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Atomic clock interferometers are a valuable
tool to test the interface between quantum the-
ory and gravity, in particular via the measure-
ment of gravitational time dilation in the quan-
tum regime. Here, we investigate whether
gravitational time dilation may be also used
as a resource in quantum information theory.
In particular, we show that for a freely falling
interferometer and for a Mach-Zehnder inter-
ferometer, the gravitational time dilation may
enhance the precision in estimating the grav-
itational acceleration for long interferometric
times. To this aim, the interferometric mea-
surements should be performed on both the
path and the clock degrees of freedom.

1 Introduction
Quantum mechanics changed the way we look at the
physical world, and in the last two decades, quan-
tum features of physical systems have also become
a resource in different branches of technology [1, 2].
In particular, when metrology met quantum mechan-
ics, an entire class of novel features were made avail-
able to improve precision of physical measurements,
and to conceive novel quantum-enhanced protocols to
characterize signals and devices [3–5]. Relativity too
changed the paradigms of physics, and found relevant
technological applications [6]. A question thus arises
of whether relativistic and quantum mechanical fea-
tures may be jointly exploited to improve precision of
physical measurements.

In this paper, we follow this idea and prove that
a paradigmatic relativistic feature, gravitational time
dilation, may indeed represent a resource that can
be used together with quantum superpositions to im-
prove precision in the estimation of the gravitational
constant, or of its variations.
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Concretely, this enhancement can be realised in an
experiment by employing quantum clocks. Quantum
clocks have been studied as a tool to probe the in-
terface between quantum theory and general relativ-
ity [7–15]. For instance, using a quantum clock in an
interferometric setup leads to a loss of visibility due
to general relativistic proper time [16]. From a foun-
dational perspective, quantum clocks have been stud-
ied in connection with gravitational decoherence [17],
shown to set limits to the measurability of space-
time intervals [18–20], and to give rise to a relative
time-localisation of events in the presence of indefi-
nite causal order [21, 22]. In addition, quantum clocks
have been used to propose generalisations of special
and general relativistic proper time [23–27], as well as
a quantum version of the Einstein Equivalence Prin-
ciple [28–31].

More generally, the fascinating interface between
relativistic effect and quantum metrology has been
explored in the last decade [32, 33], e.g. to improve
quantum measurement technologies [34, 35] and to
characterize noninertial effects [36, 37].

In this paper, we focus on using relativistic fea-
tures to improve the precision of gravitational mea-
surements. In particular, we prove that gravitational
time dilation may be used to enhance the estima-
tion of the gravitational constant. To the best of
our knowledge, the metrological enhancement due to
quantum clocks in an interferometric setup has not
been studied before.

The paper is structured as follows. In the next sec-
tion, we establish notation and address the dynamics
of a massive quantum clock in a gravitational field.
In Section 3, we study the dynamics of a quantum
clock when it traverses a freely falling interferometer,
whereas in Section 4 we address the specific case of
an atom propagating in a Mach-Zehnder interferome-
ter. Section 5 closes the paper with some concluding
remarks.
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2 Massive quantum clock in a gravita-
tional field
In this section, we review the Hamiltonian formula-
tion of the dynamics of an atomic clock in the grav-
itational field of the Earth. Following [17], we begin
with a classical description, which we then quantize.

A quantum clock is usually modelled as an atom
with internal degrees of freedom. The full dynamics
of a composite quantum particle in an arbitrary grav-
itational field is very complicated, but for the pur-
poses of this work it is enough to consider the limit
of weak gravitational field, non-relativistic velocities,
and small accelerations. We treat the atom as point-
like, with the relevant degrees of freedom, which are
assigned a quantum state, being its center of mass and
its internal structure (clock degrees of freedom). For
a discussion of composite systems in a gravitational
field, see Ref. [38].

For a quantum clock moving vertically in the Earth
gravitational field, and with the latter expressed in
polar coordinates, the angular component of the met-
ric does not contribute to the dynamics. Hence, the
metric can be written in a 1+1 formulation, where to
our order of approximation

g00(x) = 1 + 2VN (x)
c2

,

g01(x) = g10(x) = 0,

g11(x) = −
(

1− 2VN (x)
c2

)
,

(1)

and VN (x) is the Newtonian potential. Here, we have
chosen the coordinate system of an observer comov-
ing with a laboratory situated on the surface of the
Earth. In these coordinates, the relativistic dispersion
relation of the clock reads

pµp
µ = (Erest/c)2, (2)

where pµ is the momentum in 1 + 1 dimensions and
Erest is the rest energy of the atom, namely

Erest = mc2 + Eint. (3)

The split between mass and internal energy coincides
with the choice of the zero-energy level for the inter-
nal energy, and it depends on the energy scale of the
process considered: if some degrees of freedom do not
evolve dynamically in a certain process, their energy
is accounted for in the rest mass, as it happens for
example with binding energies of the constituents of
the atoms.

