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We extend the quantum discord to continuous variable systems and evaluate Gaussian quantum discord

Cð%Þ for bipartite Gaussian states. In particular, for squeezed-thermal states, we explicitly maximize the

extractable information over Gaussian measurements: Cð%Þ is minimized by a generalized measurement

rather than a projective one. Almost all squeezed-thermal states have nonzero Gaussian discord: They may

be either separable or entangled if the discord is below the threshold Cð%Þ ¼ 1, whereas they are all

entangled above the threshold. We elucidate the general role of state parameters in determining the discord

and discuss its evolution in noisy channels.
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Quantum correlations have been the subject of intensive
studies in the past two decades, mainly due to the general
belief that they are a fundamental resource for quantum
information processing tasks. The first rigorous attempt to
address the classification of quantum correlation has been
put forward by Werner [1], who put on a firm basis the
elusive concept of quantum entanglement. A state of a
bipartite system is called entangled if it cannot be written
as follows: %AB ¼ P

pk%Ak $ %Bk, where %Ak and %Bk are
generic density matrices describing the states of the two
subsystems. The definition above has an immediate opera-
tional interpretation: Separable states can be prepared by
local operations and classical communication between the
two parties, whereas entangled states cannot. One might
have thought that such classical information exchange
could not bring any quantum character to the correlations
in the state. In this sense, separability has often been
regarded as a synonymous of classicality. However, it has
been shown that this is not the case [2,3]. A measure of
correlations—quantum discord—has been defined as the
mismatch between two quantum analogues of classically
equivalent expression of the mutual information. For pure
entangled states, quantum discord coincides with the en-
tropy of entanglement. However, quantum discord can be
different from zero also for some (mixed) separable state.
In other words, classical communication can give rise to
quantum correlations. This can be understood by consid-
ering that the states %Ak and %Bk above may be physically
nondistinguishable, i.e., nonorthogonal, and thus not all the
information about them can then be locally retrieved. This
phenomenon has no classical counterpart, thus accounting
for the quantumness of the correlations in a separable state
with positive discord. Quantum discord has been shown to
be a property held by almost all quantum states [4] and has
recently attracted considerable attention [5–8]. In particu-
lar, the vanishing of quantum discord between two systems
has been shown to be a requirement for the complete
positivity of the reduced subsystem dynamics [9].

While the discord is a fundamental notion allowing for
the description of the quantumness of the correlations
present in the state of a quantum system, its evaluation
requires an optimization procedure over the set of all
measurements on a given subsystem, and thus attacking
the general case is a formidable task. For this reason, the
original definition of the quantum discord [2] involved
orthogonal measurements, and its evaluation and the study
of its properties has mainly been restricted to final dimen-
sional systems [10]. The purpose of this Letter is to extend
the notion of discord to the domain of continuous variable
systems. In the following, we focus our analysis on bipar-
tite systems that are described by two-mode Gaussian
states, and we explore the concept of discord within the
domain of generalized Gaussian measurement, i.e., any
measurement that may be achieved by using passive and
active linear optics, homodyne detection, and auxiliary
modes prepared in Gaussian states [11,12]. We start our
discussion by reviewing the main ideas at the basis of the
definition of the discord. Let us consider two classical
random variables A and B with joint probability
pABða; bÞ; the total correlations between the two variables
are measured by the mutual information. The latter may
defined by two equivalent expressions IðA;BÞ ¼ HðAÞ þ
HðBÞ &HðA; BÞ and IðA;BÞ ¼ HðAÞ &HðAjBÞ '
HðBÞ &HðBjAÞ, where HðXÞ ¼ &P

xpXðxÞ logpXðxÞ is
the Shannon entropy of the corresponding probability dis-
tribution and the conditional entropy is defined in terms of
the conditional probability pAjBðajbÞ as HðAjBÞ ¼
&P

