = 2. The three curves
correspond to mode A undergoing the QBM channel evolution and
mode B evolving freely (N→, red, dashed curve), mode B subjected
to the QBM channel and mode A evolving freely (N←, blue, dot-
dashed curve), and both modes evolving through two independent,
identical QBM channels (N↔, black, solid curve). In all three cases,
mode A is the steering mode and mode B is the steered mode.

convex for small α, rather than linear or concave (as it happens
for the measures suggested in previous works), which is a
convenient feature for a non-Markovianity measure.

Considering now a high-temperature (T = 100) Ohmic
environment, the same qualitative analysis of the low-
temperature situation applies for small values of the coupling
constant (α � 2.1), as can be seen in Fig. 2. The values of
N � are an order of magnitude higher than those of the low-
temperature environment, indicating that not only quantum
steering is degraded faster at high temperatures, but it can also
be temporarily restored more conspicuously. However, at still

FIG. 2. Non-Markovianity (N ) vs coupling constant (α) for a
QBM channel with a structured environment described by an Ohmic
spectral density with cutoff frequency ωc = 1 at high temperature
T = 100. The meaning of the curves and the parameters for the
system are the same as before. See the Discussion section for a
detailed explanation of the sudden jumps.

FIG. 3. The three mon-Markovianity measures (N ) vs coupling
constant (α) for a QBM channel with a structured environment de-
scribed by a sub-Ohmic spectral density with s = 1

2 , cutoff frequency
ωc = 1 at low temperature T = 1.5. The probing CV system is
prepared as before.

higher values of α, N↔ suddenly dips to zero with a steep
linear slope, and the other two measures soon follow. These
are not numerical artifacts, and they will be discussed in the
Discussion section. The upshot is that Gaussian steering can
become useless at detecting non-Markovian evolution when
there is a strong coupling with a high-temperature environ-
ment, at least in the Ohmic scenario.

B. Non-Markovianity of a sub-Ohmic environment

We now switch to an environment described by a sub-
Ohmic spectral density with s = 1

2 . At low temperature (T =
1.5), the behavior closely mimics the Ohmic case, with N→
being the smaller measure and all of them monotonically
increasing with α and quadratic in the α → 0 limit; see
Fig. 3. Notice, however, that from the quantitative aspect there
is a substantial difference: According to our measures, the
non-Markovianity of a sub-Ohmic environment with s = 1

2 is
about 30 times larger than that of an Ohmic environment at
the same temperature and with the same cutoff frequency.

Finally, let us consider the QBM channel with a sub-Ohmic
environment with s = 1

2 and at high temperature (T = 100).
The non-Markovianity measures N � as functions of the cou-
pling constant α are plotted in Fig. 4. Again the values of
all the measures are greater than those for the correspond-
ing low-temperature environment, but for α � 0.1 the plot
of N↔ starts to drop gradually, and the other two measures
soon follow the same trend. This decrease is considerably
slower than that of Fig. 2 for the Ohmic high-temperature
bath, and an explanation of these trends will be outlined in the
Discussion section. Here too we can conclude that for strong
enough couplings with high-temperature sub-Ohmic environ-
ment, Gaussian steerability is less effective at witnessing the
non-Markovian character of this quantum map.

VI. DISCUSSION

As noted in the previous section, the non-Markovianity of
the sub-Ohmic environment, according to all of our measures,
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FIG. 4. The three mon-Markovianity measures (N ) vs coupling
constant (α) for a QBM channel with a structured environment de-
scribed by a sub-Ohmic spectral density with s = 1

2 , cutoff frequency
ωc = 1 at high temperature T = 100. The probing CV system is
prepared as before.

is considerably higher than that of the Ohmic environment.
To have a better understanding of this behavior, and also of
the unexpected decrease of N � for α � 0.2 in the case of
high-temperature environments, it is useful to have a look
at the time dependence of the steerability in the two cases.
Figure 5 displays the Gaussian steerability SA→B in the three
cases for an Ohmic, low-temperature environment (ωc = 1,
T = 1.5, ω0 = 7, r = 2). There is a single time interval, be-
tween t � 0.3 and t � 0.8, during which there is a backflow
of steerability (positive slope in the plots). This time interval
is approximately the same regardless of whether the bath
interacts with mode A, mode B, or both modes independently.
Moreover, we checked that it is not significantly influenced

FIG. 5. Time evolution of Gaussian steerability SA→B of a TWB
state for mode A evolving through a QBM channel with Ohmic
environment at low (T = 1.5) temperature (red, dashed curve), for
mode B subjected to the same QBM channel while mode A evolves
freely (blue, dot-dashed curve) and for both modes undergoing the
same channel with two identical, independent environments (black,
solid curve). The coupling constant is fixed at α = 0.2. Other param-
eters for the environment and the initial state are again fixed to the
previously specified values.

