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Feedback-Assisted Quantum Search by Continuous-Time
Quantum Walks

Alessandro Candeloro,* Claudia Benedetti, Marco G. Genoni, and Matteo G. A. Paris

The quantum search of a target node on a cycle graph by means of a quantum
walk assisted by continuous measurement and feedback are addressed.
Unlike previous spatial search approaches, where the oracle is described as a
projector on the target state, a dynamical oracle implemented through a
feedback Hamiltonian is considered. The idea is based on continuously
monitoring the position of the quantum walker on the graph and then
applying a unitary feedback operation based on the information obtained from
measurement. The feedback changes the couplings between the nodes and it
is optimized at each time via a numerical procedure. The stochastic
trajectories describing the evolution for graphs of dimensions up to N = 15
are numerically simulated, and the performance of the protocol is quantified
via the average fidelity between the state of the walker and the target node.
Different constraints on the control strategy are discussed. For unbounded
controls, the protocol is able to quickly localize the walker on the target node.
How the performance is lowered by posing an upper bound on the control
couplings is then discussed. Finally, it is shown how a digital feedback
protocol seems in general as efficient as the continuous bounded one.

1. Introduction

Quantum walks are used to model the evolution of a quantum
particle, or excitation, over a discrete set of positions. If the
walker dynamics is continuous in time, that is, time is a real
positive parameter, we talk about continuous-time quantumwalk
(CTQW).[1–3] In many contexts, quantum walks show a quantum
advantage with respect their classical counterpart, by allowing
a speed-up in completing certain tasks. Examples are found in
quantum computation[4–6] and quantum algorithms.[7–17] Since a
CTQW evolves over a graph, it is strongly related to applications
over networks, including quantum spatial search,[18–24] quantum
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routing,[25–27] quantum transport, and state
transfer.[28–30] The ability to redirect or con-
trol information over a graph in an effi-
cient way is essential to develop protocols
involving quantum networks and to deal
with a large amount of structured data. To
this aim, we develop a protocol to guide the
walker toward a target node on a graph by
exploiting the tools of quantum control.
The theory of quantum control[31] ad-

dresses the problem of preparing a quan-
tum system in a desired quantum state
or with some desired quantum properties.
In quantum feedback-control strategies the
quantum system under control ismeasured
(typically continuously in time) and the in-
formation acquired is exploited in order to
optimize a feedback operation on the sys-
tem itself. This kind of strategies has been
studied in great detail, in particular with
the aim of generating quantum states with
non-classical properties such as squeez-
ing or entanglement[32–49] or to cool op-
tomehcanical systems toward their ground

states, with the experimental results recently demonstrated
in refs. [50–52].
In this article, we propose a novel approach to quantum search

on graphs and establish a new and unexplored line of research
combining CTQWs with quantum feedback-control protocols. In
our system, the walker is interacting with an environment that
is continuously monitored. As a result, the system evolution is
a quantum stochastic trajectory and, based on the result of the
measurement, a feedback protocol is applied. We will prove that
it is possible to drive the walker toward a target state by optimiz-
ing the corresponding target fidelity at each step. Our method
differs from other methods that have been developed since it al-
lows the walker to be guided continuously to the target node. In
the standard spatial search protocol the oracle is described as a
projector operator onto the target state. With our approach we
modify this paradigm. We consider a dynamical oracle encoded
in the feedback operation. This means that the final projective
measurement on the walker, to be performed at any time t after
a certain threshold time tth, has a high probability of success. In
particular, we find that once the walker reaches the target node
it remains stuck in it thanks to the feedback operation. This lift
the burden of performing a final measurement at a very specific
time, by allowing us to measure the walker position at any time
t ≥ tth.
The manuscript is organized as follows: in Section 2 and

in Section 3 we give a brief introduction to continuous-time
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quantum walks, and to continuously monitored quantum sys-
tems and unitary (measurement-based) feedback strategies,
respectively. In Section 4, we introduce our search scheme and
we describe the idea behind our feedback protocol. In Section 5
we analyze our results for the different control strategies we
have considered, while we conclude the manuscript in Section 6
with some remarks and outlooks.

2. Quantum Walks and Spatial Search on Graphs

A continuous-time quantum walk describes the continuous mo-
tion of a quantum particle over a discrete set of positions. Under-
lying every walk there is a graph G, which is described as a pair
G = (V, E) where V = {0, 1,… , N − 1} is the set of vertices and E
is the set of undirected edges, that is, all the pairs of adjacent ver-
tices in V . For a CTQW, the vertices represent the positions that
the particle can occupy while the edges encode all the possible
paths that a walker can move across. We denote the order of the
graph as the number of nodes N = |V|. We restrict our discus-
sion to regular graphs, with no loops nor multiple edges. All this
information determines the topology of the graph and is encoded
in the adjacency matrix A. In the position basis p = {|k⟩}N−1

k=0 ,
this is given by the matrix elements

⟨i|A|j⟩ = Aij =
{
1 if (i, j) ∈ E
0 if (i, j) ∉ E

(1)

For example, in the case of a cycle graph the only non-zero ele-
ments are Ajk and Akj satisfying the condition k = (j + 1)modN,
with j = 0,… , N − 1. Associated to A there is a Laplacian ma-
trix, defined as L = D − A. Here D is a diagonal matrix, with⟨k|D|k⟩ = dk =

∑N−1
j=0 Akj the degree of the kth vertex. The Lapla-

cian matrix is promoted to be the generator of the quantum dy-
namics and the physical origin behind this choice is the corre-
spondence between L and the discretized kinetic operator for
regular lattices.[53] Hence, the quantum walker Hamiltonian is
H = 𝛾L, where the parameter 𝛾 > 0 is the hopping rate between
the nodes and it accounts for the energy scale of the system. The
generic state of the CTQW at time t is a superposition over the
vertices |𝜓(t)⟩ = ∑

k ak|k⟩ with ak = ⟨k|e−iHt|𝜓0⟩ and |𝜓0⟩ the ini-
tial state of the walker. Throughout the paper we set ℏ = 1. In the
case of regular graphs, the matrix D is proportional to the iden-
tity operator, thus making the evolutions generated by L and A
equivalent. Before proceeding, we want to remark that using L
as the dynamics generator is only one of the possible (infinitely
many) choices for a Hamiltonian. Indeed any Hermitian opera-
tor, which respects the topology of the graph, can be used as a
legit CTQW Hamiltonian.[53–57]

One application of CTQWs is the spatial search algorithm. The
goal is to exploit the coherent evolution of a quantum walker to
find a marked vertex on a graph faster than its classical counter-
part. In the quantum spatial search of a marked node |w⟩, the
walker evolves under the Hamiltonian

HS = 𝛾L − |w⟩⟨w| (2)

where 𝛾 is a real parameter and the operator |w⟩⟨w| is the or-
acle Hamiltonian that is, a projector onto the target state. The

walker is usually initialized in the uniform superposition of all
nodes

|𝜓0⟩ = 1√
N

N−1∑
k=0

|k⟩ (3)

with no bias toward the target state. The algorithm is successful if
the probability of finding the target node pw(ts) = |⟨w|e−iHSts |𝜓0⟩|2
is as close as 1 as possible in a time ts = (

√
N). It was shown

that a
√
N speedup can be obtained for specific topologies, such

as the complete and hypercube graphs and (d > 4)-dimensional
lattices.[18,58] Later studies proved fast search for different kinds
of graphs[59–64] and a comprehensive analysis of the algorithm’s
performances was carried out in ref. [65], which recovers previ-
ous graph-dependent results as special cases. It is worth men-
tioning here that considering different oracle operators, such as
those which modify the edges connected to the target node, al-

lows to reach a search time ts = (
√
N lnN) in 2D (d = 2) lat-

tices, by building Hamiltonians that exhibit Dirac points in their
dispersion relation.[20,66] Since low dimensional lattices, such as
the cycle graph, do not sustain fast search with the standard al-
gorithm defined by Hamiltonian Equation (2), novel strategies
must be envisaged to boost the spatial search on these struc-
tures.We report in Appendix A the success probability of the stan-
dard search algorithm on the cycle graph to set a benchmark for
our approach.