abpABða; bÞ logpAjBðajbÞ. The idea of quantum discord
grows out of the fact that the quantum version of the
mutual information of a bipartite state %AB may be de-
fined in two nonequivalent ways. The first is obtained by
the straightforward quantization of IðA;BÞ, i.e., Ið%ABÞ ¼
Sð%AÞ þ Sð%BÞ & Sð%ABÞ, where Sð%Þ ¼ &Tr½% log%) is
the von Neumann entropy of the state % and %AðBÞ ¼
TrBðAÞ½%AB) are the partial traces over the two subsystems.
On the other hand, the quantization of the expression based
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on conditional entropy, i.e., the extractable information,
involves the conditional state of a subsystem after a mea-
surement performed on the other one, and this fact has
three relevant consequences: (i) The symmetry between
the two subsystems is broken; (ii) this quantity depends on
the choice of the measurement; (iii) the resulting expres-
sion is generally different from Ið%ABÞ. Let us denote by
%Ak ¼ 1=pBðkÞTrB½%ABI $!k), with pBðkÞ ¼
TrAB½%ABI $!k), the conditional state of the system A
after having observed the outcome k from a measurement
performed on the system B. In turn, f!kg,

P
k!k ¼ I

denotes a positive operator-valued measure (POVM) de-
scribing a generalized measurement. The quantum ana-
logue of the mutual information defined via the
conditional entropy is defined as the upper bound JA ¼
supf!kgSð%AÞ &

P
kpBðkÞSð%AkÞ taken over all the possible

measurements. Finally, the quantum A discord is defined in
terms of the mismatch Cð%ABÞ ¼ Ið%ABÞ & JAð%ABÞ.
Analogously, one is led to define the B discord through
the entropy of conditional states of system B. In the follow-
ing, we show that the extractable information Jð%ABÞ for
two-mode Gaussian states can be maximized over the class
of Gaussian measurements and that the mismatch between
Cð%ABÞ is actually minimized by a POVM rather than a
projective measurement. Since the results for the B discord
can be recovered by a reparametrization, from now on we
refer to A discord and omit the indication of the subsystem.
Recently, a different quantity has been introduced [13],
which is essentially a symmetrized version of the discord.

We start our analysis by proving a general result:
Quantum discord is invariant under local unitary opera-
tions, i.e., CðUA $UB%ABU

y
A $Uy

BÞ ¼ Cð%ABÞ, 8 % and
any choice of the local unitaries. The proof simply follows
by first noticing that the mutual information Ið%ABÞ is
written in terms of two single-system entropies and thus
it is not changed by the action of local unitaries.
Furthermore, extractable information rewrites as Jð%Þ ¼
Sð%AÞ &

P
kp

0
BðkÞSð%0

AkÞ, where the primed quantities are

evaluated by using the transformed POVM !0
k ¼

Uy
B!kUB. Since the reparametrization does not change

the superior, invariance is proved. This result is relevant
since it allows us to focus our analysis on Gaussian states
whose covariance matrix

! ¼ A C
C B

! "

can be put in a simplified standard form, i.e., A ¼
diagða; aÞ, B ¼ diagðb; bÞ, and C ¼ diagðc1; c2Þ, by means
of local symplectic operations corresponding to local uni-
taries that preserve the Gaussian character of the state. The
quantities I1 ¼ detA, I2 ¼ detB, I3 ¼ detC, and I4 ¼ det!
are left unchanged by the transformations and are thus
referred to as symplectic invariants. The local invariance
of the discord has therefore twomain consequences. On the
one hand, Cð%Þ may be written in terms of symplectic
invariants only. On the other hand, it allows us to restrict

to states with ! already in the standard form. In particular,
while the derivation we give for the Gaussian discord is
applicable to the general case, for the explicit calculations
we will focus on the relevant subclass of states for which
c1 ¼ &c2, i.e., the squeezed-thermal states (STS) % ¼
SðrÞ!1 $ !2S

yðrÞ, where SðrÞ ¼ erða
yby&abÞ is the two-

mode squeezing operator and !j ¼
P

kN
k
j ð1þ

NkÞ&k&1jkihkj, j ¼ 1; 2 are chaotic states with Nj the av-
erage number of thermal photons. Using this parametriza-
tion we have a ¼ ðNr þ 1

2Þ þ N1ð1þ NrÞ þ N2Nr,
b ¼ ðNr þ 1

2Þ þ N2ð1þ NrÞ þ N1Nr, and c1 ¼ &c2 ¼
ð1þ N1 þ N2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nrð1þ NrÞ

p
, where Nr ¼ sinh2r.