Writing Eq. (2) explicitly in the weak gravitational
field of Eq. (1) and solving for p0 (the generator of the
time translations in the coordinate time t), we obtain
the Hamiltonian

H = cp0 =
√
g00(−c2gijpipj + E2

rest). (4)

In the limit of weak gravitational field and non-
relativistic velocities, we discard any term of the order
VN (x)p2

m2c4 , obtaining

H = mc2 + p2

2m +mVN (x)+

+ Eint

(
1 + VN (x)

c2
− p2

2m2c2

)
. (5)

The corrections to the internal energy Eint are the
gravitational and special relativistic time dilation ef-
fects respectively. In fact, the time of the atomic clock
is measured by synchronizing to the frequency of a
photon emitted in an electronic transition (see e.g.
Ref. [39]), and the frequency is proportional to the
energy difference between the electronic levels, which
are modified due to special and general relativistic
time dilations. Therefore, the frequency is

ω′ = ω

(
1 + VN (x)

c2
− p2

2m2c2

)
, (6)

where ω = ∆E
~ is the frequency measured in the lo-

cally inertial frame comoving with the atom. There-
fore, the time dilation factor(

1 + VN (x)
c2

− p2

2m2c2

)
≡ dτ

dt
, (7)

is the rate at which the proper time of the atom flows
in the laboratory time.

This derivation may be repeated for different
choices of the metric, as long as they are static, and
the same results can also be found with a quantum
field theory approach [17]. An equivalent deriva-
tion in the low-energy limit is obtained starting from
the Newtonian Hamiltonian HN = mc2 + p2/2m +
mVN (x) by inserting the mass-energy equivalence
m→ m+ Eint/c

2.
The quantization of the Hamiltonian in Eq. (5) is

straightforward and leads to

Ĥ = mc2 + p̂2

2m +mVN (x̂)+

+ Ĥint

(
1 + VN (x̂)

c2
− p̂2

2m2c2

)
. (8)

In the quantum case, the clock space is a two-
dimensional Hilbert space Hint spanned by the basis
{|0〉 , |1〉}. The internal Hamiltonian is

Ĥint = E0 |0〉 〈0|+ E1 |1〉 〈1| . (9)

3 Freely Falling Interferometer
We now study the dynamics of the quantum clock
when it traverses a freely falling interferometer. The
interferometer is made of two beam splitters, a phase
shifter of controllable phase ϕ, and two detectors, as
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depicted in Figure 1. The atom is in a superposition
of two trajectories γ±, each composed of a vertical
path and a parabolic path. This setup provides a
way to measure combined effects of quantum theory
and general relativity, since it realises a superposition
of different gravitational time dilations: the clock in
each path of the interferometer measures a different
proper time, and this implies a difference in the phase
accumulated in each trajectory, which affects the in-
terferometric probabilities, thus being a measurable
effect. For the interested reader, Appendix C is ded-
icated to the study of this setup in the presence of a
floor, modelled as an infinite barrier of potential.

We assume that the acceleration and velocity are
the same in each vertical path, so that their contri-
bution cancels, and we focus on the parabolic paths
only.

The Hamiltonian for each parabolic path is

Ĥ = mc2 + p̂2

2m +mVF (x̂)

+ Ĥint

(
1 + VF (x̂)

c2
− p̂2

2m2c2

)
, (10)

where we take a linear approximation of the gravita-
tional potential, namely

VF (x̂) = g(x̂− x0) + VN (x0), (11)

where VN (x) is the Newtonian potential.
The momentum operator p̂ in the Hamiltonian of

Eq. (10) is only the vertical component of the momen-
tum: we neglect the horizontal dynamics of the quan-
tum state, because it does not influence the proper
time measured by the clock.

g

Figure 1: An atomic clock, represented with a Gaussian
wave packet with internal degrees of freedom, is in a
superposition of two freely falling trajectories with
gravitational acceleration g, and subsequently it is
recombined and measured. The setup is made of two
beam splitters, a phase shifter of controllable phase ϕ,
and two detectors. The upper trajectory is called γ+ and
the lower γ−.