FIG. 6. Time derivative of Gaussian steerability A → B of a
TWB state as a function of time for an Ohmic environment at low
temperature (T = 1.5) and coupling constant α = 0.15.

either by α or by r (at least for r > 2). The time interval
can be better spotted by also plotting the derivatives of the
steerability with respect to time, as in Fig. 6. Notice also
that the ordering of the curves for the steerability is differ-
ent from the ordering of the corresponding non-Markovianity
measures. Indeed, Gaussian steerability decreases the least
when only the steered mode (mode B) interacts with the
bath (blue, dot-dashed curve), while it decreases most rapidly
when both modes are interacting with independent, identical
environments (black, solid curve). However, in the latter case,
the backflow is also more significant (higher peak in Fig. 6),
yielding greater values of non-Markovianity according to our
measures. Indeed, by definition N � is just the area between
the time axis and the positive arc of the corresponding curve
in Fig. 6 (under the red curve for N→, the blue curve for
N←, and the black curve for N↔). At higher temperatures,
this first time interval is still unchanged, but a second, later
interval of increasing SA→B appears between t � 1.4 and
t � 1.7 as can be noticed from Fig. 7, partially explaining the
quantitative difference in non-Markovianity between low- and
high-temperature Ohmic environments. As α increases the

FIG. 7. Gaussian steerability A → B of a TWB state as a func-
tion of time for an Ohmic environment at high temperature (T =
100) and coupling constant α = 0.2.
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FIG. 8. Gaussian steerability A → B of a TWB state as a func-
tion of time for a sub-Ohmic environment (s = 1

2 ) at low temperature
(T = 1.5) and coupling constant α = 0.2.

backflow increases too, but the Gaussian steerability curves of
Fig. 7 also slide down toward the time axis and they become
zero at earlier times, in compliance with common intuition,
suggesting that a stronger interaction will degrade quantum
correlations faster.

This explains the trends observed in Fig. 2: After a certain
value of α, the Gaussian steerability goes to zero before the
end of the second time interval in which backflow can occur
(first dip in Fig. 2). At still higher values of α, also the first
backflow time interval occurs after the Gaussian steerability
has already vanished, and N � consequently drops to zero too.
This is not seen when the bath is at a lower temperature,
because then quantum steering lasts longer and the backflow
can always manifest before Gaussian steerability vanishes.

Figure 8, on the other hand, shows that even at low tem-
perature (T = 1.5), a sub-Ohmic environment with s = 1

2
induces cyclic backflows of Gaussian steerability SA→B from
the bath back into the system, for all three possible ways of
coupling the modes of the system with the bath. This gives
a quantitative understanding of the difference between non-
Markovianity of Ohmic vs. sub-Ohmic environments, and also
justifies the slower decrease of N � with α at higher temper-
ature observed in Fig. 4, since now only a minor decrement
in non-Markovianity occurs whenever a single time interval
of increasing SA→B slides past the time when Gaussian steer-
ability vanishes. For the sub-Ohmic case too, this decrease
with α is observed just for the high-temperature bath. Overall,
the issue of decreasing sensitivity to non-Markovianity for
stronger couplings with high-temperature environments can
be overcome by starting with a TWB state having a greater
two-mode squeezing parameter r, so that Gaussian steerability
will not be destroyed before the characteristic timescale of the
non-Markovian evolution had time to happen.

As an additional remark, we anticipate that doubts might
arise about the validity of the weak coupling approximation
for the end portion of the range of α considered in our plots.
However, one should consider that the expansion parameter is
really α2, which is �0.09 for the values of α assumed here.
Moreover, we checked the consistency of the weak coupling
approximation by certifying that an O(α2) expansion of the

steerability is compatible with the full result obtained by
truncating at the same order the coefficients γ (t ) and 
(t )
before computing the other quantities. Lastly, as long as the
resulting evolution preserves the positivity of the density op-
erator, which is easily tested in the Gaussian sector, one can go
beyond the strict weak coupling regime, albeit this can impair
the agreement with the actual QBM channel.

VII. CONCLUSION

In this paper, a general procedure to witness and quantify
the non-Markovianity of CV Gaussian quantum maps using
Gaussian steering has been introduced. It relies upon the
transient restoration of steerability during a non-Markovian
time evolution, as probed by twin-beam states with either one
of the modes (the steering mode or the steered mode), or
both of them, evolving through the channel to be tested. The
behavior of these non-Markovianity measures for the quantum
Brownian motion channel has been studied for different struc-
tured environments characterized by a spectral density with a
Lorentz-Drude cutoff, both of Ohmic and sub-Ohmic type and
at low and high temperature for each.

Our results show that, for low-temperature environments of
both types, non-Markovianity measures increase with the cou-
pling constant. Conversely, at high temperatures, the initially
increasing trend is subsided and eventually turned over for
sufficiently strong couplings. This can be understood by look-
ing at the time evolution of the Gaussian steerability, which
drops to zero too quickly before being able to increase again,
when the system is sufficiently coupled to a high-temperature
environment. From the quantitative point of view, our find-
ings suggest that sub-Ohmic environments lead to appreciably
more robust non-Markovianity with respect to Ohmic ones,
for the same value of coupling constant, cutoff frequency, and
temperature. This appears to be caused by a longer, persistent
oscillatory time behavior of the Gaussian steerability, which
repeatedly experiences short backflows even at longer times
in the sub-Ohmic scenario. We also notice that steerability
is a stronger form of quantum correlation compared to en-
tanglement or to coherence-based notions (e.g., discord and
interferometric power), and this makes our measure more
severe in assessing non-Markovianity. This may be noted by
looking at Figs. 1–4 in comparison with, e.g., Figs. 1 and 3
from Ref. [30] or Figs. 5 and 6 from Ref. [31]. In particu-
lar, our measure is convex for small α (rather than linear or
concave, as it happens for the measures suggested in previous
works), which appears a rather intuitive and proper feature for
a non-Markovianity measure.