3. Continuous Monitoring and Feedback Control

3.1. Continuously Monitored Quantum Systems

We here provide a very basic introduction to continuously
monitored quantum systems. We refer to the following
references[31,67,68] for a more detailed introduction and for the
derivation of the formulas provided in this section. We assume
that the quantum system under exam interacts with a large
Markovian environment described by a train of input bosonic
operators âj(t) satisfying the canonical commutation relation
[âj(t

′), â†k(t)] = 𝛿jk𝛿(t − t′). The interaction with the system is then
given in terms of the time-dependent interaction Hamiltonian

Ĥint(t) = i
∑
j

√
𝜅j(ĉjâ

†
j (t) − ĉ†j âj(t)) (4)

in which 𝜅j represent the coupling strengths, while ĉj are opera-
tors acting on the system Hilbert space (one should also notice
that the parameter t in the operators âj(t) is just a label denoting
the time at which each operator is interacting with the quantum
system via the Hamiltonian). We also assume that the environ-
mental modes âj(t) can be measured continuously in time, just
after the interaction, in order to gain information on the state
of the system itself. Notice that the interaction with the environ-
ment can be either considered already present, and that some
degree of control on this environment is achievable in order to
perform such a measurement, or that such an interaction can
be effectively engineered with the purpose of weakly monitor-
ing the system. Both these approaches are nowadays pursued ef-
ficiently in different physical platforms, in particular in circuit
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QED[69–73] and in optomechanical systems.[74–78] It is known that
in quantum mechanics a measurement modifies the state of the
quantum system that is (directly or indirectly) measured, and
that the corresponding conditional state will depend both on the
kind of measurement performed and on the outcome of themea-
surement. We will focus on continuous homodyne detection of
the environmental modes with monitoring efficiencies 𝜂j, corre-
sponding to a set of continuous photocurrents

dy(j)t =
√
𝜂j𝜅jTr

[
(̂cj + ĉ†j )𝜚

c
]
dt + dW (j)

t (5)

where dW (j)
t denotes the innovation, that is the difference between

the result of the measurement dy(j)t and the expected results, and
mathematically correspond to independent Wiener increments
satisfying dW (j)

t dW
(k)
t = 𝛿jkdt. The evolution of the quantum state

𝜚c(t) conditioned on the photocurrents dy(j)t is then given by the
following stochastic master equation (SME)

d𝜚c = −i[Ĥs, 𝜚
c(t)]dt +

∑
j

𝜅j[̂cj]𝜚
c(t)dt

+
∑
j

√
𝜂j𝜅j [̂cj]𝜚

c(t)dW (j)
t (6)

where Ĥs is the Hamiltonian describing the evolution of the
quantum system only, and where we have introduced the two fol-
lowing superoperators

[̂c]∙ = ĉ ∙ ĉ† − (̂c†ĉ ∙ + ∙ ĉ†ĉ)∕2 (7)

 [̂c]∙ = ĉ ∙ + ∙ ĉ† − Tr
[
(̂c + ĉ†)∙

]
∙ (8)

The continuous outcomes of the photocurrents {dy(j)t } thus define
a particular conditional trajectory for the conditional state of the
quantum system. By averaging over all the possible trajectories,
that is, over all the possible outcomes of the measurements, we
obtain the evolution of the unconditional state 𝜚u = 𝔼𝗍𝗋𝖺𝗃[𝜚

c] that,

by exploiting the property 𝔼𝗍𝗋𝖺𝗃[dW
(j)
t ] = 0, is a Markovian master

equation in the Lindblad form

d𝜚u

dt
= −i[Ĥs, 𝜚

u(t)] +
∑
j

𝜅j[ĉj]𝜚
u(t) (9)

The evolution of the conditional states described by the SME
in Equation (6) can be equivalently described via the formula[79,80]

𝜚c(t + dt) =
M̂dyt

𝜚c(t)M̂†
dyt

+
∑

j(1 − 𝜂j )̂cj𝜚c(t)̂c
†
j dt

Tr
[
M̂dyt

𝜚c(t)M̂†
dyt

+
∑

j(1 − 𝜂j )̂cj𝜚c(t)̂c
†
j dt

] (10)

where we have introduced the family of Kraus operators

M̂dyt
= 𝕀 − iĤsdt −

∑
j

(
𝜅j

2
ĉ†j ĉjdt −

√
𝜂j𝜅j ĉjdy

(j)
t

)
(11)

with dyt = {dy(1)t ,… , dy(K)t } denoting the vector of the outcomes
of the K mesaurement channels.

In our protocol we consider an initial pure state and perfect
monitoring efficiency, that is, 𝜂j = 1 for all channels. Under these
assumptions the conditional evolution is described by a stochas-
tic Schrödinger equation, or equivalently via the Kraus operators
as follows

|𝜓 c(t + dt)⟩ = M̂dyt
|𝜓 c(t)⟩√⟨𝜓 c(t)|M̂†
dyt
M̂dyt

|𝜓 c(t)⟩ (12)

3.2. Unitary Quantum Feedback

In addition to conditioning the evolution of the quantum state,
the outcomes of the measurement performed can in principle be
exploited to further modify the dynamics of the system. In this
respect, here we briefly introduce unitary measurement-based
quantum feedback. The idea is that, once the measurement out-
comes dyt are obtained, one performs a unitary operation Ûfb(t)
on the quantum state, typically optimized in order to achieve
a certain goal as, for example, the preparation of a certain tar-
get quantum state. This unitary operation may depend only on
the last measurement outcomes, or on the whole history of out-
comes, and thus on the whole trajectory of the conditional state.
In the first instance one talks about Markovian quantum feed-
back and one can derive a corresponding Markovian feedback
master equation.[31,33] In this work we will focus on the second
kind of feedback, and thus our feedback strategy will be opti-
mized by knowing both the last measurement outcomes and the
conditional state |𝜓 c(t)⟩ (and as a consequence the whole mea-
surement history). In order to obtain the corresponding evolu-
tion, we exploit the formulas involving the Kraus operators. In
particular, if the feedback operation is performed after the mea-
surement, by assuming unit measuring efficiency, initial pure
states and no-delay betweenmeasurement and feedback, the con-
ditional state at each instant is described via the formula

|𝜓 fb(t + dt)⟩ = ÛfbM̂dyt
|𝜓 fb(t)⟩√⟨𝜓 fb(t)|M̂†

dyt
M̂dyt

|𝜓 fb(t)⟩ (13)

This formula is particularly useful for our numerical approach
where one needs to substitute the time differential dtwith a finite
but small time increment Δt, while the Wiener increment dW (j)

t

must be replaced by a Gaussian random variable ΔW (j)
t with zero

mean and varianceΔt. The finite increments to themeasurement
records are

Δy(j)t =
√
𝜅j⟨𝜓 c(t)|(ĉ†j + ĉj)|𝜓 c(t)⟩Δt + ΔW (j)

t (14)

Due to the finite nature ofΔt, the deterministic identityΔW (j)2
t =

Δt is no longer satisfied, thus corrections must be considered.
This is accomplished by adding an extra term, known as Euler–
Millstein correction,[80] in the Kraus operators that now read

M̂Δyt = 𝕀 − iĤsΔt −
∑
j

(
𝜅j

2
ĉ†j ĉjΔt

−
√
𝜅j ĉjΔy

(j)
t −

𝜅j

2
ĉ2j (Δy

(j)
t

2
− Δt)

)
(15)
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Figure 1. Cycle graph embedded in a plane on a circle of unit radius. Left panel: N = 5; central panel: N = 11; right panel: N = 15.