In order to describe the external degrees of freedom
of the atom, we employ Gaussian wave packets cen-
tered at the two heights of the interferometer x± with

an initial variance in position basis σ. The explicit ex-
pression is

|ψ±〉 = 1
(2πσ2)1/4

∫
dx e−

(x−x±)2

4σ2 |x〉

=
(

2σ2

π~2

)1/4 ∫
dp e−

p2σ2

~2 −
ipx±

~ |p〉 . (12)

The initial state inside the interferometer, after the
first beam splitter and the phase shifter, is

|ψ0〉 = |ψ+〉+ eiϕ |ψ−〉√
2

|τin〉 , (13)

where |ψ±〉 are the Gaussian states of Eq. (12) and
|τin〉 is the initial internal state of the clock, which we
choose to be

|τin〉 = |0〉+ |1〉√
2

. (14)

The state inside the interferometer after a time ∆t
is

|ψ〉 = U |ψ0〉 (15)

= |+0〉 |0〉+ |+1〉 |1〉+ eiϕ(|−0〉 |0〉+ |−1〉 |1〉)
2 .

where the states |±i〉 are Gaussian states charac-
terised by the following phase, mean momentum,
mean position, and variance in position basis after the
evolution of a time ∆t generated by the Hamiltonian
in Eq. (10):

φ±,i(x) =− ∆tEi
~
− ∆tmVF (x)

~

(
1 + Ei

mc2

)
− mg∆t3

3~

[
1 + Ei

mc2
−
(
Ei
mc2

)2
]
, (16)

〈p〉±,i = mg∆t
(

1 + Ei
mc2

)
, (17)

〈x〉±,i = x± −
g∆t2

2

[
1−

(
Ei
mc2

)2
]
, (18)

Σ2
i = σ2 +

[
~∆t
2mσ

(
1− Ei

mc2

)]2
. (19)

We can now quantify how much information on the
gravitational acceleration is contained in the state at
the end of the interferometer, through the use of the
Quantum Fisher Information (QFI—see Appendix A
for details). The QFI for g of this state in the limit
of long times and small internal energies is

GFasy(g) ∆t→∞' g2∆E2

36 ~2c4
∆t6. (20)

This scaling in ∆t6 is a consequence of gravitational
time dilation, since it comes from the coupling be-
tween the gravitational potential and the internal en-
ergies. If there was an internal clock that was not
coupled to the gravitational field, namely if we did

Accepted in Quantum 2023-01-11, click title to verify. Published under CC-BY 4.0. 3



not consider gravitational time dilation, this scaling
would be absent: the phase term that scales as ∆t3
in Eq. (16), which is responsible for the ∆t6 scaling,
would be only a global phase, and would thus be un-
observable. Without time dilation, the scaling of the
QFI would be ∆t4, as shown in Ref. [40]. Therefore,
gravitational time dilation enhances the sensitivity of
the setup for long interferometric times, introducing
a time scaling that would be otherwise absent.

From now on, we restrict our calculations in a spe-
cific regime. In particular, we require that the spread
of the wave packet is smaller than the vertical dis-
tance between the trajectories (i.e. there is no overlap
between the quantum states of the atom in the two
trajectories):

Σ� h = x+ − x−, (21)

where Σ is the width of the wave function of the atom
in position basis. Moreover, two states following the
same path, but with different internal energies, such
as |+〉0 and |+〉1, have slightly different trajectories:
there is a difference in the mean positions, mean ve-
locities and variances, as it is seen in Eqs. (17-19),
and depicted in Figure 2.

Figure 2: Trajectories of the states |+〉0 (green line) and
|+〉1 (violet line), which are centered in the same
interferometric branch, but with different internal
energies. The paths differ in mean position, mean
momentum and variance, according to Eqs. (17 - 19).

We study the regime where these effects are neg-
ligible, namely where there is a single trajectory for
both internal energy states. This allows us to per-
form an interferometric measurement without having
to account for the different trajectories of each inter-
nal degree of freedom. Moreover, we keep only the
leading term in the internal energies. Therefore, we
approximate phase, mean momentum, mean position
and variance with

φ±,i(x) =− ∆tEi
~
− ∆tmVF (x)

~

(
1 + Ei

mc2

)
− mg∆t3

3~

(
1 + Ei

mc2

)
, (22)

〈p〉± = mg∆t, (23)

〈x〉± = x± −
g∆t2

2 , (24)

Σ2 = σ2 +
(
~∆t
2mσ

)2
. (25)

If the condition on the localization of the wave func-
tion of Eq. (21) and the previous conditions are sat-
isfied, the state in Eq. (15) represents an atom in a
superposition of two branches, where in each branch,
the atom is centered in a trajectory, with a negligible
overlap with the quantum state centered in the other
trajectory, and the evolution is the same regardless
of the internal state of the clock. In Appendix B we
show that such regime exists, and we explicitly give a
range of the parameters satisfying all the conditions.