Finally, let us remark that, from an experimental point of
view, our work provides a viable opportunity to quantify the
non-Markovianity of a Gaussian quantum channel. Indeed, let
us consider the two-mode scenario as a simple example, and
the measure N↔ as the most sensitive one. The implementa-
tion of our proposal requires preparing a TWB state, sending
both modes through two independent copies of the channel,
and measuring the variances of one quadrature for each mode
[a(t ) and b(t )] as well as the covariance of a quadrature of
the first mode with a quadrature of the second mode [c(t )], at
different times. Using these data, one can compute SA→B(t )
and consequently N↔, once a reasonably long set of values
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has been acquired. We hope that our results will foster the
understanding of the interplay between non-Markovianity and
quantum correlations for continuous-variable systems, adding
another facet to the complex and diverse behavior of non-
Markovian quantum maps [17].
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APPENDIX: TIME EVOLUTION OF THE ENTRIES OF
THE COVARIANCE MATRIX IN THE THREE CASES

In all cases, we have that det A(t ) = a2(t ) and det σ AB(t ) =
[a(t )b(t ) − c2(t )]2, therefore the general formula for Gaussian
A → B steerability becomes:

SA→B(t ) = Max

{
0, ln

[
a(t )

a(t )b(t ) − c2(t )

]}
. (A1)

Notice that the non-Markovianity measures N � are de-
fined as the integral of the derivative of SA→B(t ) with respect
to time, restricted to the regions where both the derivative
and the quantity itself are positive. This means that they
can be computed as a sum of differences of the values of
SA→B(t ) at the endpoints of the intervals on which its time
derivative is positive, provided that SA→B(t ) is also positive.
The only additional quantities needed are the three functions
a(t ), b(t ), c(t ) in the three cases. When mode A interacts with
the bath while mode B evolves freely, we find

a→(t ) = e−�(t ) cosh(2r) + 
� (t ), (A2)

b→(t ) = cosh(2r), (A3)

c→(t ) = e− 1
2 �(t ) cosh(2r). (A4)

When mode B is subjected to the quantum Brownian motion
channel and mode A is left unaffected, instead

a←(t ) = cosh(2r), (A5)

b←(t ) = e−�(t ) cosh(2r) + 
� (t ), (A6)

c←(t ) = e− 1
2 �(t ) cosh(2r). (A7)

Finally, when both modes independently interact with identi-
cal baths, we have

a↔(t ) = e−�(t ) cosh(2r) + 
� (t ), (A8)

b↔(t ) = e−�(t ) cosh(2r) + 
� (t ), (A9)

c↔(t ) = e−�(t ) cosh(2r). (A10)

Inserting these functions in Eq. (A1) and computing the finite
differences as described before, the non-Markovianity mea-
sures N � can be evaluated. The functions �(t ) and 
� (t ) can
be computed from the integrals in Eqs. (12) and (13) once γ (t )
and 
(t ) are known. These functions, in turn, can be written
explicitly for the Ohmic case:

γs=1(t ) = α2

ω2
0 + ω2

c

[ω0 − e−ωct (ω0 cos ω0t + ωc sin ω0t )],

(A11)


s=1(t ) = α2

ω2
0 + ω2

c

[
ω0 coth

( ω0

2T

)
+ e−ωct coth

( ωc

2T

)

× (−ωc cos ω0t + ω0 sin ω0t )

]
(A12)

+α2
+∞∑
n=1

e−2nπtT

× 8nπT 2(−2nπT cos ω0t + ω0 sin ω0t )(
4n2π2T 2 + ω2

0

)(
4n2π2T 2 − ω2

c

) . (A13)

For all practical purposes, the first few terms of the series in

(t ) suffice to very accurately approximate the function. For
the s = 1

2 sub-Ohmic case, instead, we only computed γ (t ) in
closed form as

γs=0.5(t )

= α2

2
√

ωc
(
ω2

0 + ω2
c

) [4
√

ωcω0Cf(
√

ω0t )

+
√

2eωct Erfc(
√

ωct )(ω0 cos ω0t − ωc sin ω0t ) +
(A14)

−
√

2e−ωct (1 + Erfi(
√

ωct ))(ω0 cos ω0t + ωc sin ω0t )],

(A15)

where Cf(z) = ∫ z
0 cos t2 dt is the Fresnel-C function,

Erfi(z) = −ierf (iz), Erfc(z) = 1 − erf (z), and erf (z) =
2√
π

∫ z
0 e−t2

dt is the error function. Finally, to evaluate

s=0.5(t ) we resorted to numerical integration.
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