4. Quantum Search Assisted by Feedback

Our idea is to continuously monitor the position of a quantum
walker during its evolution on a cycle graph, and then to use this
information to apply feedback unitary operations as a dynamical
oracle with the aim of finding a particular target node. The walker
is initially prepared in the uniform superposition of all nodes of
the graph as in Equation (3). The first step is to describe the con-
tinuous monitoring. In particular we assume to be able to couple
our system to two different environments via the following jump
operators

ĉ1 = x̂ =
N−1∑
k=0

cos( 2𝜋k
N

)|k⟩⟨k| (16)

ĉ2 = ŷ =
N−1∑
k=0

sin( 2𝜋k
N

)|k⟩⟨k| (17)

whose eigenvalues exactly correspond to the coordinates of the
position of the N nodes of the graph, corresponding to equally
spaced points on a unit radius ring centered on (0,0) in the (x, y)
plane (see Figure 1 for cycle graphs with N = 5, 11, 15). By per-
forming continuous homodyne detections one obtains two pho-
tocurrents (Equation (5)) whose average values are indeed pro-
portional to the expectation values of the operators x̂ and ŷ on the
conditional state 𝜚c. We show in Appendix B that the uncondi-
tional evolution, corresponding to the master Equation (9) with
the cycle graphHamiltonianHS = 𝛾L and jump operators (Equa-
tions (16) and (17)), leads to a symmetric dephasing-like evolu-
tion in the position basis, thus reflecting the translation invari-
ance of the graph’s nodes and further validating our choice. In
Appendix C we also mention an alternative choice for the jump
operator, that is, the single non-Hermitian jump operator

ĉ0 =
N−1∑
k=0

ei2𝜋k∕N|k⟩⟨k| (18)

that satisfies the properties discussed above. We show that the re-
sults are comparable with the one obtained via the twoHermitian
jump operators ĉ1 and ĉ2.

The second step is to define our feedback strategy. We
parametrize the unitary feedback operator as

Ûfb(𝜽) = e−iĤfb(𝜽)dt (19)

where, in general, we assume to have a finite number of control
parameters 𝜽 = {𝜃k} corresponding to a set of control operators
{ĥk}, such that the feedback Hamiltonian reads

Ĥfb(𝜽) =
∑
k

𝜃kĥk (20)

The definition of the control operators is indeed crucial. Two nat-
ural choices can be considered: the first one is to choose the on-
site projectors, that is, ĥ(os)k = |k⟩⟨k|. However preliminary numer-
ical simulations show that this choice is in general not efficient.
In order to understand why this is the case, one can for exam-
ple observe that, being {|k⟩} eigenstates of the control operators
above, if the walker during the evolution happens to be in a node|k̄⟩ different from the target, the unitary operation will not be able
to change its state and thus the feedback is useless for our pur-
poses. The second natural choice is to consider the hopping op-
erators

ĥ(hop)k = |k⟩⟨k + 1| + |k + 1⟩⟨k| (21)

with the usual boundary condition |N⟩ ≡ |0⟩. This set of feed-
back control operations represents the ability of controlling each
coupling between adjacent nodes individually.
Finally, one needs to decide how to optimize the feedback op-

eration, that is the set of control parameters 𝜽, in order to find
the target node on the graph. This is typically done by defining a
reward function Λ(|𝜓 fb⟩), that in our case naturally corresponds
to the fidelity between the conditional state after the feedback op-
eration |𝜓 fb⟩ in Equation (13), and the target state (that we will
hereafter denote as |0⟩), that is,
Λ(|𝜓 fb(t)⟩) = |0⟩(|𝜓 fb(t)⟩) = |⟨0|𝜓 fb(t)⟩|2 (22)

Wewill thus choose the parameters 𝜽 as the onesmaximizing the
fidelity at each step of the trajectory. The same figure of merit will
be then used in order to assess the performance of our protocol.
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We will indeed numerically evaluate

̄|0⟩ = 𝔼𝗍𝗋𝖺𝗃[|0⟩(|𝜓 fb(t)⟩)] (23)

that is the fidelity averaged over all the possible trajectories con-
ditioned by the continuous monitoring.

5. Results

In the following, we present our main results, dividing them in
three different settings: in Section 5.1 we address the numerical
optimization of the feedback operation with unbounded control
parameters, that is, without posing any bound on the search do-
main for the parameters {𝜃i}. Then, in Section 5.2 we consider
numerical optimization of the feedback but with a bounded do-
main, that from the physical point of view may represent con-
straints on the physical implementation of the feedback opera-
tions. In Section 5.3 we study the case of digital feedback,[81] in
which the value of the feedback couplings are not only bounded,
but can take values only from a discrete set (one should notice
that unlike previous examples of digital feedback,[81] we still have
a continuous measurement output, and only the feedback opera-
tions are discrete). In all these examples we consider the system
initially prepared in the quantum state defined in Equation (3),
corresponding to the uniform superposition over the N nodes of
the graph.
The algorithm we used to numerically optimize the feedback

couplings is provided by the SciPi library, and in particular the
scipy.optimize.minimize function.[82] The method used for
the different strategies are the following: for the unbounded op-
timization (Section 5.1) we use the BFGSmethod; for the bounded
optimization (Section 5.2) we used the L-BFGS-Bmethod. Differ-
ently, the method used for digital feedback (Section 5.3) is a brute
force one, that is, we consider all the possible combinations of the
finite discrete values and we select the optimal one.
We remark that we have also investigated the scenario with a

single feedback Hamiltonian controlling collectively all the cou-
plings via a single parameter 𝜃, that is, via the Hamiltonian
Ĥfb = 𝜃

∑
k ĥ

(hop)
k . However, as we show in Appendix E, this kind

of feedback is not particularly efficient for our purposes.

