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Abstract. The propagation of a twin-beam state of radiation through
Gaussian phase-sensitive channels, i.e. noisy channels with squeezed fluctuations
is addressed. It is found that squeezing the environment always reduces the
survival time of entanglement in comparison to the case of simple dissipation
and thermal noise. It is also shown that the survival time is further reduced if
the squeezing phase of the fluctuations is different from the twin-beam phase.

1. Introduction
The use of phase-sensitive environments has been addressed by many authors

[1–3] for preservation of macroscopic quantum coherence. In fact, by adding
squeezed fluctuations to dissipation, superpositions of states preserve their coher-
ence longer than in the presence of dissipation alone. A question arises whether or
not phase-sensitive environments may also be used to preserve entanglement. In
this paper, in particular, we study the behaviour of a twin-beam state of radiation
(TWB) propagating through a Gaussian noisy phase-sensitive channel, in order
to investigate whether or not squeezing the environment is useful to preserve
continuous variable entanglement. The answer turns out to be negative. The
survival time of entanglement in a squeezed bath is always smaller than in purely
dissipative or thermal ones, and the degradation is more pronounced the further
the bath fluctuations are out of the TWB phase.

2. TWB in a Gaussian bath
The propagation of a TWB interacting with a general Gaussian environment,

can be modelled as the coupling of each part of the state with a non-zero tem-
perature squeezed reservoir. The dynamics can be described by the two-mode
master equation

d�t
dt

¼ f�ð1þNÞL½a� þ �ð1þNÞL½b� þ �NL½ay� þ �NL½by�

þ �MM½ay� þ �M�M½a� þ �MM½by� þ �M�M½b�g�t; ð1Þ

where �t � �ðtÞ is the system’s density matrix at the time t, � is the damping
rate and N and M are the effective photons number and the squeezing parameter
of the bath respectively (which are assumed to be equal for the two channels).
L[O] is the Lindblad superoperator, L½O��t ¼ O�tO

y � 1
2
OyO�t �

1
2
�tO

yO, and

Journal of Modern Optics ISSN 0950–0340 print/ISSN 1362–3044 online # 2004 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/09500340410001664476

journal of modern optics, 15 april–10 may 2004
vol. 51, no. 6–7, 1057–1061



M½O��t ¼ O�tO� 1
2
OO�t �

1
2
�tOO. Of course, the dynamics of the two modes are

independent of each other.
Using the differential representation of the superoperators in equation (1),

the corresponding Fokker–Planck equation for the two-mode Wigner function
W � Wðx1; y1; x2; y2Þ is given by [4]

@�W ¼ �
X4
j¼1

@xj ajðxÞ þ
1

2

X4
i;j¼1

@2xixj dij

( )
W; ð2Þ

where, for the sake of simplicity, we put x ¼ ðx1; y1; x2; y2Þ � ðx1; x2; x3; x4Þ,
� ¼ �t=� and � ¼ ð2N þ 1Þ�1. In equation (2) ajð x Þ and dij are the matrix elements
of the drift and diffusion matrices Að x Þ and D respectively, which are given by

Að x Þ ¼ �
1

2
� x; ð3Þ

D ¼
1

2

1
2
þ � <e½M� � =m½M� 0 0

� =m½M� 1
2
� � <e½M� 0 0

0 0 1
2
þ � <e½M� � =m½M�

0 0 � =m½M� 1
2
� � <e½M�

0
BBBBBB@

1
CCCCCCA
: ð4Þ

Notice that the drift term is linear in x and the diffusion matrix does not depend
on x. The positivity of D requires that jMj < ð2N þ 1Þ=2. Moreover, to ensure
positivity of the density matrix �t � 0 we need jMj2 � NðN þ 1Þ, which includes
the former condition.

