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Generalized quantum-classical correspondence for random walks on graphs
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We introduce a minimal set of physically motivated postulates that the Hamiltonian H of a continuous-time
quantum walk should satisfy in order to properly represent the quantum counterpart of the classical random
walk on a given graph. We found that these conditions are satisfied by infinitely many quantum Hamiltonians,
which provide novel degrees of freedom for quantum enhanced protocols, In particular, the on-site energies, i.e.,
the diagonal elements of H, and the phases of the off-diagonal elements are unconstrained on the quantum side.
The diagonal elements represent a potential-energy landscape for the quantum walk and may be controlled by the
interaction with a classical scalar field, whereas, for regular lattices in generic dimension, the off-diagonal phases
of H may be tuned by the interaction with a classical gauge field residing on the edges, e.g., the electromagnetic

vector potential for a charged walker.
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Continuous-time quantum walks (CTQWSs) on graphs are
traditionally defined as the quantum analog of classical ran-
dom walks (RWs) by promoting the classical transfer matrix,
i.e., the RW graph Laplacian, to a Hamiltonian [1-3]. How-
ever, this association does not encompass all the possible
quantum evolutions of a walker on a graph, thus strongly
limiting the set of exploitable quantum Hamiltonians, with
possible negative implications for the estimation of a quan-
tum advantage of CTQWs vs RWs in specific tasks [4—14].
A question thus arises on whether it is possible to define
more general quantum walks on a graph by considering
all Hermitian Hamiltonians compatible with a given graph
topology and how these generalized QWs compare with
their classical analogs. Recently, a chiral quantum walk was
introduced [15-18], showing that complex phases in the
Hamiltonian generator of a CTQW may be exploited to in-
troduce a directional bias in the dynamics. However, without
further justification, the introduction of chiral CTQWs seems
to be a departure from the original spirit of quantum walks.
In particular, no clear and general connection with the clas-
sical RW has emerged for chiral CTQWs so far, and no
interpretation of the new degrees of freedom entailed by Her-
mitian Hamiltonians for chiral CTQWs has been discussed,
although partial common ground has been found through the
definition of quantum stochastic walks [19] and a connec-
tion between classical and quantum random walks was found
for the discrete-time case [20]. Nonetheless, such correspon-
dence is a key requisite to compare the performance of chiral
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quantum walks to classical ones and to establish when they do
provide a speedup for given tasks.

In this work, we shall first put in a rigorous frame-
work the concept of a continuous-time classical random walk
on undirected simple graphs and show that the associated
classical probabilities cannot arise from a unitary quantum
evolution via the Born rule. Having excluded this simplest
equivalence, we proceed by listing a number of reasonable
minimal requests (of topological, algebraic, and probabilis-
tic nature) for correspondence between a RW and a CTQW
on the same graph. We show that these assumptions lead
to a single equation that relates the classical generator L of
bistochastic transformations (the graph Laplacian) to the Her-
mitian quantum generator H. As a special case, we recover
the standard association H = L. However, such an equation
admits infinitely many quantum Hamiltonians as solutions
for a given legit classical generator L, consistent with the
common intuition that any map from classical to quantum
evolutions should be one to many. In particular, the on-site
average energies and the complex phases of the off-diagonal
elements are unconstrained on the quantum side. Therefore,
any classical RW on a graph corresponds to infinitely many
chiral CTQWs whose on-site energies are also arbitrary (an
aspect that has been overlooked so far). It is important to stress
that our correspondence is not meant to represent some form
of classical limit for a quantum process (such as a CTQW), but
rather we aim at identifying, given a chiral CTQW, which is
the most natural classical RW to use as a classical benchmark
when comparing the two evolutions to spot eventual quantum
advantages.

We also provide a physical motivation for these additional
degrees of freedom to appear: the diagonal elements can al-
ways be interpreted as a potential-energy landscape for the
CTQW, in other words, as the interaction with a classical
scalar field, whereas the off-diagonal phases of H arise from
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an interaction of the CTQW with a classical gauge field re-
siding on the edges (for regular lattices in generic dimension).
We are thus able to reinterpret chiral CTQW on lattices as the
Schrodinger equation of the spatially discretized version for
a nonrelativistic particle with minimal coupling to a vector
gauge field.