The definition of the Gaussian quantum discord is based
on the minimization of the mismatch Ið%Þ & Jð%Þ over
single-mode generalized Gaussian measurements. A first
class of such POVMs may be written as [11,12] !X ¼
DðXÞ%MD

yðXÞ, R
dX!X ¼ 1, where X is a two-

dimensional real vector and %M a generic zero mean
Gaussian state whose covariance matrix is ð"MÞ11 ¼ # ,
ð"MÞ22 ¼ $, ð"MÞ12 ¼ ð"MÞ21 ¼ %, with fixed parameters
#;$ 2 Rþ, % 2 R. If one performs the measurement
described by !X on, say, mode B of a bipartite Gaussian
state, then the distribution of the outcomes pðXÞ is a
bimodal Gaussian with covariance matrix (Bþ "M),
whereas the conditional state %X of mode A is a Gaussian
state of mean XTðBþ "MÞ&1CT and covariance matrix
given by the Schur complement "P ¼ A& CðBþ
"MÞ&1CT [14].
Quantum discord may be written as Cð%Þ ¼

Sð%BÞ & Sð%Þ þ inff!Xg
R
dXpðXÞSð%XÞ, and the general

form of Gaussian quantum discord is

Cð%Þ ¼ hð
ffiffiffiffi
I2

p
Þ & hðd&Þ & hðdþÞ þ inf

"M

hð ffiffiffiffiffiffiffi
"P

p Þ; (1)

where h½x) ¼ ðxþ 1
2Þ logðxþ 1

2Þ & ðx& 1
2Þ logðx& 1

2Þ and

d* are the symplectic eigenvalues of %, expressed by d2* ¼
1
2 ½"*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 & 4I4

p
), " ¼ I1 þ I2 þ 2I3. In deriving the ex-

pression for Cð%Þ, we have used two facts: (i) The entropy
of a Gaussian state depends only on the covariance matrix,
and (ii) the covariance matrix "P of the conditional state
does not depend on the outcome of the measurement itself.
This facts allows for a simplification of the minimization
required to obtain the final general expression of the
Gaussian discord. Indeed, for the relevant case of STS,
and for any choice of N1, N2, and Nr, the minimum of the
mismatch Ið%Þ & Jð%Þ is obtained for # ¼ $ ¼ 1=2, % ¼
0, i.e., when the covariance matrix of the measurement is
the identity. This corresponds to the coherent state POVM,
i.e., to the joint measurement of canonical operators, say,
position and momentum, which may realized on the radia-
tion field by means of heterodyne detection [15]. It turns
out that the same result is obtained even if we generalize
the class of Gaussian measurements to include noncovar-
iant ones !Z ¼ DðXÞ%MðYÞDyðXÞ, where now the vector
Z ¼ ðX;YÞ includes the no longer fixed parameers
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of the covariance matrix "M ¼ "MðYÞ. Indeed, since
the integrand in inff!Zg

R
dZpðZÞSð%ZÞ is always posi-

tive, we have inff!Zg
R
dZpðZÞSð%ZÞ + inff!ZgSð%ZÞ ¼

infYh½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"PðYÞ

p
), and the above results apply for any Z.

Upon substituting "M ! I=2, we can now explicitly write
the Gaussian discord for the generic bipartite STS in terms
of symplectic invariants as

Cð%Þ¼hð
ffiffiffiffi
I2

p
Þ&hðd&Þ&hðdþÞþh

! ffiffiffiffi
I1

p þ2
ffiffiffiffiffiffiffiffi
I1I2

p þ2I3
1þ2

ffiffiffiffi
I2

p
"
:

(2)

Upon exchanging I1 $ I2, one can pass from the A discord
to the B discord.

We are now ready to start our discussion about the
properties and the operational meaning of Gaussian quan-
tum discord. At first, we notice that Cð%Þ ! 0 as far as
Nr ! 0. Given that Gaussian states in standard form are
separable for Nr , N1N2=ð1þ N1 þ N2Þ, this confirms
that for CV Gaussian states there are separable states
with nonzero discord. Besides, since Nr ! 0 , c ! 0,
we have that bipartite Gaussian states have always nonzero
Gaussian discord, except when they are product states. The
same condition characterizes the class of tomographically
faithful states for reconstruction of quantum operations
[16], and this provides an operational meaning for the
quantum correlations in separable states with positive dis-
cord. The behavior of Cð%Þ for small and large Nr is

given by Cð%Þ ’Nr-1
f1ðN1; N2ÞNr and Cð%Þ ’Nr.1

f2ðN1; N2Þ þ f3ðN1; N2Þ logNr, respectively, where f1 is
a decreasing function of N2 at any fixed value of N1 and
f2 and f3 are decreasing functions of both N1 and N2.

