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Abstract
We address the non-Gaussianity (nG) of states obtained by weakly perturbing
a Gaussian state and investigate the relationships with quantum estimation.
For classical perturbations, i.e. perturbations to eigenvalues, we found that the
nG of the perturbed state may be written as the quantum Fisher information
(QFI) distance minus a term depending on the infinitesimal energy change,
i.e. it provides a lower bound to statistical distinguishability. Upon moving on
isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides
with a proper distance in the Hilbert space and exactly quantifies the statistical
distinguishability of the perturbations. On the other hand, for perturbations
leaving the covariance matrix unperturbed, we show that nG provides an upper
bound to the QFI. Our results show that the geometry of non-Gaussian states
in the neighbourhood of a Gaussian state is definitely not trivial and cannot be
subsumed by a differential structure. Nevertheless, the analysis of perturbations
to a Gaussian state reveals that nG may be a resource for quantum estimation.
The nG of specific families of perturbed Gaussian states is analysed in some
detail with the aim of finding the maximally non-Gaussian state obtainable
from a given Gaussian one.

PACS numbers: 03.65.Ta, 03.67.−a, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-Gaussianity (nG) is a resource for the implementation of continuous variable quantum
information in bosonic systems [1]. Several schemes to generate non-Gaussian states from
Gaussian ones have been proposed, either based on nonlinear interactions or on conditional
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measurements [2–25]. In many cases the effective nonlinearity is small, and so it is the
resulting nG. It is thus of interest to investigate the nG of states in the neighbourhood of a
Gaussian state, i.e. the nG of slightly perturbed Gaussian states. Besides the fundamental
interest [26], this also provides a way to assess different de-Gaussification mechanisms, as
well as nG itself as a resource for quantum estimation. Indeed, in an estimation problem
where the variation of a parameter affects the Gaussian character of the involved states, one
may expect the amount of nG to play a role in determining the estimation precision.

Quantum estimation deals with situations where one tries to infer the value of a parameter
λ by measuring a different quantity X, which is somehow related to λ. This often happens
in quantum mechanics and quantum information where many quantities of interest, e.g.
entanglement [27, 28], do not correspond to a proper observable and should be estimated
from the measurement of one or more observable quantities [29]. Given a set {"λ} of quantum
states parametrized by the value of the quantity of interest, an estimator λ̂ for λ is a real function
of the outcomes of the measurements performed on "λ. The quantum Cramer–Rao theorem
[30–33] establishes a lower bound for the variance Var(λ) of any unbiased estimator, i.e. for the
estimation precision, Var(λ) ! (MH(λ))−1 in terms of the number of measurements M and the
so-called quantum Fisher information (QFI), which captures the statistical distinguishability
of the states within the set. Indeed, the QFI distance itself is proportional to the Bures distance
d2

B("1, "2) = 2[1 − F("1, "2)], F("1, "2) = Tr[
√√

"1"2
√

"2] being the fidelity between
states corresponding to infinitesimally close values of the parameter, i.e. in terms of metrics,
H(λ) = 4 gλ = 2

∑
nm("n + "m)−1 |〈ψm|∂λ"λ|ψn〉|2 where d2

B("λ+dλ, "λ) = gλ dλ2, and we
have used the eigenbasis "λ =

∑
n "n|ψn〉〈ψn|.

2. Gaussian states and a measure of non-Gaussianity

Let us consider a single-mode bosonic system described by the mode operator a with
commutation relations [a, a†] = 1. A quantum state " is fully described by its characteristic
function χ ["](λ) = Tr[" D(λ)] where D(λ) = exp{λa† − λ∗a} is the displacement operator.
The canonical operators are given by q = (a + a†)/

√
2 and p = (a − a†)/

√
2i with

commutation relations given by [q, p] = i. Upon introducing the vector R = (q, p)T ,
the covariance matrix σ" and the vector of mean values X" of a quantum state " are defined
as σkj = 1

2 〈RkRj + RjRk〉" − 〈Rj 〉"〈Rk〉" and Xj = 〈Rj 〉", where 〈O〉" = Tr[" O] is the
expectation value of the operator O on the state ". A quantum state is said to be Gaussian if
its characteristic function has a Gaussian form. Once the CM and the vectors of mean values
are given, a Gaussian state is fully determined.

The amount of nG δ["] of a quantum state " may be quantified by the quantum relative
entropy [34] S("‖τ") = Tr["(log " − log τ )] between " and its reference Gaussian state
τ", which is a Gaussian state with the same covariance matrix σ as ". As for its classical
counterpart, the Kullback–Leibler divergence, it can be demonstrated that 0 " S("‖τ ) < ∞
when it is definite, i.e. when supp " ⊆ supp τ . In particular, S("‖τ") = 0 iff " ≡ τ" [35, 36].
Since τ" is Gaussian Tr[(τ" − ") log τ"] = 0, i.e. S("‖τ") = S(τ") − S("), we may write
δ["] = S(τ") − S(") where S(") = −Tr[" log "] is the von Neumann entropy of ". Finally,
since the von Neumann entropy of a single-mode Gaussian state may be written as h(

√
det σ")

where h(x) = (x + 1
2 ) log(x + 1

2 )) − (x − 1
2 ) log(x − 1

2 ) we have

δ["] = h
(√

det σ"

)
− S("). (1)

A generic single-mode Gaussian state may be written as τ = US ν U
†
S where US is a

symplectic operation, i.e. a unitary US = exp (−iH) resulting from a Hamiltonian H at most
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quadratic in the field operators, and ν is a chaotic (maximum entropy) state with nν = Tr[ν a†a]
average thermal quanta, i.e. ν =

∑
k pk|k〉〈k|, pk = nk

ν/(1 + nν)
1+k in the Fock number basis.