5.1. Numerical Optimization with Unbounded Controls

We here show the results of our protocol when considering a
feedback operation via the control operators introduced in Equa-
tion (21) and optimized control parameters {𝜃k} with unbounded
domain. A remark is in order here: the first attempt we have pur-
sued was to follow the approach described byMartin et al. in refs.
[45, 47], where the feedback operation is assumed to be infinites-
imal, that is, via couplings written as

𝜽dt = AdW + Bdt (24)

where 𝜽 = (𝜃1,… , 𝜃K )
𝖳 is the vector of the feedback couplings,

dW = (dW (x)
t , dW (y)

t ) is the vector of the Wiener increments de-
scribing the measurement, while A and B, are respectively a
(N × 2)-dimensional matrix and a 2D vector describing the feed-
back strategy. The optimization in this scenario could be done an-
alytically if some conditions are fulfilled, as described in ref. [45]

(see Appendix E for further details on this method). However for
our problem we verify that these conditions are never satisfied
and thus a numerical optimization with unbounded couplings
has to be performed.
The results are depicted in Figure 2 for N = 5, 11, and 15,

where we observe that the protocol is particularly efficient in
reaching the target state. In order to quantify the efficiency of
our protocol, we fix a threshold value for the average fidelity th =
0.95, such that whenever the reward function is larger than this
threshold value, the target search is considered successful. This
efficiency decreases as the size of the graph increases, although
the threshold value is reached on rather small time scales 𝛾t < 1.
This is a great improvement with respect to the performance of
the standard quantum spatial search algorithm, reported in Ap-
pendix A, where the success probability never reaches the thresh-
old value (see Figure A1 for a comparison).
In Figure 2 we also consider the average feedback coupling 𝜃̄0

between nodes |0⟩ and |1⟩ and the coupling 𝜃̄1 between nodes|1⟩ and |2⟩ (see Figure 1 for reference): after an initial transient,
the average value of the feedback couplings reaches an asymp-
totic value, meaning that the feedback operation is stable after
having reached the target node. We notice that the average cou-
pling 𝜃̄0, between nodes |0⟩ and |1⟩, tends to the asymptotic
value 𝜃̄0 → −𝛾 . In fact, when the protocol has almost localized
the walker in the desired node, the role of the feedback is to try to
stop the dynamics by nullifying the corresponding couplings in
the Hamiltonian. We have also numerical evidence that, within
numerical noise, the average feedback couplings are symmetric
with respect to the x-axis, that is, 𝜃̄0 = 𝜃̄N−1, 𝜃̄1 = 𝜃̄N−2, etc., in the
configuration in which the target node is placed in (1,0), see Fig-
ure 1. The average feedback couplings reported in Figure 2 show
however large fluctuations, especially 𝜃̄1, suggesting that in some
trajectories larger values of the optimal couplings are chosen by
the optimization algorithm. We propose two possible justifica-
tions for this behavior: i) the first one is based on the stochasticity
of the single random trajectory, that is, theremight be a time-step
in which the measurement project the state far away from the
target node, and thus a large correction is needed; ii) the second
one is based on the shape of the landscape functions of the feed-
back couplings for a single trajectory. One can indeed observe
that these landscape functions are periodic and thus have many
local and equal maxima that can be reached by different values
of the feedback couplings. The large fluctuations thus may arise
from the fact that the algorithm does not always choose the max-
imum in the neighborhood of the maximum found at the pre-
vious step (further details on the couplings’ landscape functions
are given in Appendix D).

5.2. Numerical Optimization with Bounded Controls

As we have seen in the previous section, not only numerical opti-
mization of the feedback strategy is necessary, but also large ab-
solute values of the feedback couplings might be needed to per-
form an efficient search. Hence, to test the limits of our protocol,
we consider the case where the feedback couplings 𝜽 belong to a
bounded domain. In this case each 𝜃k can take values from the in-
terval [−𝜉𝛾 , 𝜉𝛾 ], where we introduced the bounding (dimension-
less) parameter 𝜉 that quantifies the range of values admitted for
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Figure 2. Results for multiple feedback control Hamiltonians ĥ(hop)
k

defined in Equation (21). a): average reward function  |0⟩ as a function of time

(black dashed line: threshold  th = 0.95). b1-b4) Averaged feedback couplings 𝜃̄k, corresponding to the kth Hamiltonian in Equation (20)). Short time
behavior: (b1, b3); time-asymptotic behavior: (b2, b4). Red line:N = 5; blue line:N = 11; orange line:N = 15. Other parameters: 𝜂 = 1, dt = 0.01, number
of stochastic trajectory Ntj = 5000.

Figure 3. Results for multiple feedback Hamiltonians ĥ(hop)
k

with bounded control parameters 𝜽 and for a graph with N = 11 nodes. a) Average reward

function  |0⟩ as a function of time (black thick line: threshold  th = 0.95); b,c) Average feedback coupling 𝜃̄0 and 𝜃̄1, respectively, as a function of time
(short time behavior). Insets: Average feedback coupling 𝜃̄0 and 𝜃̄1 for a larger time t (asymptotic behavior). In all plots we used 𝜉 = 1 (red thick line),
𝜉 = 5 (blue dotdashed line), 𝜉 = 50 (orange dashed line), 𝜉 = 100 (purple dotted line), 𝜂 = 1, dt = 0.01, number of stochastic trajectories Ntj = 5000.

the feedback couplings 𝜽. We consider the bounding parameter
𝜉 ≥ 1. We have indeed numerical evidence that for 𝜉 < 1, that is
for feedback couplings smaller than the Laplacian parameter 𝛾 ,
the protocol fails. As we noticed in the example above, once the
walker has been localized over the target the role of the feedback
is to stop the dynamics and this effect cannot be achieved effi-
ciently if in general |𝜃0| < 𝛾 .
The numerical results are provided in Figure 3 forN = 11 (the

results are qualitatively similar also for N = 5 and N = 15), and
for different values of 𝜉 ranging between 𝜉 = 1 and 𝜉 = 100. As
expected, as 𝜉 grows, the efficiency of the protocol improves, that
is, the minimum time tth required to reach the threshold  th de-
creases on average. Moreover, even for small values of 𝜉, this pro-
tocol is able to identify the target node with higher probability
than the standard quantum algorithm in the same time interval,
see Appendix A.
The decreasing of the optimal time 𝛾tth for increasing values

of 𝜉 can also be seen from Figure 4, where we plot the ratio of
𝛾tth∕ th, a quantity that corresponds to the effective time neces-
sary to reach the target on average.[83] We observe that this quan-
tity in general quantitatively depends on the chosen threshold
value  th but it gives always the same qualitative behavior. We

see that above a certain value of 𝜉, the ratio reaches a minimum
asymptotic value. Larger values of 𝜉 are necessary to reduce the
effective time 𝛾tth∕th when the size N is increased. From Fig-
ures 3 and 4, we notice that the order of magnitude of the tth
is larger if compared with the one obtained for the unbounded
feedback (see Figure 2).
In Figure 3 we also report the average values of the feedback

couplings 𝜃̄0 and 𝜃̄1. Differently from the unbounded controls
scenario, here the noisy fluctuations aremuch smaller (again, for
a more detailed discussion, we refer the reader to Appendix D),
and we have numerical evidence that the time behavior of 𝜃̄0 and
𝜃̄1 is equal to their symmetric counterpart 𝜃̄10 and 𝜃̄9. The qual-
itative behavior of 𝜃̄0 is the same also for the other values of N
and 𝜉 considered: after a first positive peak, it follows aminimum
and then a secondmaximum, which is smaller than the first, and
eventually it tends to the finite asymptotically value 𝜃̄0 → −𝛾 , con-
firming our previous intuition. The situation is slightly different
for 𝜃̄1, where for N = 11 and N = 15 there is a sequence of min-
ima and maxima which asymptotically tend to a value close to 0
while for N = 5 the asymptotic values remains positive. This be-
havior leads to the observation that, for smaller graphs, the cou-
plings 𝜃1 and 𝜃N−2 are more relevant with respect to graphs with
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Figure 4. Plot of 𝛾tth∕ th as a function of the bounding parameter 𝜉 for
different graph sizes:N = 5 (red line),N = 11 (blue line), andN = 15 (or-
ange line). The value tth is the time at which the  th = 0.95 is reached on
average. By changing the value of the threshold parameter  th the quali-
tative behavior of the curves does not change and the values obtained for
different 𝜉 have the same order of magnitude. We used the same data and
the same set of parameters of Figure 3.