In these approximations, the QFI reads

GF (g) = (1 + z0)2 + (1 + z1)2

2

(
m∆t
~

)2 (
4Σ2 + h2)

+
(
m∆t∆z

~

)2(
g∆t2

6 + h̄

)2

−
(
z̄ + 3

4

)
∆t4

σ2 ,

(26)

where zi = Ei
mc2 , ∆z = z1−z0, z̄ = z0+z1

2 , h = x+−x−
and h̄ = x++x−

2 − x0.

We notice that the presence of gravitational time
dilation not only enhances the time scaling for long in-
terferometric times, but also increases the coefficients
of the other powers of ∆t.

Since most of the interferometric measurements re-
gard the external degrees of freedom only, namely
they are obtained through interference of the two in-
terferometric paths and subsequent measurement of
each path, we study what information is contained in
the reduced state, where the internal degrees of free-
dom are ignored.

The reduced state is

ρred = 1
2(|φ0〉 〈φ0|+ |φ1〉 〈φ1|), (27)

where |φi〉 = 1√
2 (|+i〉+ eiϕ |−i〉.

We need to diagonalize the reduced state in order
to calculate its QFI. The Hilbert space of this state
is infinite-dimensional, since the position can assume
infinite values, meaning that we would have to di-
agonalize an infinite-dimensional matrix. For sim-
plicity, we approximate the Hilbert space to be 2-
dimensional, and the state to be a qubit. In order
to achieve this, we approximate the states |±i〉 with
|±i〉 = eiφ±,i |±〉, where φ±i are the phases of the
original states evaluated in the center of the trajec-
tory, namely φ±,i := φ±,i

(
x± − g∆t2

2

)
.

With this approximation, we are discarding every
effect related to the spread of the wave packet, mean-
ing that we ignore the phases near the center of the
trajectory, and the variance of the wave packet Σ, and
thus this operation can be regarded as a semiclassical
approximation.
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We obtain

GFred(g) =
(
m∆z∆th

2~

)2
+ (28)

+
(
m∆th

~
(1 + z̄)

)2
cos2

(
m∆z∆VF∆t

2~

)
.

The factors of the total QFI in Eq. (26) that scale
as ∆t4 and ∆t6 disappear. One of the ∆t4 factor of
Eq. (26) disappears because of the semiclassical ap-
proximation, since we are ignoring every contribution
coming from the spread of the wave packet, such as
the term that depends on σ. The other ∆t4 and ∆t6
terms, nevertheless, are not related to the spread of
the wave packet, meaning that their disappearance is
not related to the approximation: they disappear be-
cause internal degrees of freedom have been ignored.

This suggests that measuring only the external de-
grees of freedom does not exploit all the information
contained in the state.

A simple interferometric measurement that can be
performed is

|D±〉 = |+〉 ± |−〉√
2

, |±〉 = |±i〉
∣∣∣
Ei=0

, (29)

namely the two paths are interfered and each output
is measured (see Figure 1). The internal degrees of
freedom are not measured, but the effects of the in-
ternal clock is visible in the phase acquired by the
state. This measurement is sensitive to the phase dif-
ference between the branches, while discarding any ef-
fect that does not depend on the time dilation, since it
projects on states where any other phase is already in-
cluded, and thus the other phases do not influence the
measurement probabilities. The probabilities are cal-
culated projecting the state Eq. (15) on the states of
Eq. (29), after applying the approximations described
above. The result is

P± ∼
1
2

(
1± cos

(
∆E∆VF∆t

2~c2

)
cos
(
Ē∆VF∆t

~c2
+ ϕ

))
.

(30)
As explained in Appendix A, one can estimate the
information on g that can be extracted from these
probabilities, using the Fisher Information (FI). The
FI is

F (g) =
(

∆Eh∆t
2~c2

)2
. (31)

It does not show the ∆t6 scaling, as a consequence
of ignoring the internal degrees of freedom, but also
the ∆t4 does not appear. The reason is that we de-
fined the measurement to be sensitive to g only as a
gravitational time dilation effect, while the reduced
state has an additional dependence on g that does
not depend on the coupling with the internal energies.
Therefore, our measurement is ignoring that informa-
tion, and this loss of information is quantified by the
difference between the QFI of the reduced state and
the FI of the measurement.