We now focus our attention on how Cð%Þ relates with
other meaningful properties of the states. In Fig. 1(a), we
report Cð%Þ at the separability threshold Nr ¼ N1N2=ð1þ
N1 þ N2Þ, as a function of the ratio N1=NT for increasing
(from bottom to top) values of NT ¼ aþ b& 1, which is
the total energy of the Gaussian state under investigation
(NT ¼ N1 þ N2 þ 2N1N2 at separability threshold). The
plot suggests two important facts. First, Gaussian discord is
an increasing function of the total energy and is maximized
when most of the thermal photons are placed on the
unmeasured system, thus maximizing the purity of the
measured one. Second, the Gaussian discord for separable
states is always smaller than 1. The existence of a bound
has been confirmed numerically by the random generation
of a large number of bipartite Gaussian states in the stan-
dard form: In Fig. 1(b), we report the smaller symplectic
eigenvalue ~d& of the partially transposed state, obtained by
replacing I3 ! &I3 in the formula for d&, as a function of
Gaussian discord. Since a Gaussian state is entangled iff
~d& < 1

2 , we have that for 0 , Cð%Þ , 1 we have either
separable or entangled states, whereas all the states with
Cð%Þ> 1 are entangled.

The relation between the discord and the entanglement
can be further clarified by analyzing the case of symmetric

STS, i.e.,N1 ¼ N2 ¼ Ns. Here we focus on the behavior of
Cð%Þ with respect to global purity of the state & ¼ ð1þ
2NsÞ&2 and ~d& ¼ e&2sð1þ 2NsÞ=2. A first important ob-
servation is that for fixed purity Cð%Þ turns out to be a
growing function of the entanglement, whereas at fixed
values of ~d& the behavior is more involved. In Fig. 2, we
plot Cð%Þð&; ~d&Þ at fixed values of ~d&. We can distinguish
two different cases. For nonentangled states (~d& + 1=2),
Cð%Þ decreases with&, and it thus is an increasing function
of the total energy of the state NT ¼ ~d& & 1þ ð4~d&&Þ&1.
The limiting value is thus reached at infinite energy, and
the latter is in general given by Cð%Þð& ! 0; ~d&Þ ¼
ð1 þ 2~d&Þ ln½ð1 þ 2~d&Þ=~d&Þ) & ½1 þ ð1 þ 2~d&Þ ln2).
Therefore, for nonentangled symmetric states Cð%Þ ,
2 log2& 1; the latter bound is also reported in Fig. 1 and
defines the limit of the red region corresponding to sym-
metric separable states with nonzero discord. As for the
entangled states (~d& , 1=2), the behavior of Cð%Þ with &
is more complex. For states which are highly entangled
(~d& , 0:062 84) the discord decreases (grows) monotoni-
cally with &ðNTÞ. Indeed, Jð%Þ / hð ffiffiffiffi

I1
p Þ when ~d& ! 0;

i.e., the extractable information is maximized, and Cð%Þ is
maximum for pure states. For intermediate values of the

0.2 0.4 0.6 0.8
N1 NT

0.2

0.4

0.6

0.8

C

FIG. 1 (color online). Left: Gaussian discord Cð%Þ for STS at
separability threshold as a function of the ratio N1=NT for
increasing values of the energy NT (bottom to top NT ¼ 1, 5,
10, 50, 102, 103, and 105). Right: Symplectic eigenvalues of the
partial transpose ~d& versus Cð%Þ for randomly generated STS.
The red region corresponds to symmetric states. The separability
threshold is ~d& ¼ 1

2 and it corresponds to Cð%Þ ¼ 1 [Cð%Þ ¼
2 log2& 1 symmetric STS].