a larger size. The other feedback couplings are not particularly
interesting, since their average is approximately 0 everywhere, so
we decide to not report them.
So far we have discussed only averaged results on a large num-

ber of trajectories. To understand in detail the behavior of the
protocol, in Figure 5 we report the results for a single stochastic
trajectory with bounded domain forN = 5 with 𝜉 = 1 andN = 11
with 𝜉 = 5. During the transient evolution, when the feedback is
driving the walker to the target node |0⟩, the value of the reward
function is particularly affected by themeasurement. After reach-
ing the threshold value, the feedback operation tries to keep the
walker into the target vertex. However, the stabilization proce-
dure is not given by constant values of the feedback couplings.
Similar to what we have discussed in the previous section, this
means that corrections are necessary also after having reached
the target state with high fidelity. These corrections are respon-
sible for the noise we see in the averaged feedback couplings re-
ported in Figure 3. By inspecting the single trajectories, we also
notice that most of the values taken by 𝜽 during the evolution are

either equal to 0 or to±𝛾 . So it is worth exploring a scenario where
the feedback couplings 𝜽 belong to discrete set of possible values.

5.3. Numerical Optimization with Digital Feedback Control

We now explore a digital feedback protocol, where the feedback
control parameters 𝜽 are picked, at each time step, from a discrete
number of values. We study this strategy only for a cycle graph
of order N = 5 since the numerical algorithm we employed is
particularly demanding.
First, we consider only three possible values for the couplings

𝜃k, belonging to the set {0,±𝛾}. In this case the optimization algo-
rithm explores all the values of the reward function for all the pos-
sible combinations that the five feedback couplings 𝜽may realize,
that is, 53 = 125 possible combination, and select the one that re-
alizes themaximum |0⟩(∙). In the left panel of Figure 6we report
the results obtained by repeating this algorithm at each step and
averaging over Ntj = 5000 trajectories. We see that the threshold
value of th is reached for a time 𝛾tth = 6.40, which is slightly
larger than the value obtained via the continuous bounded pro-
tocol 𝛾tth = 6.39. Regarding the feedback couplings 𝜽, their aver-
age values oscillate in the transient time, and after the threshold
time tth, they stabilize around asymptotic values. We found that
approximately 𝜃̄0 = 𝜃̄4 = −𝛾 , while 𝜃̄1, 𝜃̄2, and 𝜃̄3 correspond in
general to positive values.
Then, we consider five possible values for the feedback cou-

plings 𝜃k, belonging to the set {0,±𝛾 ,±𝜉𝛾}, with 𝜉 playing the
same role of the bounding factor we introduced before. Here, we
may consider the two extra switchers as a boosted feedback op-
eration, that is, a larger coupling strength than the standard 𝛾 .
In this case, the number of possible combination increase and it
is equal to 55 = 3125. The averaged results are reported in Fig-
ure 6b for 𝜉 = 5 and for Ntj = 5000 trajectories. The threshold
value is reached, on average, by the time 𝛾tth = 1.12, which in
this case is slightly smaller than the continuous-bounded proto-
col threshold time 𝛾tth = 1.24. This result is indeed unexpected
since the digital feedback is an instance of the strategies allowed
by the continuous bounded domain. This suggests that all the
algorithms we employed for the optimization of the continuous
bounded domain are not particularly efficient in finding the op-
timal values of the parameters 𝜽, while the brute-force spanning

Figure 5. Single trajectory for the multiple-feedback Hamiltonian protocol with bounded domain. a) Reward function |0⟩(∙) as a function of time for
N = 5, 𝜉 = 1 (red line) and N = 11, 𝜉 = 5 (blue line). In this case, we have respectively 𝛾tth = 1.80 and 𝛾tth = 2.23, highlighted by the red circles. b)
Feedback couplings 𝜽dt as a function of time for theN = 5 trajectory: red line: 𝜃0; blue line: 𝜃1; orange line: 𝜃2; purple line: 𝜃3; green line: 𝜃4. c) Feedback
couplings 𝜽dt as a function of time for the N = 11 trajectory: Red line: 𝜃0; blue line: 𝜃1; orange line: 𝜃2. All the other feedback couplings are null (apart
for some numerical noise of order 10−8) and we do not report them here. In (b, c) the vertical dashed line corresponds to the threshold time 𝛾tth of the
single trajectory. The parameters considered are 𝜂 = 1 and dt = 0.01.
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Figure 6. Digital feedback control for N = 5. Left panel: Three possible value of the control parameters: {0,±𝛾}. Right panel: Five possible value of the
control parameters: {0,±𝛾 ,±𝜉𝛾} with 𝜉 = 5. Main plot: Averaged fidelity  |0⟩ as a function time. Inset: Averaged feedback couplings 𝜽 as a function of
time. Red line: 𝜃0; orange line: 𝜃1; blue line: 𝜃2; purple dashed line: 𝜃3; green dashed line: 𝜃4. The red and the green line are superposed, as well as the
orange and the purple. The number of trajectories is Ntj = 5000, and the parameters considered are 𝜂 = 1 and dt = 0.01.

algorithmwe considered in this section cannot fail, as all the pos-
sible combinations are tested.
The averaged values of the feedback couplings reported in the

inset of Figure 6 show that the extra switchers are considerably
used in the initial stage of the evolution. As time increases, also
in this case the values of 𝜃̄0 and 𝜃̄4 reach the asymptotic value of
𝜃̄0 = 𝜃̄4 = −𝛾 . The other couplings, instead, reach an asymptotic
value larger than one and are particularly noisy. This is a sign that,
in each trajectory, the walker dynamics must often be corrected
by the boosted positive feedback couplings.

6. Conclusions

The ability to control or manipulate the dynamics of a quantum
walker over a network is important for the development of quan-
tum computation, quantum algorithms, and simulations. In this
work we proposed a new protocol for searching a target node
over a cycle graph by means of a continuous-time quantumwalk.
The CTQW interacts with environmental bosonic modes that are
continuously monitored and then a proper feedback operation
is applied to drive the walker toward the target state. The feed-
back thus plays the role of a dynamic oracle, able to recognize
the marked vertex and to change the values of the couplings be-
tween the nodes. In this work we analyzed and compared the per-
formances of three different feedback strategies. In the first one,
we optimized the feedback couplings without posing any bound
on their values; then we considered the case of bounded control,
by introducing a bounding parameter 𝜉; finally, we studied the
case of digital feedback, where the optimal couplings were picked
from a discrete set of values. We show how all the three strategies
are able to localize the walker on the target node, with higher
probability with respect to the quantum spatial search algorithm
with a projective oracle. In particular, as expected, the minimum
time necessary to reach a threshold target fidelity is lower in the
unbounded case, while the continuous bounded control and the
digital feedback strategies achieve similar results. Furthermore,
for all considered strategies, we show that once the target vertex
is reached, the feedback operates to keep the walker in this posi-
tion. This is an important difference with respect to standard spa-
tial search protocols,[18,24] where the target is found, with higher
probability, at a specific time or in a very narrow time window.