Let us start by defining the most general continuous-time
quantum walk on a finite graph. We consider a finite-
dimensional Hilbert space H ~ C" with a preferred basis
{1j)}j=1,..,, formed by the localized states on the n distinct
vertices of an undirected, connected simple graph. A Hermi-
tian operator H acting on 7 is the Hamiltonian of a CTQW if
and only if it respects the topology of the graph, that is to
say, if for j # k we have [H]y; = (k|H|j) # 0 if and only
if the vertices j and k are connected by an edge, where we
introduced the matrix H that describes A on the localized
basis. Clearly, very little about the structure of A is actually
specified by the graph itself. If the starting state is a pure,
localized state p, = |j)(j|, it will stay pure under the unitary

A

evolution induced by H:

pit)y = M le™ = i) olL (1)
where |y (1)) = Y j_, o;(t)|k) and

at) = (kle7™j) = [e7M,,. (2)

We would like to find a classical counterpart to the dy-
namics described above. In particular, we are looking for
a classical RW on the same graph. This is described by a
continuous-time Markov chain, whose evolution satisfies a
semigroup structure. In formulas, we seek a continuous family
of stochastic n x n matrices P(¢) with ¢ > 0 acting on the
vector p € R” of probabilities associated with the sites of the
graph, such that

P(t)P(t)) = P +1)

Then there exists an n x n real matrix L that generates this
evolution through

P@t) = 't

Vi, to 2 0. 3

Vi>0. 4)

Again the graph topology will be imposed by the nonzero off-
diagonal elements of the generator L. In Eq. (4), the request
that P(¢) is left stochastic V¢ > 0, which is necessary for a
valid evolution of probabilities, implies that the sum of the
entries in each column of L is zero. Moreover, it is natural
to pick a symmetric L (thus P is bistochastic) to maintain
a clear relation with the undirected, simple graph. Finally,
one can check that positivity of P is satisfied V¢ > 0 if we
impose that all the off-diagonal elements of L are negative,
while the diagonal elements have to be positive to compen-
sate for the vanishing sum of the columns (or rows). This
entire construction will be assumed as the definition of a
classical RW. In the special instance of unweighted graphs,
L is uniquely specified by the topology, and it is the Lapla-
cian matrix of the graph, i.e., L =D — A, where A is the
adjancency matrix and D is the diagonal matrix encoding
the connectivities of each vertex. Going back to quantum,
the unitary evolution of the CTQW induces an evolution
of the probabilities at each vertex of the graph according to
Born’s rule: my;(t) = |ozkj(t)|2, where 7 ;(¢) stands for

the probability of finding the particle on site k at time ¢ if
it is localized at site j at time zero, and it should not be
interpreted, a priori, as a standard transition matrix in the
sense of Eq. (3). Indeed, while it is true that if the initial state
Py is diagonal, py =Y j p;-)l J¥{Jjl, then p evolves according
to pr(®) =" j k) (t),o;), this is no longer true at intermediate
times or if the initial state is coherent in the localized basis. In
fact, we shall now show that the semigroup structure of Eq. (3)
can never be fulfilled by the quantum probabilities computed
according to the Born rule. Indeed, we are looking for a real
n x n matrix L fulfilling the equality

e = lle™ ;> Ve=o. (5)

Expanding both sides to first order in ¢, we deduce
— thj = —il(Hjj — H;)Sjk.

Since H is Hermitian, H;; — H Jfkj = 0, and the equation above
can be satisfied if and only if L = 0 as a matrix.

On the other hand, we do know a way to associate a
RW to a CTQW: just take L = H and forget about the Born
rule. Classical probabilities will evolve according to Eqs. (3)
and (4), while the quantum dynamics is independently speci-
fied by Egs. (1) and (2).

However, there are a few objections to this simpler ap-
proach. First, imposing L = H forces H to be real, not a
natural request for a Hamiltonian: this points to the fact that a
classical-to-quantum correspondence should be one to many;
therefore, some further structure is required to specify all the
Hermitian Hamiltonians associated with the given classical
generator L. Second, it is a rather arbitrary and artificial way
to define the quantum-classical correspondence, with no phys-
ical motivation, and many other correspondences could exist
(although we have just excluded that based on the Born rule).

We shall address these issues and find a generalized
quantum-classical correspondence for continuous-time ran-
dom walks. We start by stating reasonable requests to
be fulfilled by any equation linking a Laplacian matrix
L € Mat(n, R) and a generic Hermitian Hamiltonian H €
Mat(n, C) that describe a RW and a CTQW, respectively, on
the same undirected, simple graph with n vertices (T denotes
topological requests, A is for algebraic, and P is for proba-
bilistic):

Condition T0. By definition of continuous-time quantum
and classical random walks, both H and L should preserve
the topology of the underlying physical system; therefore the
equation must enforce that L, # 0 iff Hj # 0 (j # k).