4 Mach-Zehnder interferometer

Figure 3: An atomic clock, represented with a Gaussian
wave packet with internal degrees of freedom, in a
Mach-Zehnder interferometer vertically placed in a
piecewise linear potential, with accelerations g±. The
setup is made of two beam splitters, a phase shifter of
controllable phase ϕ, and two detectors. The upper
trajectory is called γ+ and the lower γ−.

In this section we analyze the scenario where the
atom evolves in a Mach-Zehnder interferometer, as
depicted in Figure 3. To keep the atom at a con-
stant height, we introduce a potential that balances
the gravitational attraction. For example, this poten-
tial could be an atomic trap, that keeps the atom still
but does not couple to the internal clock via time dila-
tion. Therefore, the Hamiltonian for each horizontal
path is

Ĥ = mc2 + p̂2

2m+Ĥint

(
1 + VN (x̂)

c2
− p̂2

2m2c2

)
. (32)

Notice that the gravitational field acts exclusively on
the internal degrees of freedom via gravitational time
dilation.

In order to solve the dynamics, we may refine the
previous approximation of a linear potential, using a
piecewise linear potential: this means that in each
horizontal trajectory the dynamics is linear. We ex-
pand the Newtonian potential with a Taylor series
centered in two points x±0, thus obtaining

VMZ(x) =
{
g+(x− x+0) + VN (x+0) if x > x0,

g−(x− x−0) + VN (x−0) if x < x0,

(33)
where VN (x) is the Newtonian potential, x is the
distance from the center of the Earth, x0 is the x-
coordinate of the intersection of the two lines, and
g± = V ′N (x±0) are the gravitational accelerations at
x±0. The potential is represented in Fig. 4a.

This piecewise linear approximation holds for
heights that are small with respect to the scale over
which the potential changes, namely

h± ≡ x± − x±0 � d ≡ x+0 − x−0. (34)
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(a)

d

(b)

Figure 4: On the left, the piecewise linear approximation
(violet line) of the gravitational potential Eq. (33) (green
line). On the right, the representation of the quantities
described in Eqs. (34, 35).

Using this condition, we obtain that the distance h
between the interferometer trajectories is

h = x+ − x− ∼ d. (35)

This situation is represented in Figure 4b.
To obtain a potential acting on the quantized path

degree of freedom of the atom, we quantize the posi-
tion operator in each linear piece, and we assume that
the atom in each trajectory is localized enough for its
spread to be small compared to the distance between
the two trajectories, as in Eq. (21).

The resulting potential is

VMZ(x̂) =θ (x− x0) (g+(x̂− x+0) + VN (x+0)) +
θ (x0 − x) (g−(x̂− x−0) + VN (x−0)) .

(36)

Consequently, the derivative of the potential with
respect to the position operator x̂ is

˙̂
VMZ(x) ≡ d

dx̂
VMZ(x̂) = θ(x− x0)g+ + θ(x0 − x)g−,

(37)
where the derivative does not affect the Heaviside step
functions.

Let’s consider the initial state to be Eq. (13), in the
same hypothesis as above, namely we consider a su-
perposition of the atom centered in two trajectories,
with null probability to be found in the other tra-
jectory, and the evolution does not change between
different internal degrees of freedom. The evolved
state after a time ∆t is formally analogous to Eq. (15),
where |±i〉 are Gaussian states with

φ±,i(x) = −∆tEi
~
− ∆tmVMZ(x)

~
Ei
mc2

, (38)

〈p〉 = 0 (39)
〈x〉± = x±, (40)

Σ2 = σ2 +
(
~∆t
2mσ

)2
. (41)

We estimate the sensitivity of this setup to the dif-
ference in gravitational acceleration ∆g = g−−g+ and

to the mean gravitational acceleration ḡ = g++g−
2 , by

calculating the Quantum Fisher Information for these
two parameters. Under the approximations described
above, the QFIs read

GMZ(∆g) =
(

∆t
4~c2

)2 (
(E2

0 + E2
1)(8(Σ2 + h̄2) + ∆E2∆h2) ,

(42)

GMZ(ḡ) =
(

∆t√
2~c2

)2 (
(E2

0 + E2
1)(4Σ2 + ∆h2) + 2∆E2h̄2) ,

(43)

where h̄ = h++h−
2 and ∆h = h+ − h−. As we antici-

pated, the dependence on ∆g and ḡ is present due to
a gravitational time dilation effect, since without the
internal energies, namely Ei = 0, the QFI would be
null.

