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Abstract. The interaction between a Bose–Einstein condensate and a single-
mode quantized radiation field in the presence of a strong far-off-resonant
pump laser generates, in proper regimes, atom–atom and atom–field entangle-
ment. The effects of cavity losses are taken into account and an analytic solution
of the corresponding master equation is given in terms of the Wigner function
of the system.

The experimental realization of Bose–Einstein condensation opened the pos-
sibility to generate macroscopic atomic fields whose quantum statistical properties
can in principle be manipulated and controlled [1]. The system usually considered
for this purpose is a Bose–Einstein condensate driven by a far-off-resonant pump
laser of wave vector k and coupled to a single mode in an optical ring cavity. The
mechanism at the basis of this kind of physics is the so-called collective atomic
recoil lasing (CARL) in his full quantized version [2, 3]. This mechanism gives a
reason for the gain in the cavity mode, as well as the generation of momentum side
modes of the BEC. In this paper we review the resulting three-mode dynamics
for an ideal cavity, showing the appearance of entanglement, and illustrate how to
take into account the losses.

We consider a 1D geometry in which the off-resonant laser pulse is directed
along the symmetry z-axis of an elongated BEC. The incident and the scattered
wave vectors are ks � �k. The dimensionless position and momentum of the jth
atom along the axis ẑz directed along k are �j ¼ 2k � zj ¼ 2kzj and pj ¼ mvzj=2�hhk.
The interaction time in units of the collective recoil bandwidth, �!r, is � ¼ �!rt,
where !r ¼ 2�hhk2=M is the recoil frequency, M is the atomic mass and � ¼

�0=2�ð Þ
2=3 !�2ns=�hh�0!

2
r

� �1=3
is the collective CARL parameter, �0 ¼ �E0=�hh is the

Rabi frequency of the pump, ns ¼ N=V is the average atomic density of the sample
(containing N atoms in a volume V ), � is the dipole matrix element,
� ¼ ð!� !sÞ=�!r is the detuning and �0 is the permittivity of the free space.

In a second quantized model for CARL [2, 3] the atomic field operator �̂�ð�Þ
obeys the bosonic equal-time commutation relations ½�̂�ð�Þ; �̂�yð�0Þ� ¼ �ð� � �0Þ,
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½�̂�ð�Þ; �̂�ð�0Þ� ¼ ½�̂�yð�Þ; �̂�yð�0Þ� ¼ 0 and the normalization condition
Ð 2�
0 d��̂�ð�Þy�̂�ð�Þ¼

N. We assume that the atoms are delocalized inside the condensate and that,
at zero temperature, the momentum uncertainty �pz ��hh=�z can be neglected with
respect to 2�hhk. This approximation is valid for L�	, where L is the size of
the condensate and 	 is the wavelength of the incident radiation. In this limit, we
can introduce creation and annihilation operators for the atoms of a definite
momentum p, i.e. �̂�ð�Þ¼

P
mcmh�jmi, where pjmi¼mjmi (with m¼�1;...;1),

h�jmi¼ð2�Þ�1=2expðim�Þ and cm are bosonic operators obeying the commutation
relations ½cm;c

y

m0 �¼�mm0 and ½cm;cm0 �¼0. The Hamiltonian in this case is [4, 5]

ĤH ¼
X1

n¼�1

n2

�
cyncn þ ig aycyncnþ1 � h:c:

� �� �
��aya ð1Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�=2N

p
is the coupling. The Heisenberg equations for cn and a are:

dcn

d�
¼ �i½cn; ĤH� ¼ �i

n2

�
cn þ gðaycnþ1 � acn�1Þ ð2Þ

da

d�
¼ �i½a; ĤH� ¼ i�aþ g

X1
n¼�1

cyncnþ1: ð3Þ

The source of the field equation (3) is the bunching operator, defined by
B̂B ¼ ð1=NÞ

Ð 2�
0

d��̂�ð�Þye�i��̂�ð�Þ ¼ ð1=NÞ
P

n c
y
ncnþ1. We note that equations (2) and

(3) conserve the number of atoms, i.e.
P

n c
y
ncn ¼ N, and the total momentum,

Q ¼ ayaþ
P

n nc
y
ncn.