Condition Al. Given H, the equation must admit a unique
solution for L with Zj Lyj = 0Vk, so that it is a valid Lapla-
cian matrix of a (possibly weighted) graph.

Condition A2. The correspondence should reproduce the
simple association L = H whenever H is already a Laplacian
matrix of an unweighted graph. This is necessary to be con-
sistent with the existing literature on nonchiral CTQWs, and
it is also a consequence of TO.

Condition P3. In compliance with the probabilistic in-
terpretations of quantum mechanics and classical stochastic
processes, respectively, the off-diagonal terms of H should be
interpreted as transition amplitude rates, while (the negative
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of) those of L should be the corresponding transition proba-
bility rates.

Condition P4. Given H, the diagonal term of the solution
L of the equation should maintain the meaning of total proba-
bilities of leaving the corresponding sites.

In general, for j # k, Hjx € C, and Lj; € R. Then Condi-
tion TO suggests

Lix = —|Hl% (6)

which also satisfies P3 for the off-diagonal terms. Conditions
P4 and A1 for the diagonal terms may be jointly enforced by

n
Lij =Y |H;[* = (IAj) — GIALH. (7)
S#EJ

Condition A2 is also satisfied since one can immediately
check that [L?] ik — (Li ]_)2 = L; (to be read as a self-
consistency equation for the matrix elements of L) whenever
H is a Laplacian and the simple identification L = H is recov-
ered. Alternative definitions, e.g., Ly; = —|Hj|" with n # 2,
would satisfy TO and A2 and possibly Al, but they would
unavoidably violate P3 and P4. Indeed, the choice n = 2 is
naturally suggested by the Born rule at the level of transition
rates: the classical rate of transition should be the square mod-
ulus of the corresponding transition amplitude. In compact
form the sought equation is

(Ll = [H?1;;8 — HjHy;. ®)

As stated by this expression, there are many CTQWs cor-
responding to the same RW: the moduli of the off-diagonal
entries of H are fixed to the square root of the moduli of the
corresponding off-diagonal elements of L, whereas the phases
are completely free. The diagonal elements of H, i.e., the
on-site energies of the vertices, are also unconstrained: from a
physical point of view, they do not possess a classical analog
because the corresponding classical system is open and energy
is not conserved. Conversely, by Eq. (8) the diagonal elements
of L are fixed to be the quantum fluctuations of the energy of
each site, which are also equal to the total probability of escap-
ing each site, analogous to the connectivity for a Laplacian.
We have thus found all possible quantum walks associated
with an arbitrary classical random walk on a given graph,
assuming the minimal and reasonable requests detailed above.
As shown in the Supplemental Material [21], Eq. (8) may be
also derived by adding a decoherence term with respect to the
energy eigenbasis to the von Neumann evolution equation of
a chiral CTQW on a graph, thus adding physical intuition to
the formal consistency implied by Conditions T0-P4.

The possibility of choosing complex off-diagonal entries in
the Hamiltonian H accounts for chirality [15,18], i.e., asym-
metry under the time-reversal transformation + — —t. We
shall then keep calling chiral quantum walks all the general-
ized CTQWs compatible with a given L through Eq. (8), even
if they are more general than the original definition, since the
diagonal terms are also unconstrained. Concerning classical
RWs, instead, time reversal is not meaningful because e~ is
guaranteed to be a stochastic matrix only if # > 0, and this is
directly related to the irreversible dynamics of classical RWs.
We deduce that, whenever H is real, the quantum-classical
comparison is unambiguous under time reversal: there is just

one possible choice of time direction for the classical walk,
and both choices for the quantum walk are equivalent. In
contrast, when H is complex the quantities |(k|e~#"|j)|? are
not, in general, symmetric under + — —¢, and a possible am-
biguity in the quantum-classical comparison arises. This is
resolved when considering all possible Hamiltonians H that
are compatible with a given L according to our rule, Eq. (8).
Indeed, if we choose freely the phases of the off-diagonal
entries of H, we can accommodate both time directions, while
the diagonal entries can always be taken to be positive by
shifting H by a multiple of the identity.