3. Classical perturbations to a Gaussian state

An infinitesimal perturbation of the eigenvalues pk of a Gaussian state τ , i.e. pk → pk + dpk

results in a perturbed state " =
∑

k(pk + dpk)US |k〉〈k|U †
S which, in general, is no longer

Gaussian. Since the nG of a state is invariant under symplectic operations we have δ["] = δ[η],
where η = U

†
S" US =

∑
k(pk+dpk)|k〉〈k| is diagonal in the Fock basis. The Gaussian reference

τη of η is a thermal state with nη = nν + dn =
∑

k k (pk + dpk) average quanta and the nG
may be evaluated upon expanding both terms in δ[η](= δ["]) up to the second order,

δ["] =
∑

k

dp2
k

2pk

− dn2

2nν(1 + nν)
. (2)

The nG of perturbed states is thus given by the sum of two contributions. The first term is the
Fisher information of the probability distribution {pk}, which coincides with the classical part
of the Bures distance in the Hilbert space. The second term is a negative contribution expressed
in terms of the infinitesimal change of the average number of quanta. When travelling on
surfaces at constant energy the amount of nG coincides with a proper distance in the Hilbert
space and, in this case, it has a geometrical interpretation as the infinitesimal Bures distance.
At the same time, since Bures distance is proportional to the QFI one, it expresses the statistical
distinguishability of states, and we conclude that moving out from a Gaussian state towards
its non-Gaussian neighbours is a resource for estimation purposes. Similar conclusions can be
made when comparing families of perturbations {dp} corresponding to the same infinitesimal
change of energy dn2: in this case the different amounts of nG induced by the perturbations
are quantified by the Bures distance minus a constant term depending on dn2 and the initial
thermal energy nν , i.e. the initial purity µ ≡ Tr["2] = Tr[τ 2] = (2nν + 1)−1. We summarize
the above statements in the following.

Theorem 1. If τλ is a Gaussian state and an infinitesimal variation of the value of λ drives it
into a state "λ+dλ with the same eigenvectors, then the QFI distance is equal to the nG δ["λ+dλ]
plus a term depending both on the infinitesimal variation of energy dn2 and on the initial
purity

H(λ) dλ2 = δ["λ+dλ] +
2µ2 dn2

1 − µ2
.

In particular, for perturbations that leave the energy unperturbed, the nG of the perturbed
state coincides with the QFI distance, whereas, in general, it provides a lower bound.

3.1. Examples of finite perturbations

In order to explore specific directions in the neighbourhood of a Gaussian state τ , let us write
the perturbation to the eigenvalues as dpk = εµk where {µk} is a given distribution. In this
case the nG of the perturbed state is given by

δ["] = ε2

(
∑

k

(pk − µk)
2

2pk

−
,n2

µ

2nt (1 + nt )

)

+ O(ε3), (3)

where ,nµ =
∑

k(pk − µk)〈k|a†a|k〉. Let us now consider the families of states generated
by the convex combination " = (1 − ε)τ + ε"µ of the Gaussian states τ with the target state
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Figure 1. Non-Gaussianity δ[η] as a function of the energy of the target state nµ, with nt = 4 and
for different values of ε = 0.3, 0.7, 0.9 (red, green and blue, respectively) for Poissonian target
(upper-left panel), thermal (upper right) and Fock (lower left). The lower-right panel shows the
nG δ[η] as a function of ε, with nµ = nt = 4 and for the convex combination with a Poissonian
(red) and a Fock (blue) state. Dashed lines correspond to the expansion of nG at the second order
in ε, as obtained in equation (3) for the corresponding perturbations.

"µ =
∑

k µkUS |k〉〈k|U †
S , which itself is obtained by changing the eigenvalues pk of the initial

Gaussian state to µk . Again we exploit invariance of δ["] under symplectic operations and
focus attention to the diagonal state η = U

†
S "US = (1−ε)η+ε ηµ which has the same nG of ".

This is the generalization to a finite perturbation of the analysis reported in the previous section,
and it is intended as a mean to find the maximally non-Gaussian state obtainable starting from
a given Gaussian. The nG of this kind of states can be written as δ[η] = S(τη) − S(η) =
h[nη + 1/2] − H [q(ε)], where H [q(ε)] = −

∑
k q

(ε)
k log q

(ε)
k denotes the Shannon entropy of

the distribution q
(ε)
k = (1 − ε)pk + εµk and nη = Tr[η a†a] = (1 − ε)nt + ε nµ is the average

number of quanta of η. Note that for a thermal state with nt quanta we have H [p] = h[nt +1/2].
Using the concavity of the Shannon entropy we obtain an upper bound for the nG

δ[η] " h[nη + 1/2] − h[nt + 1/2] + ε(h[nt + 1/2] − H [µ]). (4)

In particular, if the two distributions have the same number of quanta, nµ = nt , and thus
nt = nη, the bound on δ[η] only depends on the difference between the entropy of the initial
and target distributions.