Let us now consider the equilibrium state with no probe field and all the atoms
in the same initial momentum state n0, i.e. cn �

ffiffiffiffiffi
N

p
e�in2�=��n;n0 . This is equivalent

to assuming the temperature of the system is zero and all the atoms are moving
with the same momentum n02�hhk, without spread. The system is unstable for
certain values of detuning �. In fact, by linearizing equations (2) and (3) around
the equilibrium state, the only equations depending linearly on the radiation field
are those for cn0�1 and cn0þ1. Hence, in the linear regime, the only transitions
involved are those from the state n0 toward the levels n0 � 1 and n0 þ 1. By
introducing the operators

a1 ¼ cn0�1e
iðn20�=�þ��Þ a2 ¼ cn0þ1e

iðn20�=����Þ a3 ¼ ae�i��; ð4Þ

the atomic field operator reduces to the sum of only three contributions, while
equations (2) and (3) reduce to linear equations for the three coupled harmonic
oscillator operators [6]:

da
y

1

d�
¼ �i��a

y

1 þ
ffiffiffiffiffiffiffiffi
�=2

p
a3

da2

d�
¼ �i�þa2 �

ffiffiffiffiffiffiffiffi
�=2

p
a3

da3

d�
¼

ffiffiffiffiffiffiffiffi
�=2

p
ða

y

1 þ a2Þ; ð5Þ

with Hamiltonian

H ¼ �þa
y

2a2 � ��a
y

1a1 þ i
ffiffiffiffiffiffiffiffi
�=2

p
½ða

y

1 þ a2Þa
y

3 � ða1 þ a
y

2Þa3�; ð6Þ

where �� ¼ �� 1=� and � ¼ �þ 2n0=� ¼ ð!� !s þ 2n0!r=�!rÞ. The dynamics
of the system is that of three parametrically coupled harmonic oscillators [7].
Note that the Hamiltonian (6) commutes with the constant of motion
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N ¼ a
y

2a2 � a
y

1a1 þ a
y

3a3. The exact solution of equation (5) can be obtained using
the Laplace transform [3, 7]. After some algebra we have

a
y

1 ¼ e�i��½g1a
y

1ð0Þ þ g2a2ð0Þ þ g3a3ð0Þ� ð7Þ

a2 ¼ e�i��½h1a
y

1ð0Þ þ h2a2ð0Þ þ h3a3ð0Þ� ð8Þ

a3 ¼ e�i��½ f1a
y

1ð0Þ þ f2a2ð0Þ þ f3a3ð0Þ�; ð9Þ

where the explicit expressions for fi, gi and hi are given in [3], while the initial
values verify the initial conditions for ai. The functions fi, gi and hi are the sum of
three terms proportional to ei	j�, where 	j are the complex roots of the cubic
equations: ð	� �Þð	2 � 1=�2Þ þ 1 ¼ 0. This characteristic equation has either three
real solutions, or one real and a pair of complex conjugate solutions. In the first
case, the system is stable and exhibits only small oscillations around its initial
state. In the second case, the system is unstable and grows exponentially, even
from noise.

The evolution operator Uð�Þ ¼ expð�iH�Þ, where H is given by equation (6),
can be disentangled into those of individual operators [3]. This allows us to calculate
how the state j �i evolves from the vacuum state j0; 0; 0i. The calculation yields

j �i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hn1i
p

X1
n;m¼0


m1 

n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ nÞ!

m!n!

r
jmþ n; n;mi; ð10Þ

where


1 ¼
f1g

�
1

1þ hn1i

2 ¼

h1g
�
1

1þ hn1i
j
1;2j

2 ¼ hn3;2i=ð1þ hn1iÞ: ð11Þ

The state in equation (10) is a fully inseparable three-mode Gaussian state.
Two-mode entangled states between the modes 1 and 2 or the modes 1 and 3

can be obtained for interaction times leading to hn3i � hn1i � hn2i or hn2i �

hn1i � hn3i respectively. In these cases one has

j 1;2i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hn1i
p

X1
n¼0


n2jn; n; 0i; j 1;3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hn1i
p

X1
n¼0


n1jn; 0; ni: ð12Þ

The pure states in (12) are maximally entangled bipartite states, as can be shown
by evaluating the reduced density operators �i ¼ Tr1½�1i�, where �1i ¼ j 1iih 1ij

and i ¼ 2; 3. In fact, in both cases we obtain a thermal state for which the von
Neumann entropy Si ¼ Tr½�i ln �i� is maximum [9]. In general, the presence of the
third mode reduces the entanglement between the other two modes [10]. We also
observe that no two-mode entanglement is possible between states 2 and 3.