The implications are relevant, especially at the experimental and
operational level, as in our protocol one does not need to perform
the final position measurement at a specific time, but rather at
any time larger than the known threshold.
Different physical realizations of quantum walks have been

proposed in recent years. Among others, photonic realizations in
integrated optical waveguide,[84–87] single optically trapped atoms
in a 1D optical lattice,[88,89] or even with trapped ions.[90–92] Con-
cerning possible implementations of our scheme, we specifically
mention cold-atom platforms.[93–95] Recently it has been demon-
strated how one can also achieve rapid reconfigurability of the
network parameters by combination with optical tweezers.[96]

Moreover promising steps toward continuous monitoring of ob-
servables in this framework have been put forward.[97] Instead of
using an homodyne detection scheme, an alternative monitoring
approach could also be modeled on the spontaneous emission
observed in a Bose-Einstein condensate.[98] Although in this pa-
per we focus on the cycle graph, our scheme can be, in principle,
generalized to more general topologies with appropriate adapta-
tions both in the feedback operations and system dynamics that
is, respectively by changing the feedback Hamiltonian and the
system-environment coupling.

Appendix A: The Standard Search Algorithm in a
Cycle Graph

The standard approach of quantum spatial search, using quantum walks,
relies on the Hamiltonian in Equation (2), which can be rewritten as

HS = 𝛾L − 𝛽|w⟩⟨w| (A1)

where 𝛾 scales the time (or alternatively we can set 𝛾 = 1) and 𝛽∕𝛾 is the
oracle parameter that we need to optimize to improve the search. In this
way, we can compare the different search strategies, by showing the dy-
namical quantities of interest in terms of the re-scaled time 𝛾t. If we apply
this algorithm to 1D lattices, such as the cycle graph, the success proba-
bility of finding the target does not scale well with the size of the graph. In
Figure A1, we show how the spatial search algorithm performs in the case
of a cycle graph. We compare three different sizes: N = 5, 11, and 15. For
each graph, we numerically optimize the oracle parameter and then com-
pute the probability of finding the target, also called reward function and
defined in Equation (22), as a function of time 𝛾t. We see that for already
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Figure A1. Reward function |0⟩ for the optimized standard algorithm
with the projective oracle for N = 5 (red line), N = 11 (blue dashed
line), and N = 15 (orange dotted line). For each size N, we found the
optimal value for the 𝛽 parameter that gives the maximum value of
|0⟩ in the considered time interval. We obtain the following: for N = 5,
𝛾topt = 5.38, 𝛽opt∕𝛾 = 2.24, and themaximum is|0⟩(topt, 𝛽opt) = 0.91; for
N = 11, 𝛾topt = 6.23, 𝛽opt∕𝛾 = 1.19 and the maximum is |0⟩(topt, 𝛽opt) =
0.60; for N = 15, 𝛾topt = 11.28, 𝛽opt∕𝛾 = 0.92, and the maximum is
|0⟩(topt, 𝛽opt) = 0.44.

N = 15 the maximum probability of finding the target is less than 0.5 in
the time interval considered.

Appendix B: Unconditional Master Equation and
the Monitoring Operators ĉj

In this appendix, we provide some details regarding the choice of the jump
operators in Equations (16) and (17). We recall that the evolution of an
unconditional state is described by the following master equation

d𝜚u = −i𝛾 [L, 𝜚u(t)]dt + 𝜅
∑
j

[̂cj]𝜚
u(t)dt (B1)

where {ĉj} is the set of jump operators describing the coupling of the sys-
tem’s degrees of freedom with the surrounding environment, and L de-
notes the Laplacian operator characterizing the quantum walk defined in
Section 2. Since the cycle graph is symmetric under translations of the
node’s index and all nodes are equivalent, we expect an unconditioned dy-
namics to reflect this invariance. We will show how this requirement sets
some constraints in the choice of ĉj. Since our goal is to monitor the posi-
tion of the walker, one may consider any operator diagonal in the position
basis {|k⟩}, such as for example

ĉK = K̂ =
N−1∑
k=0

k|k⟩⟨k| (B2)

In this case one has that physically each node couples with the bosonic
operator of the external field and this coupling is proportional to the index
of the node itself. The unconditioned dynamics in Equation (B1) for an ini-
tially equally superposed state given in Equation (3) would eventually lead
to a maximally mixed state at long times, as one expects. However, as we
show in Figure B1, during the time evolution, one observes that the sym-
metry of the graph is lost, as the different probabilities pk(t) = ⟨k|𝜚u(t)|k⟩
have different behaviors in time. The reason behind the broken symmetry
is that one has to fix the node having eigenvalue k = 0. Indeed, with a sin-
gle real jump operator diagonal in the position basis, it is not possible to
have an unconditioned dynamics that preserve the cycle symmetry. There

Figure B1. Time-evolution of diagonal elements of the unconditioned den-
sity matrix pk = ⟨k|𝜌u(t)|k⟩ in the position basis for the unconditioned dy-
namics Equation (B1) in a cycle graph with N = 5 and 𝜅 = 𝛾 . Pair of jump
operators ĉ1 and ĉ2 in Equations (16) and (17) or single non-Hermitian
jump operator ĉ0 in Equation (B3): black dashed line p0 = p1 = p2 = p3 =
p4 = 1∕5. Single jump operator ĉK in Equation (B2): green dot dashed line:
p0(t); red line: p4(t); purple dot dashed line: p1(t); orange line: p3(t); blue
dashed line: p2(t). The initial state is the uniform superposition of all nodes
of the graph as in Equation (3).

are two possible ways to circumvent this problem: the first is to consider
a non-Hermitian jump operator

ĉ0 =
N−1∑
k=0

ei2𝜋k∕N|k⟩⟨k| (B3)

The secondway is to use two jump operators, each diagonal in the position
basis, like the one given in Equations (16)–(17). As remarked in the main
text, the eigenvalues of these operators correspond to the coordinates of
the nodes in the (x, y) plane.

We now discuss the evolution corresponding to the unconditional dy-
namics for the three choices of jump operators. In Figure B1 we report the
probabilities pk(t) = ⟨k|𝜚u(t)|k⟩ of the diagonal element of the density ma-
trix in the position basis under the master equation (Equation (B1)). We
see that, both with the non-Hermitian jump operator (Equation (B3)) or
with the pair of jump operators Equations (16) and (17), the probabilities
pk(t) are constant in time, and thus describe a proper pure dephasing evo-
lution, keeping the nodes populations constant and preserving the node
symmetry, which instead is lost with the single jump operator in Equa-
tion (B2).

One can also show that the two unconditioned dynamics that preserve
this symmetry are not equivalent. This can be seen by looking at the off
diagonal elements 𝜚ij(t) = ⟨i|𝜚u(t)|j⟩. In fact we first observe that the ab-
solute values of these off-diagonal elements have an identical behavior as
a function of time for the same choice of the coupling constant 𝜅, leading
to the same mixed steady-state diagonal in the position basis. However a
different behavior is observed if we focus on the imaginary and real parts
of these quantities. Just as an example, in Figure B2 we report their evo-
lution for the element 𝜚01(t). While for the pair of jump operators (ĉ1, ĉ2)
the imaginary part is always equal to zero, and the real part decreases ex-
ponentially to zero, for the single jump operator ĉ0, one observes damped
oscillations for both quantities.