As in the previous case, we study the QFI of the
reduced state, to see whether ignoring the internal
degrees of freedom leads to an important loss of in-
formation. We obtain

GMZ
red (∆g) =

(
∆Eh̄∆t

2~c2

)2

+

+
(
Ēh̄∆t
~c2

)2

cos2
(

∆E∆VMZ∆t
2~c2

)
, (44)

GMZ
red (ḡ) =

(
∆E∆h∆t

2~c2

)2
+

+
(
Ē∆h∆t
~c2

)2

cos2
(

∆E∆VMZ∆t
2~c2

)
.

(45)

Hence, ignoring the external degrees of freedom does
not erase the information about ḡ and ∆g that is con-
tained in the state: the time scaling is preserved.

Consequently, the Fisher Information (FI) for ∆g
and ḡ is

FMZ(∆g) =
(

∆Eh̄∆t
2~c2

)2

, (46)

FMZ(ḡ) =
(

∆E∆h∆t
2~c2

)2
. (47)

5 Conclusion
We have performed a metrological analysis of two
atomic clock interferometers: a freely falling inter-
ferometer and a Mach-Zehnder interferometer. Our
results show that gravitational time dilation can be
used as a resource to improve precision, and this effect
becomes significant in the limit of long interferometric
times.

In particular, we have shown that gravitational
time dilation enhances the time scaling of the infor-
mation that a freely falling interferometer can extract
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about the gravitational acceleration, going from a ∆t4
scaling to a ∆t6 one. To achieve this performance,
i.e. to extract the whole information contained in the
setup, a joint measure of internal and external degrees
of freedom should be performed. If we discard the in-
ternal degrees of freedom, the ∆t6 scaling is lost.

We have also shown that gravitational time dilation
makes Mach-Zehnder interferometer sensitive to the
difference in the gravitational acceleration between
the locations of the two arms, as well as to their mean
value. We have quantified the information contained
in the interferometric state, and found an optimal
measurement able to extract the maximum achievable
information.

Finally, we have shown (see Appendix C) that the
gravitational time dilation does not enhance the time
scaling for the freely falling interferometer when the
floor is considered. This means that, in order to ben-
efit from the enhancement provided by gravitational
time dilation, the measurements in the free-fall inter-
ferometer should be performed far from the potential
barrier corresponding to the floor.

The practical relevance of our findings is still lim-
ited, given the currently available coherence of quan-
tum clocks [41]. On the other hand, our results clearly
show that gravitational time dilation may indeed rep-
resent a resource for quantum metrology, and provide
a novel fundamental avenue to test the interface be-
tween quantum theory and gravity.

Code availability
The Mathematica notebook is included in the arXiv
repository of this paper.
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A A few words on estimation theory
Here, we briefly review some tools of classical and
quantum estimation theory, following Refs. [4, 42, 43].
Classical estimation theory addresses the problem of

finding the best estimator to process the data ob-
tained with a given measurement. Given a parameter
of interest λ and a sample space χ = {x}, namely a
set of all possible outcomes of an experiment, an es-
timator λ̂ is a function from the sample space χ to
the space of the possible values of λ. The variance
∆2(λ) of every unbiased estimator is subjected to the
Cramér-Rao bound

∆2(λ) ≥ 1
MF (λ) , (48)

where M is the number of measurements performed
and F (λ) is the Fisher Information (FI) of the esti-
mator. For a discrete set of outcomes χ, the Fisher
Information is defined as

F (λ) =
∑
x∈χ

(∂λPλ(x))2

Pλ(x) , (49)

where Pλ(x) is the probability of obtaining a certain
outcome x for a fixed value of the parameter of inter-
est λ. The Fisher Information quantifies the informa-
tion that the measured quantity X, associated to the
sample space χ, carries about the parameter λ: the
bigger the Fisher Information for a certain parameter
is, the lesser its variance is. This is a way to determine
the best estimator for a given set of data, namely the
one that saturates the Cramér-Rao inequality.