FIG. 2 (color online). Gaussian discord Cð%Þ for symmetric
STS as a function of the global purity & of the state ' and ~d&.
Left: Separable states; from bottom to top ~d& ¼ 0:5,0.6, 0.7, 0.8,
and 0.9. Right: Entangled states; from bottom to top ~d& ¼ 0:5,
0.4, 0.3, 0.3, 0.1, and 0.062 84. See text for description.
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entanglement, ~d& 2 ð0:062 84; 0:5Þ, Cð%Þ has a nonmono-
tonic behavior with &ðNTÞ. In particular, the maximum
discord is reached for & ¼ 1 (pure states) only for ~d& +
0:1282, while its minimum is reached for intermediate
values of& that depend the actual value of ~d&. The overall
nonmonotonic behavior of Cð%Þ corresponds to a situation
in which, at a fixed value of entanglement, the quantum-
ness of the state as measured by the Gaussian discord
varies depending on the total correlations present in the
state, and consequently the ordering of the states with re-
spect to their quantumness significantly differs by that
given by the entanglement. We also emphasize that by fix-
ing the value of ~d& one also fixes the value of the tele-
portation fidelity F ¼ ð1þ 2~d&Þ&1 of coherent states [17].
This means that, by varying the global purity of the state '
shared by Alice and Bob, the same fidelity can be achieved
with different quantum resources as measured by the
Gaussian discord.

We finally address the fundamental issue of the evolu-
tion of quantum discord in noisy channels. Let us consider
bipartite Gaussian states that evolve according to Lindblad
master equation _%¼ 1

2

P
j#jMjL½a)%þ#jð1þMjÞL½ay)%,

which describes the Markovian interaction of the two
modes with independent thermal reservoirs, #j and Mj

being the damping factor and the average number of ther-
mal photons of the two reservoirs, respectively. The map-
ping induced by the master equation is Gaussian, and the

covariance matrix of the evolved state is!t¼!1=2
t !!1=2

t þ
ð1&!tÞ!1, where!t ¼

L
je

&#jtI2 and!1 ¼ DiagðM1 þ
1
2 ;M1 þ 1

2 ;M2 þ 1
2 ;M2 þ 1

2Þ is the covariance matrix of the
reservoir, which also describes the stationary state of the
system. If !t¼0 is in standard form, its parameters evolve
as a0 ¼ ae&#1t þ ð1& e&#1tÞðM1 þ 1

2Þ, b0 ¼ be&#2t þ
ð1& e&#2tÞðM2 þ 1

2Þ, and c0 ¼ ce&ð1=2Þð#1þ#2Þt, i.e., a0 >
a, b0 > b, and c0 < c. Since Cð%Þ is a decreasing function
of a and b and an increasing function of c, we have that
Gaussian discord monotonically decreases in noisy chan-
nels. On the other hand, it has been shown that the decrease
should be smooth since an arbitrary Markovian evolution
can never lead to a sudden disappearance of discord [4]. An
open question remains the effect of non-Markovian dy-
namics, which has been proved to produce oscillations in
the dynamics of Gaussian entanglement [18,19]. We also
expect Gaussian discord to increase if the two parties
interact with a common reservoir [20].

In conclusion, in this Letter we have extended the notion
of the discord [2] to continuous variable systems and
discuss its properties. We have defined the Gaussian dis-
cord Cð%Þ for two-mode Gaussian states, and we have
shown the general analytical procedure to derive it. In
particular, for the relevant subclass of STS, we have shown
that the extractable information is maximized by a general-

ize measurement, i.e., the coherent state POVM corre-
sponding to heterodyne detection. Just as the entangle-
ment, Cð%Þ is invariant under local unitary operations,
and it is zero only for (thermal) product states. For sepa-
rable states Cð%Þ grows with the total energy and it is
bounded. Numerical evidences show that in general
Cð%Þ< 1, while analytical calculations show that for sepa-
rable symmetric STS the bound reduces to Cð%Þ< 2 ln2&
1. For symmetric STS we have also shown that the behav-
ior of Cð%Þ strongly depends on the amount of entangle-
ment present in the state: It increases with the total purity
only when the entanglement is large, whereas it shows a
richer behavior for smaller values of entanglement. Our
results pave the way for the general discussion about the
quantum discord in continuous variable systems and for its
experimental determination with current technology.
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