
About distillability of depolarized states

ANDREA R. ROSSIyz and MATTEO G. A. PARISy*

yDipartimento di Fisica, Università di Milano, Italia
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Abstract. Reduction criteria for distillability are applied to general depolar-
ized states and an explicit condition is found in terms of a characteristic
polynomial of the density matrix. 3� 3 bipartite systems are analyzed in
some detail.

1. Introduction
Quantum information is mostly based on the use of entanglement, and optimal

performances of quantum protocols are obtained when the parties share maximally
entangled states. However, entanglement is corrupted by the interaction with
the environment, and it becomes crucial to establish whether or not quantum
protocols may be exploited for a given level of environmental noise. Quantum
purification consists [1] in distilling a certain number of maximally entangled
states from a larger number of corrupted states, i.e. sacrificing some copies of the
received state to increase the entanglement of others. Entanglement of partially
corrupted states is only a necessary condition for distillation, bound entanglement
being the entanglement that cannot be distilled [2]. Many sufficient criteria for
distillability have been proposed, the most relevant being the Reduction Criterion
(RC) [3], and the norm-related criterions [4].

In this paper we apply the RC to a generalized class of depolarized states in d
dimensions. First, we briefly review the distillability criterion and introduce a
characteristic polynomial for our class of states. Then we apply our results to 3� 3
bipartite systems and numerically study the distillability.

2. The reduction criterion
We consider d� d bipartite systems. RC for distillability is based on map

theory [3] and states that the negativity of the matrix

�A � I � � � 0; ð1Þ

where � is the systems’ density operator and �A ¼ TrB� is the reduced density
operator, implies the distillability of the original density matrix �. Using RC we
will study the distillability of depolarized states of the form

� ¼ p j ih j þ
1� p

d2
I; ð2Þ
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where j i ¼
P

i aijiii is a generic pure state. We have already considered the
Schmidt’s decomposition of j i and thus, without loss of generality, the ai s are
supposed to be real numbers, with the additional condition

P
i a

2
i ¼ 1 [8].

I ¼
P

i;j jijih jij denotes the d� d identity matrix. Depolarized maximally entangled
states are obtained for j i ¼

P
i

1ffiffi
d

p jiii.
To make the RC (1) of some computational use, we have to explicitly write

down the d2 � d2 dimensional real matrix representing (2). In order to do this we
first find out the Fock representation of (1) if � is given by (2). We have:

�A � I� � ¼
X
i;j

p a2i jijih jij � aiajjiiih jjj
� �

þ
ðd � 1Þð1� pÞ

d2
jijih jij

� �
; ð3Þ

or, in matrix form:

�A � I� � ¼ p

A11 A12 � � � A1d

A21 A22 � � � A2d

..

. . .
. ..

.

Ad1 � � � � � � Add

0
BBBB@

1
CCCCAþ fdð pÞ Id2�d2 ; ð4Þ

where the As are d� d matrices given by

Aii ¼ a2i I�D½i; i �ð Þ; Aij ¼ �aiajD½i; j �; Aji ¼ AT
ij ; ð5Þ

and fdð pÞ ¼ ðd � 1Þð1� pÞ=d2. In equations (5) D½i; j � denotes a matrix which is
zero everywhere except for the ði; jÞ entry, which is one. We are now in a position
to write the characteristic polynomial Pd of the matrix (4) as a product of two terms

Pd ¼ PdðxÞ
Yd
i¼1

fdð pÞ � �þ p a2i
� �d�1

; ð6Þ

where, using the substitution x ¼ fdð pÞ � �, we have

PdðxÞ ¼ xd �
Xd�2

i¼0

d � i� 1ð Þ pd�i Ad
d�i x

i; ð7Þ

with

Ad
k ¼

Xd�k

j¼0

A
d�j�1
k�1 A

d�j
1 �A

d�j�1
1

� �
; Ad

1 ¼
Xd
l¼1

a2l : ð8Þ

Notice that the eigenvalues given by the second factor in (6) are always
positive. Therefore, the sign of Pd is determined by (7). Notice also that in (7)
the term xd�1 is always missing.