Overall, given an undirected unweighted simple graph with
N vertices and E edges, L is completely fixed by the topology,
and the number of free real parameters of Hamiltonians H
compatible with Lis N + E — 1, of which N — 1 are positive
but unbounded real numbers d; for j =1,...,N —1and E
are phases ¢'% with ¢ € [0,27) and k =1, ..., E. Despite
the fact that all these parameters will contribute nontrivially to
the unitary quantum evolution operator ¢~H1 not all of them
affect the evolution of transition probabilities between sites.
This is best understood by considering a change in basis that
sends localized states to localized states, without changing
their labels:

1) = 1) =€) )
(IHIK) =[Hlj + [Hlz = “"“OH],  (10)

where H is the Hamiltonian matrix in the transformed basis.
Physical quantities will not be affected: we can profit from
this change in basis to cancel some of the phases in H at
the cost of changing relative phases in superposition states
to keep all basis-independent quantities unaltered. However,
if we restrict ourselves to transition probabilities between
sites such as 7y (t) = |(k|e~""| j)|* and functions thereof, we
can neglect the overall phases of the transformed initial and
final states. This means that, as far as m;;(t) are concerned,
N — 1 phases of H will be redundant. Indeed, consider the
unitary transformation U,(a) = diag(e™, ..., ¢®), where o
is an N-dimensional real vector that encodes the phases which
describe the transformation. The Hamiltonian will change
according to H = U, () - H - Uy(a); therefore, only N — 1 of
the components of « actually change H, while an overall phase
can always be factored out. Consequently, the number of free
parameters in H that actually affect the evolution of on-site
probabilities is N + (E — N + 1) — 1 = E, which is just the
number of edges. A fuller description of gauge degrees of
freedom for chiral CTQW can be found in [22].

To provide physical intuition for the phase degrees of
freedom, we remark that the idea of compensating for a
local change in phase in the wave function by changing
some parameters in the Hamiltonian reminds us of local
gauge invariance with gauge group U(1), i.e., of a coupling
between a charged particle described by the wave function
and a classical Abelian gauge field. Indeed, we will now
argue that the most general unweighted chiral CTQW on a
regular lattice and in any dimension may be interpreted as the
discretization of the nonrelativistic Schrodinger equation for a
scalar charged particle coupled to a classical electromagnetic
field. Let us consider a latfice, i.e., an infinite graph which
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tiles periodically a d-dimensional Euclidean space. If the
graph is regular (each vertex has the same connectivity), then
the lattice is called regular too. Since we are interested in
linking quantum walks on lattices to discretized Schrédinger
equations in a d-dimensional space, we require that all the
edges have the same weight, reflecting the idea that, apart
for the effect of potentials, the transition amplitudes between
nearby points in an empty Euclidean space should just depend
upon the absolute distance between them. We will refer to a
chiral, unweighted QW on a regular lattice as a homogeneous
(continuous-time) quantum walk, and they are our natural
candidates to interpret as spatial discretizations of quantum
theories in Euclidean spaces.

Let us start by considering the simple scenario of an
infinite two-dimensional (2D) square lattice. Referring to
some arbitrary vertex, we can label each point with a pair
of integers (n,m) € Z?, and the corresponding localized
state will be |1, m). We will denote by W,, ,,(¢) = (n, m|\W(¢))
the amplitude of the walker at time 7 to be found at site
(n,m) and by W(z) the vector of the amplitudes over all
the sites of the lattice. It is also convenient to explicitly
write the rate y that governs the time evolution, so
that the Schrodinger equation is symbolically written as
(h=1) i =yH-V¥. The most general Hamiltonian
matrix H for a CTQW on this lattice will be an infinite,
sparse matrix specified by the following entries [23]:
2P, q\H |n, m) = [4 + d(n, )18, n8¢,m — explifi(p — 1, )]
8p,n+18q,m - CXP[—ifx(P, q)]ap,nflsq,m - eXP[ify(Pa q— 1)]
Sp,n(sq,erl - exp[—iﬂ~(l7» Q)](Sp,naq,mfla where (Sp,n is the
Kronecker delta and fi(n, m), fy(n,m), and d(n,m) are
real-valued functions of the site positions. Now let a be the
lattice spacing, which can be assumed to be the same in all
directions without loss of generality. By exploring all possible
scaling laws of the functions f;, f,, and d with a, a slight
variation of an argument by Feynman [24] shows that the
only nontrivial continuous limit (¢ — 0) of this model leads
to a Hamiltonian operator ﬁc.()_c) of the following form (see
the Supplemental Material):