In the main text we have focused on the evolution due to the pair of
jump operators ĉ1 and ĉ2, as their eigenvalues directly correspond to the
coordinates of the walker position. In this sense one could think to be able
to couple the walker to two independent environments via quantum non
demolition-like interactions, in order to perform continuousmonitoring of
these observables. In this sense this choice is the one that, in our opinion,
better fits the description in terms of continuous monitoring. However in
the next appendix we show that similar results are obtained by considering

Adv. Quantum Technol. 2022, 2200093 © 2022 Wiley-VCH GmbH2200093 (9 of 14)
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Figure B2. Real (red lines) and imaginary (blue lines) parts of the off-
diagonal element 𝜚01(t) for the unconditioned dynamics Equation (B1) in
a cycle graph withN = 5 and 𝜅 = 𝛾 for the single jump operator ĉ0 (dashed
lines) and for the pair of jump operators (ĉ1, ĉ2) (solid lines). The initial
state is prepared in the uniform superposition of all nodes of the graph as
in Equation (3).

the dynamics with a single jump operator ĉ0 and with continuous hetero-
dyne detection.

Appendix C: Results for the Single Complex Jump
Operator ĉ0

In this appendix, we report the results of the bounded feedback protocol
with the non-Hermitian jump operator ĉ0 given in Equation (B3), analyzing
the reward function in Equation (22) for a single case of study, analogously
to Figure 3.

In this scenario, we can still obtain two distinct photocurrents yield-
ing information on the position operators (x̂, ŷ) by performing heterodyne
detection instead of homodyne. In fact, in this case, one has two photocur-
rents given by [31, 99]

dy(1)t =
√
𝜂𝜅

2
Tr[(ĉ0 + ĉ†0)𝜚

c]dt + dW(1)
t

=
√
2𝜂𝜅Tr[x̂𝜚c]dt + dW(1)

t (C1)

dy(2)t =
√
𝜂𝜅

2
Tr[(−iĉ0 + iĉ†0)𝜚

c]dt + dW(2)
t

=
√
2𝜂𝜅Tr[ŷ𝜚c]dt + dW(2)

t (C2)

where dW(1)
t and dW(2)

t denotes two independent Wiener increments. As
explained in Section 3, the evolution of the conditional state 𝜚c(t + dt),
described by Equation (10), is determined by a single Kraus operator, that
for an heterodyne detection can be written as

M̂dyt
= 𝕀 − 𝜅

2
ĉ†0 ĉ0dt +

√
𝜂𝜅

2
ĉ0(dy

(1)
t − idy(2)t ) (C3)

By looking at the two photocurrents, we can use the same algorithm we
used in the main text to drive the walker to the target node.

In Figure C1 we report the behavior of the average reward function for
the multiple feedback Hamiltonians protocol described in Section 4 and
with bounded domains. The results reported are comparable with the one
obtained in Figure 3, meaning that the two protocols have similar per-
formances. In particular we observe that the curves at fixed 𝜉 are almost
coincident, except for the case of 𝜉 = 1. We may thus conjecture that in
general the two strategies corresponding to the different jump operators
lead to the similar results, but for small 𝜉 and for the jump operator ĉ0

Figure C1. Comparison between the average reward function |0⟩ for mul-

tiple feedback Hamiltonians ĥ(hop)
k

with the single non-Hermitian jump
operator ĉ0 (solid) and the protocol with two jump operator (thick) al-
ready reported in Figure 3. We consider bounded control parameters 𝜽

and a graph with N = 11 nodes. Black dashed line: threshold  th = 0.95).
We used 𝜉 = 1 (red line), 𝜉 = 5 (blue line) 𝜉 = 50 (orange line), 𝜉 = 100
(purple line), 𝜅 = 𝛾 , 𝜂 = 1, 𝛾dt = 0.01, number of stochastic trajectories
Ntj = 5000.

the algorithm implemented does not find the optimal feedback strategy,
leading to smaller values of the average fidelity.

Appendix D: Shape of the Landscape of the
Reward Function |0⟩
In this section, we discuss some details regarding the landscape of the
reward function |0⟩ for the protocol used in the main text, that is, with
the pair of jump operators given in Equations (16) and (17). The aim is to
provide a heuristic argument for the large fluctuations we observe in the
average feedback couplings in the unbounded domain, (see Figure 2).

The landscape is, by definition, a function of the domain of the reward
function (which is ℝN, with N is the size of the cycle graph, i.e., the num-
ber of feedback couplings); for this reason it is not possible to plot the
full landscape even for the smallest case we considered, that is, N = 5.
Nonetheless, driven by the numerical results obtained in the main text
and by symmetry considerations, we can restrict the domain in our anal-
ysis. Considering the notation of Figure 1, we can assume that 𝜃0 = 𝜃4
and 𝜃1 = 𝜃3, as confirmed by the results shown in Figure 2, where we can
clearly see this symmetry, up to some fluctuations. We further assume that
𝜃2 = 0, which is supported by numerical results in both the unbounded
and bounded case, even though we did not report them explicitly in the
main text. In this way, we can now picture the landscape as a 3D function
with two free feedback couplings, 𝜃0 and 𝜃1.

The landscapes for a single trajectory and at different times are reported
in Figure D1, withN = 5 and 𝜉 = 1, which is the smallest domain we have
studied. Please, notice that the landscape in the figure is plotted for a larger
domain, that is, {𝜃0∕𝛾 , 𝜃1∕𝛾} ∈ {[−10, 10], [−10, 10]}. This means that the
bounded algorithm is going to pick values in a smaller square centered in
the 3Dplots we have reported.We show this larger domain to illustrate why
smaller domains (i.e., smaller 𝜉) leads to a slower increase of the average
fidelity: one indeed observes that the maxima of the reward function are
not accessible if 𝜉 is smaller than a certain threshold. We also stress that
the algorithm that drives the walker does not assume that the angles are
equal, that is, 𝜃0 = 𝜃4 and 𝜃1 = 𝜃3 and 𝜃2 = 0.

The landscapes reported in Figure D1 show an oscillatory shape with-
out a single global maximum but with many local maxima with the
same height. This means that when the domain is enlarged (or even un-
bounded), at each step the algorithmmight found amaximum outside the
neighborhood of the maximum found at the previous step. In the case of
an unbounded domain, the periodicity of the landscape allows the algo-
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Figure D1. Landscapes for the reward function |0⟩ in a single trajectory at different time step. Panels (a)–(e) are the landscapes, panel (f) is the
evolution of the reward function as a function of 𝛾t. Comparing the two, we see the changes in the landscape as soon as the reward function increase.
The parameters considered are N = 5, 𝜉 = 1, 𝜅 = 𝛾 , 𝛾dt = 0.01, and 𝜂 = 1. Please notice that the algorithm see only a smaller square of the values
reported, as explained in Appendix D.

rithm to find maxima at very large values of the feedback coupling, which
gives rise to the large fluctuations in the average feedback couplings in
Figure 2. To circumvent the problem, one could consider an algorithm
in which, at each step, the feedback couplings are allowed to change in
a small neighborhood around the optimal value found at the previous
step. We leave this to future investigations but we believe that this pro-
tocol should not substantially change the performance of the one used
but should solve the large fluctuations problem we have observed.

Appendix E: Unitary Feedback: Analytic Expression
of the Feedback Couplings 𝜽

In this appendix we provide a detailed and analytical derivation for the ex-
pression of the feedback couplings in the case of a single feedback Hamil-
tonian, assuming that they are of the order of dt and dWi, by following the
results presented in ref. [45]. In the interaction picture, the conditioned
evolution for the density matrix due to dM measurements is given by Equa-
tion (6), and can be recasted as

𝜚c(t + dt) = 𝜚c(t) +
√
𝜅

dM∑
i=1

 [̂ci]𝜚
c(t)dWi

+
dM∑
i=1

𝜅[̂ci]𝜚
c(t)dt

(E1)

where the superoperator[ĉi]∙ and[ĉi]∙ are defined in Equations (7) and
(8), respectively.