In practice, there exist two different regimes of CARL dynamics in which the
initial vacuum state evolves into a two-mode entangled state [3]. In particular,
atom–atom entanglement can be obtained in the limit �� 1 and in a detuned,
not fully exponential regime. On the contrary, in the limit � < 1, atom–photon
entanglement can be obtained when the average occupation number hn2i remains
smaller than one. Recently, the atom–field entanglement of state j 1;3i has been
exploited to suggest an interspecies teleportation protocol between a radiation
beam and a condensate side beam [11].

We have considered so far an ideal optical cavity. In order to have a more
realistic description of the entanglement generation we now want to take into
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account losses from the cavity. The dynamics of the system is described by the
master equation _�� ¼ �i½H; �� þ 2�L½a3��, where 2� is the damping rate and L½a3�

is the Lindblad superoperator L½a3�� ¼ a3�a
y

3 �
1
2
a
y

3a3��
1
2
�ay3a3. The master

equation can be transformed into a Fokker–Planck equation for the Wigner
function Wð
1; 
2; 
3; �Þ. Using the differential representation of the Lindblad
superoperator the Fokker–Planck equation is given by

@W

@�
¼ � u

0TAuþ u
0�TAyu�

� �
W þ u

0TDu
0�W ð13Þ

where

uT ¼ 
�1; 
2; 
3
� �

u
0T ¼

@

@
�1
;
@

@
2
;
@

@
3

� 	

A ¼

i�� 0 �g

0 i�þ g

�g g �

0
B@

1
CA D ¼

0 0 0

0 0 0

0 0 �

0
B@

1
CA: ð14Þ

The solution of the Fokker–Planck is given by the convolution
Wðu; �Þ ¼

Ð
d2u0Wðu0; 0ÞGðu; �;u0; 0Þ where Wðu0; 0Þ is the Wigner function

for the initial state (the vacuum) and the Green function Gðu; t;u0; 0Þ is given by

Gðu; �;u0; 0Þ ¼
1

�3 detQ
expf�ðu� eA�u0Þ

yQ�1ðu� eA�u0Þg: ð15Þ

where

Q ¼

ð�
0

d�
0

eA�
0

DðeA�
0

Þ
y eA� ¼ e�i��

g1 g2 g3
h1 h2 h3
f1 f2 f3

0
@

1
A: ð16Þ

The initial Wigner function is Gaussian and the evolution preserves this character.
The covariance matrix at time � is given by C ¼ Qþ ð1=2Þ expðA�Þ expðAy�Þ. In
order to quantify the detrimental effect of losses we employ the fidelity
F ¼ h �j%j �i between the ideal pure state (10), obtained with an ideal cavity,
and the state %, corresponding to the evolved Wigner function Wðu; tÞ. We have
F ¼ ½detðCþ C Þ�

�1 where C is the covariance matrix for j �i with respect to the
variables u. A systematic numerical study of the fidelity is in progress and results
will be published elsewhere [12]. Here we give a first approximate result calculat-
ing the fidelity F to the first order in time �. For the involved matrices we have
expðA�Þ � Iþ A� and Q � D�. Therefore, for small � we have C � Iþ ½Dþ
1
2
ðAþ Ay þ Aid þ Ay

idÞ�� and F ’ 1� 3��. Notice that these results do not depend
on atomic parameters. Notice also that C ! C for �! 0 and that detðC Þ ¼

1
2

at any time.
In this paper we have analysed the interaction between a Bose–Einstein

condensate and a single-mode quantized radiation field in the presence of a strong
far-off-resonant pump laser. In the so-called linear regime, i.e. for situations where
atomic ground state depletion and saturation of the radiation mode can be
neglected, the generation of atom–atom and atom–field entanglement have been
considered taking into account the effects of cavity imperfections. As a preliminary
result we have suggested fidelity to quantify the detrimental effects of losses.
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