H.()W(x) = K[V —iF@PVY@) + U@W@), (1)

where now x € R?, U (x) = yd(x), K = lim,_ga’y, F(x) =
limg—o 2(fi(x), £y(x)), and d(x), f;(x), f;(x) are the con-
tinuum generalizations of d(n, m), fi(n, m), and f,(n, m),
respectively. The existence of all these limits is a prerequisite
to find a nontrivial theory as a — 0. We can now restore 7
and write U (x) = gV (x), F(x) = gA(x), and K = % in order
to arrive at the standard nonrelativistic Schrodinger equation
for a scalar particle with mass m and charge ¢ in the presence
of an electromagnetic field:

2
ih i‘I’(J_C) = —h—[V — igA@)PW() + gV (@)W(x), (12)
ot 2m

where A(x) is the vector potential and V(x) is the scalar
potential. The derivation can be readily generalized to cubic
lattices by introducing the appropriate vector potential A(x)
with suitable discretizations of the Laplacian [25], and it
shows that chiral CTQWSs on regular lattices, despite being
the most general of their kind, are, in fact, always equivalent to
discretizations of the Schrodinger equation for a scalar parti-

cle in the presence of an electromagnetic field, also suggesting
a practical implementation for chiral QWs. The reasoning can
also be inverted to deduce the form of the phases f(n, m)
from a given vector potential. The result is known as Peierls
substitution [26-30], and in our case for a d-dimensional
cubic lattice it reduces to fj(x) = ¢ fy A(r(t))dt, where y :
t €[0,1] — R is a path from x € Z to x + ae; and ¢; is
the versor in the jth direction. Note that this is consistent with
F(x) = gA(x) = lim,_,¢ % f(x) via the integral mean value
theorem.

Finally, let us return to gauge invariance. For the 2D square
lattice, for each vertex we can cancel the phase of one link at-
tached to it by a phase rotation of the corresponding localized
state; therefore, we can always set f,(n,m) =0Vn,m € 72,
for example. The discretized magnetic field is then given by
B(n,m) =[f,(n+1,m)— fy(n —1,m)]/2a [31], assuming
a symmetric discrete derivative. B(n, m) should be understood
as the component of the magnetic field at position (n, m) in the
orthogonal direction to the plane. As an example, assuming a
constant B such that f,(n, m) = nB, the spectrum of the corre-
sponding H as a function of the parameter B is the Hofstadter
butterfly [30]. However, our result is much more general since
it can be stated in any dimension and for any choice of the
gauge field and, correspondingly, of the magnetic field. It also
offers a nice interpretation of the chiral behavior of chiral
CTQWs: in the presence of magnetic fields, the dynamics of
a charged particle can be directional and asymmetric under
time reversal. Going beyond regular lattices, consider now a
planar graph, which has an unambiguously defined number of
faces [32] F. By Euler’s formula V — E 4+ F = 2. Since the
number of loops is just L = F — 1, we deduce that the number
of gauge-invariant phases on a planar graphis E —V 41 =
L. This has a clear physical interpretation in terms of magnetic
fields: up to gauge transformations, the chiral Hamiltonian of
a CTQW on a planar graph is fully specified by the scalar
potential and the fluxes of the magnetic field through all its
loops.

In conclusion, we have put forward a minimal set of phys-
ically motivated postulates that a CTQW Hamiltonian should
satisfy to properly describe the quantum counterpart of a
classical RW on a graph. We found that these conditions
are satisfied by infinitely many quantum Hamiltonians and
that any classical RW on a graph corresponds to infinitely
many chiral CTQWs whose on-site energies are also arbitrary.
Our results provide a full characterization of the additional
quantum degrees of freedom, available to achieve a quantum
advantage of CTQWs vs RWs in specific tasks. We also found
how to control and manipulate these additional degrees of
freedom for a charged walker. The diagonal elements may
be determined by the interaction with a classical scalar field,
whereas, for regular lattices in generic dimension, the off-
diagonal phases may be tuned with a classical gauge field
residing on the edges.

As an outlook on future developments, it could be re-
warding to investigate how the additional degrees of freedom
described in the present work could affect the quantum advan-
tage of CTQWs over their classical counterparts (see [33]) and
also to better identify the limits of the magnetic field model
for chiral CTQW on nonplanar graphs, where the number of
independent loops is not so well defined, in general.
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