The same concepts may be carried over to quantum
theory. One can find a quantum Cramér-Rao bound

∆2(λ) ≥ 1
MG(λ) , (50)

where G(λ) is the Quantum Fisher Information
(QFI). Saturating this bound provides the best es-
timator, as in the classical setting, but it also de-
fines what the best measurement to be performed is.
An intuitive explanation is that, contrary to classi-
cal theory, in quantum mechanics one choice of mea-
surement can be better than another due to the non-
commutativity of observables: there is a bound on the
information that can be extracted about an eigenstate
of an observable Â, from a measurement of an observ-
able B̂ that does not commute with Â.

The QFI for a pure state can be shown to be

G(λ) = 4
(
〈∂λψ|∂λψ〉 − |〈∂λψ|ψ〉|2

)
, (51)

where |∂λψ〉 =
∑
k ∂λψk |k〉 with {|k〉} a basis of the

Hilbert space that does not depend on the parameter
λ.

Similarly, for a mixed state ρ =
∑
i ρi |ψi〉 〈ψi|, we

have

G(λ) =
∑
ρi

(∂λρi)2

ρi
+ 4

∑
ρi

ρi 〈∂λψi|∂λψi〉

− 8
∑
ρi,ρj

ρiρj
ρi + ρj

|〈∂λψi|ψj〉|2. (52)
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In the main text, Eq. (49) has been explicitely used
to calculate the FI of the measurement probabilities
for the freely falling interferometer (Eq. (30)), obtain-
ing Eq. (31). The probabilities for the Mach-Zehnder
interferometer have the same form of Eq. (30), but
with a different potential. The result is that the FI
for ḡ and ∆g are slightly different, and they are given
in Eqs. (46, 47). Similarly, Eq. (51) has been used
explicitly to calculate Eqs. (20, 26, 28, 42 - 45) with
the aid of Mathematica software.

B The approximation regime
Here we provide few more details on the regime that
is considered in the analysis of the freely falling inter-
ferometer and of the Mach-Zehnder interferometer in
the main text. The localization condition of Eq. (21)
is equivalent to the assumptions

σ � h, σ � ~
m

∆t
h
, (53)

while the approximations employed to write Eqs. (22-
25) are equivalent to

mg∆t Ei
mc2

� Σp ≡
~
Σ , (54)

g∆t2

2
Ei
mc2

� Σ, (55)

~∆t
mσ

√
Ei
mc2

� Σ. (56)

In the hypothesis of employing 88Sr atoms, which is
an atomic species whose electronic transitions are cur-
rently employed in atomic clocks, approximated val-
ues for the parameters are mSr ∼ 10−25 kg, ∆E ∼
2.8 eV. Thus, one finds that a possible set of parame-
ters that satisfies the above inequalities is ∆t ∼ 10 s,
h ∼ 1 cm, σ ∼ 10−4 m2 or for longer times ∆t ∼ 100 s,
h ∼ 1 cm, σ ∼ 10−3 m2.

C Freely falling interferometers in the
presence of a floor
In this appendix, we consider an atomic clock in a
superposition of two freely falling trajectories, like in
Section 3, but, in addition to the gravitational po-
tential, we also have an infinite barrier of potential
modelling the presence of the floor next to the detec-
tors at the end of the interferometer.

This situation is also referred to as a quantum
bouncer [44]. Here, we generalize the standard treat-
ment to atoms with internal degrees of freedom. We
follow the analysis of Ref. [45].

We consider a Hamiltonian

Ĥ = p̂2

2m +mVf (x̂) + Ĥint

(
1 + V̂F (x̂)

c2

)
, (57)

where, for simplicity, we have discarded the rest mass
term and ignored special relativistic effects.

Here, VF (x̂) is the linear gravitational potential of
Eq. (11), and Vf (x̂) is the potential modified because
of the floor, namely

Vf (x) =
{
VF (x) if x > 0
∞ if x = 0.

(58)

The presence of the floor does not influence the
general relativistic time dilation on the clock Hamil-
tonian Ĥint, but imposes boundary conditions on
the path degrees of freedom: the eigenvalues of the
Hamiltonian Ei,n, corresponding to the eigenstates
|Ψi,n〉 = |ψi,n〉 |Ei〉, are discrete, as calculated explic-
itly in the following.