The solution of the Fokker–Planck equation (2) can be calculated analytically.
For the case =m½M� ¼ 0, and considering (without loss of generality) TWB
with real parameter as the initial state, i.e. �0 � �TWB ¼ jTWBiihhTWBj, where
jTWBii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p P
p �

pjpijpi, � 2 R, the solution assumes the simple form [4]

W�ðx1;y1;x2;y2Þ¼
1

ð2�Þ2�1�2�3�4

�exp �
ðx1þx2Þ

2

4�2
1

�
ðy1þy2Þ

2

4�2
2

�
ðx1�x2Þ

2

4�2
3

�
ðy1�y2Þ

2

4�2
4

� �
ð5Þ

where �2
j ¼ �2

j ðr;�; nth; nsÞ, j ¼ 1; 2; 3; 4, are

�2
1 ¼ �2

þe
��t þD2

þðtÞ; �2
2 ¼ �2

�e
��t þD2

�ðtÞ;

�2
3 ¼ �2

�e
��t þD2

þðtÞ; �2
4 ¼ �2

þe
��t þD2

�ðtÞ;
ð6Þ

with �2
� ¼ 1

4
e�2�, � ¼ tanh �, and

D2
�ðtÞ ¼

1þ 2N � 2M

4
1� e��t
� �

: ð7Þ

For the general case (M complex) the analytical solution of equation (2) is quite
cumbersome, and we do not explicitly write it here.

Notice that if we suppose the environment composed of a set of oscillators excited
in a squeezed-thermal state of the form � ¼ Sð	Þ�thS

yð	Þ, with 	 ¼ j	jei
,
Sð	Þ ¼ expf1

2
½	� ay2 � 	 a2�g and �th ¼ ð1þ nthÞ

�1
½nth=ð1þ nthÞ�

aya, then we can
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rewrite the parameters N and M in terms of the squeezing and thermal number
of photons ns ¼ sinh2 j	j and nth respectively.We haveM ¼ jMjei
 [5] and

jMj ¼ 1þ 2 nthð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsð1þ nsÞ

p
and N ¼ nth þ nsð1þ 2 nthÞ: ð8Þ

This parametrization automatically guarantees the semipositivity of �t.

3. Separability
A quantum state of a bipartite system is separable if its density operator can be

written as % ¼
P

k pk�k 	 �k, where { pk} is a probability distribution and � and �
are single-system density matrices. If a state is separable the correlations between
the two systems are of purely classical origin, otherwise it is entangled. A necessary
and sufficient condition for separability of Gaussian states is the positivity of the
density matrix %T, obtained by partial transposition of the original density matrix
(PPT condition) [6–8]. Notice that the Wigner function of a twin-beam is
Gaussian and the evolution in a Gaussian environment preserves such character.
Therefore, we are able to characterize the entanglement at any time and discuss its
degradation as a function of bath’s parameters. The PPT condition for a density
matrix can be rephrased as a condition on the covariance matrix V of the two-mode
Wigner function Wðx1; y1; x2; y2Þ. After defining

: ¼
J 0

0 �J

 !
and J ¼

0 1

�1 0

 !
ð9Þ

and

Vpk ¼ h��p��ki ¼

ð
R

4
d4���p��kWð�Þ; ð10Þ

with ��j ¼ �j � h�ji, and � ¼ fx1; y1; x2; y2g, we have that a state is separable iff

S � Vþ
i

4
: � 0 ð11Þ

For the state (5), the condition (11) can be rewritten as [4]

�2
1�

2
4 �

1

16
; �2

2�
2
3 �

1

16
: ð12Þ

Recall that in this case the squeezing parameter M is real, i.e. it has the same phase
as the TWB parameter (
 ¼ 0). By solving inequalities (12) with respect to time t,
we find that the TWB becomes separable for t > ts, where the survival time
ts ¼ tsð�;�; nth; nsÞ is given by

ts ¼
1

�
log f þ

1

1þ 2nth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ

nsð1þ nsÞ

nthð1þ nthÞ

s !
; ð13Þ

where we have defined

f � f ð�; nth; nsÞ ¼
ð1þ 2 nthÞ 1þ 2 nth � e�2 �ð1þ 2 nsÞ

� �
4 nthð1þ nthÞ

: ð14Þ

As one may expect, ts decreases as nth and ns increase. Moreover, in the limit
ns ! 0, the threshold time reduces to the value t0 pertaining to a non-squeezed
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bath [4]. In order to see the effect of squeezing the bath on the survival time we
introduce the function