2.1. Miscellaneous limits

As a first application we consider the case ai ¼ d�1=2, e.g. when j i is a
maximally entangled state. The polynomial (7) reduces to

PdðxÞjai¼d�1=2 ¼ �
1

dd
ð pþ d xÞd�1

ððd � 1Þp� dxÞ: ð9Þ
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The only relevant eigenvalue is the one given by the last factor of the P
polynomial, namely

� ¼ �
1� d

d2
þ
1� d2

d2
p; ð10Þ

that yields the already known condition [3] p � 1=ðd þ 1Þ for distillability of
depolarized maximally entangled states.

As a second check consider the case of a ðd � jÞ-dimensional maximally
entangled state in a d-dimensional space, i.e. ai ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � jÞ

p
, i ¼ 1; . . . ; d � j

while the remaining j<d coefficients ai are set to zero. In this case it is not
difficult to see that the d-dimensional P polynomial (7) reduces to the ðd � jÞ-
dimensional one

Pd�jðxÞ ¼ �ðd � jÞ�ðd�jÞ
½ pþ ðd � jÞx�d�j�1

½ðd � j � 1Þp� ðd � jÞx�: ð11Þ

The non-trivial root of (11) reads

x ¼ fdð pÞ � � ¼
d � j � 1

d � j
; ð12Þ

leading to the condition

p �
ðd � 1Þðd � jÞ

ðd2 � 1Þðd � jÞ � d j
: ð13Þ

For example, for a 3� 3 system and a state with one zero-coefficient we find that
the distillability is assured for p>4=13. Notice that RC is only a sufficient
condition for distillability and therefore the bound in (13) need not to be a
lower bound. Indeed, for the 3� 3 case considered above the system is also
distillable for p>2=11 [6].

3. The 3T 3 dimensional bipartite system
As a further example we apply this representation to the case of a 3� 3 bipartite

system. In this section, since d is set to 3, we rename A3
i � Bi. Equation (4)

becomes:

�A � I� � ¼ p

0 0 0 0 �a1a2 0 0 0 �a1a3

0 a21 0 0 0 0 0 0 0

0 0 a21 0 0 0 0 0 0

0 0 0 a22 0 0 0 0 0

�a1a2 0 0 0 0 0 0 0 �a2a3

0 0 0 0 0 a22 0 0 0

0 0 0 0 0 0 a23 0 0

0 0 0 0 0 0 0 a23 0

�a1a3 0 0 0 �a2a3 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

þ
2

9
ð1� pÞ I9�9: ð14Þ
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The polynomial (7) now reads:

P3ðxÞ ¼ x3 � ðd � 2Þ p2 B2 x� ðd � 1Þ p3 B3; ð15Þ

with

B2 ¼ a21a
2
2 þ a21a

2
3 þ a22a

2
3; B3 ¼ a21a

2
2a

2
3: ð16Þ

The solutions of (15) are:

x1 ¼ 2 p

ffiffiffiffiffiffi
B3

2

3

r
cos

1

3
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3

2

27B2
3

� 1

s !" #
; ð17Þ

x	 ¼ �p

ffiffiffiffiffiffi
B3

2

3

r
cos

1

3
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3

2

27B2
3

� 1

s !" #(

	
ffiffiffi
3

p
sin

1

3
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3

2

27B2
3

� 1

s !" #)
; ð18Þ

and the nontrivial eigenvalues of (14) are:

�i ¼
2

9
ð1� pÞ � xi ; i ¼ 1;þ;�: ð19Þ

We are now in a position to find out for which values of p at least one (if any) of the

nontrivial eigenvalues is negative. To this end, we switch to spherical coordinates,

setting a1 ! sin � sin�, a2 ! cos � sin�, a3 ! cos�, and plot the minimum value

of p for which (1) is satisfied, as a function of � and �. Doing this for every

eigenvalue (19), we then select the minimum value of p between the three, at any

given point on the plane ð�; �Þ. It turns out that the only contributing eigenvalue is

�1. Our results are plotted in figure 1.
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Figure 1. 3D and contour plots of the minimum p satisfying RC as a function of the
state’s coefficients written in polar coordinates.
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4. Conclusions
In this paper we have explicitly written the characteristic equation coming

from the application of the Reduction Criterion for distillability to a class of one
parameter generalized depolarized d� d bipartite states. The method has been
applied to 3� 3 bipartite systems and the minimum value of the parameter p that
guarantees distillability has been found.
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