Let us now consider perturbations towards some relevant distributions, i.e. Poissonian

µ
(p)
k = nk

µ

k! e−nµ , thermal µ
(t)
k , and Fock µ

(d)
k = δk,nµ

and evaluate the nG of states obtained as
a convex combination of a thermal state with nt quanta and a diagonal quantum state with a
Poissonian, thermal or Fock distributions and nµ quanta.

In figure 1, we plot the nG of the convex combination " as a function of nµ for different
values of ε: if we consider the convex combination with a Fock state, the nG simply increases
monotonically with the energy of the added state. For combinations with Poissonian and
thermal distributions, we have a maximum for nµ → 0; then a local minimum (which for the
thermal distribution corresponds trivially to δ["] = 0) for nµ = nt , and then the nG increases
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again for higher values of nλ. This implies that in order to increase nG the best thing to do is to
perturb the initial Gaussian either with a highly excited state nµ + 1 or with the vacuum state
|0〉〈0|. If we choose n" = nµ = nt we know from equation (2) that nG for small perturbations
is equivalent to the Bures infinitesimal distance between the two probability distributions µk

and pk. In figure 1 (lower-right panel), we show the nG as a function of ε: as is apparent
from the plot, the nG obtained by adding a Fock state is always much larger than the one for
a Poissonian profile. We observe that in the latter case, the expansion at the second order
obtained in equation (3) is still accurate for values of ε approaching 1, while it fails to be
accurate for ε # 0.2 for a Fock state, becoming an upper bound on the exact amount of nG.
We have also investigated what happens by considering a target distribution randomly chosen
on a finite subspace of the infinite Hilbert space: again we have obtained that, at fixed energy
of the target state, perturbing with a Fock state yields the biggest increase of nG. This may be
easily generalized to a system of d bosonic modes, where the most general Gaussian state is
described by d(2d + 3) independent parameters.

4. Perturbations at a fixed covariance matrix

Gaussian states are known to be extremal states at a fixed covariance matrix for several
relevant quantities, e.g. channel capacities and entanglement measures [37]. Therefore, one
may wonder whether perturbing a Gaussian state at a fixed covariance matrix may be quantified
in a convenient way for the purposes of quantum estimation. This indeed is the case: the
nG provides an upper bound to the QFI distance at a fixed covariance matrix and thus have
an operational interpretation in terms of statistical distinguishability. This is more precisely
expressed by the following theorem [1].

Theorem 2. If τλ is a Gaussian state and an infinitesimal variation of the value of λ drives
it into a state "λ+dλ with the same covariance matrix, then the nG δ["λ+dλ] provides an upper
bound to the QFI distance

H(λ) dλ2 " δ["λ+dλ].

Proof. If "λ+dλ and τλ have the same CM, then the nG of "λ+dλ, δ["λ+dλ] = S("λ+dλ||τλ) =
H̃ (λ) dλ2, where the so-called Kubo–Mori–Bogolubov information H̃ (λ) [32, 38] provides
an upper bound for the QFI H(λ) " H̃ (λ) [39], thus proving the theorem. $

The above theorem says that a larger nG of the perturbed state may correspond to a greater
distinguishability from the original one, thus allowing a more precise estimation. Of course,
this is not ensured by the theorem, which only provides an upper bound to the QFI. One
may wonder that when "λ+dλ is itself a Gaussian state the theorem requires H(λ) = 0, i.e.
no reliable estimation is possible. Indeed, this should be the case since Gaussian states are
uniquely determined by the first two moments, and thus the requirement that the perturbed
τλ+dλ and the original state τλ are both Gaussian and have the same covariance matrix implies
that they are actually the same quantum state.

5. Conclusions

In conclusion, we have addressed the nG of states obtained by weakly perturbing Gaussian
states and have investigated the relationships with quantum estimation. We found that nG
provides a lower bound to the QFI distance for classical perturbations, i.e. perturbations
to eigenvalues leaving the eigenvectors unperturbed, and an upper bound for perturbations
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leaving the covariance matrix unperturbed. For situations where the CM is changed by the
perturbation, we have no general results. On the other hand, it has already been shown
that non-Gaussian states improve quantum estimation of both unitary perturbations as the
displacement and the squeezing parameters [40] and nonunitary ones as the loss parameter of
a dissipative channel [41]. Overall, our results show that the geometry of non-Gaussian states
in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a
differential structure. Despite this fact, the analysis of perturbations to a Gaussian state may
help in revealing when, and to which extent, nG is a resource for quantum estimation. We
have also analysed the nG of specific families of perturbed Gaussian states with the aim of
finding the maximally non-Gaussian state obtainable from a given Gaussian one.
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