Gð�; nth; nsÞ �
ts � t0

t0
: ð15Þ

G > 0 means that squeezing leads to a longer survival time, shorter otherwise.
Results are illustrated in figure 1, where we plot G as a function of ns for different
values of nth and �. Since G is always negative, we conclude that coupling a TWB
with an in-phase squeezed bath destroys entanglement faster than the coupling
with a non-squeezed environment.

We have also evaluated the threshold time for separability in the case of an
out-of-phase squeezed bath, i.e. for complexM ¼ jMj ei
. The analytical expression
is quite cumbersome and will not be reported here. However, in order to
investigate the positivity of S as a function of 
, it suffices to consider the
characteristic polynomial qSðxÞ associated to S, and study the sign of its roots. A
numerical analysis shows that this polynomial has four real roots and three of them
are always positive. We focus our attention on the other one. In figure 2, we plot
the characteristic polynomial for different values of the parameters nth, ns and 
 (we
put e��t ¼ 0:55): it is apparent that by adding thermal noise and squeezed
fluctuations the sign of the smallest root changes from negative (entangled state)

–0.25 0.25 0.5 0.75 1 1.25 1.5 1.75
x

–0.05

0.05

0.1
qS (x)

–0.01 0.01

–0.01

0.01

b

c
d

a
b

d
c

Figure 2. Plots of the characteristic polynomial qSðxÞ associated to S for a TWB
propagating in a non-classical environment with squeezing parameter M ¼ jMj ei
.
We set e��t ¼ 0:55, � ¼ 1, and (a) nth ¼ ns ¼ 0, (b) nth ¼ 0:5, ns ¼ 0, (c) nth ¼ 0:5,
ns ¼ 0:07 and 
 ¼ 0, (d) nth ¼ 0:5, ns ¼ 0:07 and 
 ¼ �=5. Notice that there are always
four real roots and three of them are positive. The inset is a magnification of the
region near to 0: the presence of thermal noise and squeezed fluctuations with non
zero phase reduces the survival time.
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Figure 1. Plots of the ratio G ¼ ðts � t0Þ=t0 as a function of the number of squeezed
photons ns for different values of the TWB parameter � and of the number of thermal
photons nth when M is real. The values of nth are nth ¼ 10�3 (left) and nth ¼ 1 (right),
while the solid lines, from bottom to top, refer to � varying between 0.1 to 1.0 in
steps of 0.15.
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to positive (separable state). In other words, the survival time becomes shorter.
Moreover, in figure 3 we show that increasing 
 from 0 to �=2 the threshold time is
further reduced. The behaviour of the polynomial roots for different values of �
and �t is analogous.

4. Conclusions
In this paper we have analysed the propagation of a TWB through Gaussian

phase-sensitive noisy channels, and have evaluated the threshold (survival) time
for the state to become separable.

We found that the survival time in a squeezed environment is always shorter
than in a purely dissipative or thermal ones. In addition, the survival time is
further reduced if the squeezing phase of the fluctuations is different from the
TWB phase.
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Figure 3. Plots of the characteristic polynomial qSðxÞ associated to S for a TWB
propagating in a non-classical environment with squeezing parameter M ¼ jMj ei
.
This plot shows only the region near to x ¼ 0 (the other three roots are always
positive). We set e��t ¼ 0:55, � ¼ 1, nth ¼ 0:5, ns ¼ 0:07 and, from left to right,

 ¼ 0; �=10; �=5 and �=2: a non-real squeezing parameter of the bath always reduces
the survival time.

Degradation of CV entanglement in a phase-sensitive environment 1061


	first