The eigenvalue equation is

Ĥ |ψ〉 |Ei〉 = E |ψ〉 |Ei〉 . (59)

If we let the internal degrees of freedom act on the in-
ternal Hamiltonian, and project on |x〉 |Ei〉, we obtain
the time-independent Schrödinger equation(
− ~2

2m∂2 +m (g (x− x0) + V (x0))
(

1 + Ei
mc2

)
+ Ei

)
ψ(x) =

= E ψ(x). (60)

Then, we perform the substitutions

y = ki (x− ai) , (61)

ai = E − Ei
mg
(
1 + Ei

mc2

) + x0 −
V (x0)
g

, (62)

ki = 1
li

=
(

2m2g

~2

(
1 + Ei

mc2

)) 1
3

, (63)

ψ(x) =
√
ki φ(y). (64)

After the substitutions, the Schrödinger equation is
written as an Airy equation, namely

φ(y)′′ = y φ(y), (65)

whose solutions are linear combinations of the Airy
functions Ai(y) and Bi(y). We select the ones that
are finite for y →∞, namely

φ(y) = A Ai(y), (66)

where

Ai(y) = 1
2π

∫ +∞

−∞
du ei(yu+u3/3). (67)

Therefore, the wave functions are

ψ(x) = N Ai(ki(x− ai)). (68)

The boundary condition ψ(0) = 0, stemming from
the presence of the floor, selects only discrete values
of ai, namely

ai,n = −lizn, (69)
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where zn < 0 is the n-th zero of the Airy function.
This results in discrete eigenvalues

E = Ei,n = m(−g(znli+x0)+V (x0))
(

1 + Ei
mc2

)
+Ei,

(70)
and discrete eigenstates

|Ψi,n〉 = |ψi,n〉 |Ei〉 , (71)

with eigenfunctions

ψi,n(x) = Ni,n Ai
(
x

li
+ zn

)
, Ni,n = 1√

liAi′(zn)
.

(72)
The projection of the initial state of Eq. (13) on the

eigenstates of the Hamiltonian is

|ψ0〉 = |ψ+〉+ eiϕ |ψ−〉√
2

|τin〉

=
∑
i,n

ci,n |ψi,n〉 |Ei〉 , (73)

where the coefficients can be derived in the same way
as Ref. [45]. The result is

ci,n = 〈ψi,n|ψ+〉+ eiϕ 〈ψi,n|ψ−〉√
2

〈Ei|τin〉

=
c+i,n + eiϕc−i,n

2 , (74)

with

c±i,n =
(

1
2πσ2

) 1
4

Ni,n exp
(
l2σ,i
2 (zn + l±,i) +

l2σ,i
12

)
×

×Ai

(
zn + l±,i +

l2σ,i
4

)
, (75)

where l±,i = l±
li

and lσ,i = σ
li
.

If we further assume that the initial spread of the
wave packet is not smaller than the characteristic
gravitational length li, namely σ & li, we can ap-
proximate the coefficients with

c±i,n ∼
(

2σ2

π

) 1
4 Ni,n
lσ,i

e
−
(
zn+l±,i√

2lσ,i

)2

. (76)

We now consider the superposition of Gaussian
wave packets with internal degrees of freedom of
Eq. (13). In order to be consistent with the choice
of the potential above, the wave function of the atom
should be null at the floor x = 0, and in general a
Gaussian wave function is not. Therefore, we must
require that the initial distance from the floor is large
compared to the initial spread of the wave packet, so
that the amplitude is negligible at the floor. Thus, we
require that

x± � σ. (77)

The evolved state is

Û
|ψ+〉+ eiϕ |ψ−〉√

2
|τin〉 =

∑
i,n

ci,ne
−
Ei,n

~ t |ψi,n〉 |Ei〉 .

(78)
Its QFI in the limit of long times is

Gf (g) ∼4∆t2

~2 Var(∂gE), (79)

Var(∂gE) =
∑
i,n

|ci,n|2 (∂gEi,n)2

−

∑
i,n

|ci,n|2 ∂gEi,n

2

. (80)

Neither the coefficients ci,n nor the eigenvalues Ei,n
depend on time, meaning that the time scaling of this
QFI is ∆t2. Therefore, we obtain that the presence
of the floor removes the ∆t4 and ∆t6 scaling that was
caused by the gravitational time dilation, and also the
∆t4 dependence that was originated by the vertical
motion of the atom.

These results are consistent with those of [45],
where it was shown that the ∆t2 scaling in the QFI is
a feature of every pure statistical model with discrete
eigenvectors, namely such that |ψλ〉 = e−iĤλt |ψ0〉,
where |ψ0〉 ∈ H, dim(H) <∞. We expect the floor to
have an effect on the dynamics only when its distance
from the atom is comparable with the spread of the
atomic wave function. Therefore, in order to exploit
the higher time scaling of the freely falling interfer-
ometer of Section 3, the atom should be revealed far
from the floor, where the distance is comparable to
the spread of the wave function.
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