As explained in the Section 4, our feedback Hamiltonian is identified
with the adjacency matrix (1), that is

Ĥfb(𝜃) = 𝜃

N−1∑
i=0

ĥ(hop)i (E2)

with ĥ(hop)i defined in Equation (21). The single-feedback Hamiltonian pro-
tocol proposed here is nothing but themultiple-feedback protocol in which
the single couplings change synchronously and with equal strength. Here

we assume that the expression for the feedback coupling 𝜃 for the step
t + dt can be expanded as

𝜃 = 𝜃dt =
2∑

k=1
AkdW

(k)
t + Bdt (E3)

withA = {A1, A2} andB are respectively a 2D real vector and a real number.
Then, the unitary evolution due to the feedback can be written as

Û = exp
{
−iĤfb(𝜃)dt

}
= exp

{
−iĥfb

2∑
k=1

AkdW
(k)
t − iĥfbBdt

} (E4)

= exp

{
−iĥfb

2∑
k=1

AkdW
(k)
t − iĥfbBdt

}
(E5)

where we have introduced the operator ĥfb =
∑N−1

i=0 ĥ(hop)i . The Taylor ex-
pansion of such operator up to first order in dt is obtained

Û = 𝕀 − iĥfb

2∑
k=1

AkdW
(k)
t − iĥfbBdt+ (E6)

− 1
2
ĥ2fb

2∑
k=1

A2i dt (E7)

From the latter expression, we can derive the infinitesimal evolution after
the feedback (remember that dW(i)

t dW(j)
t = dt𝛿ij)

𝜚
f
𝜃
(t + dt) = Û𝜚c(t + dt)Û† = 𝜚

f
𝜃
(t) +

√
𝜅

2∑
i=1

 [̂ci]𝜚
f
𝜃
(t)dW(i)

t

+ 𝜅
2∑
i=1

[̂ci]𝜚
f
𝜃
(t)dt − i[ĥfb, 𝜚

f
𝜃
(t)]

2∑
i=1

AidW
(i)
t + (E8)
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Figure E1. Single-feedback Hamiltonian protocol with ĤF defined in Equation (E2) for Ntj = 5000 trajectories and parameters 𝜂 = 𝜅 = 1 and dt = 0.01.
a) Average reward function ̄|0⟩ with respect to the target state as a function of time t. Dashed line: threshold fidelity th. b) Average of the second
derivative ̄ defined in Equation (E16) as a function of time t. Red line N = 5; blue line N = 11; orange line N = 15.

− i
√
𝜅[ĥfb, [̂ci]𝜚

f
𝜃
(t)]

2∑
i=1

Aidt − i[ĥfb, 𝜚
f
𝜃
(t)]Bdt +

2∑
i=1

A2i [ĥfb]𝜚
f
𝜃
(t)dt =

(E9)

= 𝜚
f
𝜃
(t) +

2∑
i=1

̂idW
(i)
t +

(
2∑
i=1

̂i − i[ĥfb, 𝜚
f
𝜃
(t)]

)
Bdt (E10)

where we have grouped the differential factors together, that is,

̂i =
√
𝜅[ĉi]𝜚

f
𝜃
(t) − iAi[ĥfb, 𝜚

f
𝜃
(t)] (E11)

̂i = 𝜅[̂ci]𝜚
f
𝜃
(t) − i

√
𝜅Ai[ĥfb, [̂ci]𝜚

f
𝜃
(t)] (E12)

+ A2i [ĥfb]𝜚
f
𝜃
(t) (E12)

To obtain the value of A and B which determines the feedback operation at
each time-step, we require that the derivative of the linear reward function
Λ(𝜚(t)) with respect to 𝜃 at the following time step of the evolution

(t + dt) = 𝜕

𝜕𝜃

(
Λ
(
𝜚
f
𝜃
(t + dt)

))||||𝜃=𝜃opt = (E13)

= Λ

(
𝜕

𝜕𝜃
𝜚
f
𝜃
(t + dt)

||||𝜃=𝜃opt
)

(E14)

satisfy the extremality condition

(t + dt) = 0 (E15)

In addition, since we are interested in maximizing Λ(∙), we ask also that
the second derivative of the reward function is negative, that is,

 = Λ
⎛⎜⎜⎝
𝜕2𝜚

f
𝜃
(t + dt)

𝜕𝜃2

||||𝜃=𝜃opt
⎞⎟⎟⎠ < 0 (E16)

which ensures that the feedback operation maximize the reward function.
To find the solution, we first evaluate

𝜕𝜃𝜚
f
𝜃
(t + dt) = i[Ĥfb(𝜃), 𝜚

f
𝜃
(t + dt)] (E17)

Then, the condition in Equation (E15) can be expanded as follows

(t + dt) = −iΛ([ĥfb, 𝜚
f
𝜃
(t)]) − i

2∑
j=1

Λ([ĥfb, ̂j])dW
(j)
t

− i

(
2∑
j=1

Λ([ĥfb, ̂j]) − iBΛ([ĥfb, [ĥfb, 𝜚
f
𝜃
(t)]])

)
dt (E18)

Now, the first term in the latter equation is null since we assume that at the
previous time step the reward function satisfy the extremality condition.
Then, considering the terms proportional to dWj

t we have that for j = 1, 2
Λ([ĥfb, ̂j]) = 0, which is nothing but

Aj = −i
√
𝜅
⟨0|[ĥfb,[ĉj]𝜚

f
𝜃
(t)]|0⟩

⟨0|[ĥfb, [ĥfb, 𝜚f𝜃(t)]]|0⟩ (E19)

where we have considered as reward function the one defined in Equa-
tion (22), that is, Λ(∙) = ⟨0| ∙ |0⟩. With the same line of reasoning, taking
the term proportional to dt we can obtain the scalar function

B = −i

∑2
j=1⟨0|[ĥfb, ̂j]|0⟩⟨0|[ĥfb, [ĥfb, 𝜚f𝜃(t)]]|0⟩ (E20)

We notice that these equations are valid if ⟨0|[ĥfb, [ĥfb, 𝜚f𝜃(t)]]|0⟩ ≠ 0, a con-
dition that must be checked at each step of the feedback operation.

In addition, the condition for maximizing the reward function at each
time step certain time can be simply written as

|0⟩(t + dt) = −i[ĥfb, [ĥfb, 𝜚
f
𝜃
(t + dt)]] < 0 (E21)

If this condition fails, we chose not to act with the feedback operation and
skip to the next time-step, even though numerical evidence shows that this
situation rarely occurs.

The numerical results of this protocol are reported in Figure E1, left
panel. The average fidelity  |0⟩ for Ntj = 5000 trajectories for three differ-
ent values ofN = 5, 11, and 15. As the size increases, the efficiency of the

protocol worsens. Moreover, it never reaches the threshold value 
th|0⟩.

In the right panel of Figure E1 we report the average value of the second
derivative, that is,  |0⟩ = 𝔼traj[|0⟩(t + dt)]. The results obtained show that
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the feedback operation is always optimal on average at each time step.

However, since the threshold value
th|0⟩ is never reached, we conclude that

the single-feedback Hamiltonian is inefficient in achieving the targeting
goal, even though the 𝜃 found according to Equations (E19) and (E20)
to be the optimal one. In addition, the absolute values of  decrease as
N increases, showing that the efficiency of the protocol worsens as the
size increases, as we have already observed in the main text for the multi-
coupling feedback Hamiltonian.
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