
Author's personal copy

Physics Letters A 373 (2009) 934–939

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Squeezed vacuum as a universal quantum probe
Roberto Gaiba a, Matteo G.A. Paris a,b,c,∗

a Dipartimento di Fisica dell’Università di Milano I-20133, Italy
b CNISM, Udr Milano Università, I-20133 Milano, Italy
c Institute for Scientific Interchange Foundation, I-10133 Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2008
Received in revised form 8 January 2009
Accepted 19 January 2009
Available online 22 January 2009
Communicated by P.R. Holland

We address local quantum estimation of bilinear Hamiltonians probed by Gaussian states. We evaluate
the relevant quantum Fisher information (QFI) and derive the ultimate bound on precision. Upon
maximizing the QFI we found that single- and two-mode squeezed vacuum represent an optimal and
universal class of probe states, achieving the so-called Heisenberg limit to precision in terms of the
overall energy of the probe. We explicitly obtain the optimal observable based on the symmetric
logarithmic derivative and also found that homodyne detection assisted by Bayesian analysis may achieve
estimation of squeezing with near-optimal sensitivity in any working regime.
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1. Introduction

In this Letter we address quantum estimation of unitary opera-
tions for continuous variable systems. In particular we analyze the
estimation of the interaction parameter θ for unitaries of the form
Uθ = exp(−iθG) where G is a linear or bilinear bosonic Hamilto-
nian of the form G = a†b + ab†, G = a†b† + ab, or G = a†2 + a2,
[a,a†] = 1 and [b,b†] = 1 being mode operators. We are interested
in evaluating the ultimate bound on precision (sensitivity), i.e. the
smallest value of the parameter that can be discriminated, and to
determine the optimal measurement achieving those bounds.

As a matter of fact, linear and bilinear interactions for bosonic
systems are a key ingredient for the development of continuous
variable quantum information processing [1–4]. They are usually
realized by means of parametric processes, as single- and two-
mode squeezing, or by linear optical elements such as phase-
shifting and two-mode mixing. The precise characterization of lin-
ear optical gates is also of interest in interferometry [6–8], absorp-
tion measurement [9] and characterization of detectors [10].

In general, interaction parameters cannot be directly accessed
experimentally, and the estimation process consists in probing the
interaction by a known quantum signal "0, which is measured
after the interaction (see Fig. 1). The relevant constraint in the op-
timization of those schemes concerns the total energy of the probe,
which should be kept as low as possible to avoid any possible
modification or degradation of the gate itself. Overall, the prob-
lem we are facing is that of devising the optimal measurement,
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Fig. 1. General scheme for the indirect estimation of the unitary Uθ probed by the
signal "0.

i.e. a positive operator-valued measure (POVM) {Ex}x∈X , to be per-
formed on the probe "θ = Uθ"0U

†
θ after the interaction, at fixed

energy N = Tr["0
∑

j n j] of the incoming signal,
∑

j n j being the
total number operator of the involved modes.

The above problem may be properly addressed in the frame-
work of quantum estimation theory (QET) [11–13], which pro-
vides analytical tools to find the optimal measurement according
to some given criterion. In turn, there are two main paradigms in
QET: Global QET looks for the POVM minimizing a suitable cost
functional, averaged over all possible values of the parameter to
be estimated. The result of a global optimization is thus a single
POVM, independent on the value of the parameter. On the other
hand, local QET looks for the POVM maximizing the Fisher infor-
mation, thus minimizing the variance of the estimator, at a fixed
value of the parameter [14,15]. Roughly speaking, one may expect
local QET to provide better performances since the optimization
concerns a specific value of the parameter, with some adaptive
or feedback mechanism assuring the achievability of the ultimate
bound [16]. Global QET has been mostly applied to find optimal
measurements and to evaluate lower bounds on precision for the
estimation of parameters imposed by unitary transformations. For
bosonic systems these include single-mode phase [17,18], displace-
ment [19], squeezing [20,21] as well as two-mode transformations,
e.g. bilinear coupling [9]. Local QET has been applied to the es-
timation of quantum phase [24] and to estimation problems with
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open quantum systems and non unitary processes [25]: to finite di-
mensional systems [26], to optimally estimate the noise parameter
of depolarizing [27] or amplitude-damping [28], and for continu-
ous variable systems to estimate the loss parameter of a quantum
channel [29].

In this Letter we consider the estimation the interaction pa-
rameters of bilinear bosonic Hamiltonians from the perspective
of local QET. In particular, we focus our attention to measure-
ment schemes as in Fig. 1 with the probe state chosen within the
set of Gaussian states [1–3,5,30], which represents a class of sig-
nals achievable with current technology. We evaluate the relevant
quantum Fisher information (QFI) and derive the ultimate bound
on precision. Upon maximizing the QFI we found that single- and
two-mode squeezed vacuum represents an optimal and universal
class of probe states, achieving the so-called Heisenberg limit to
precision in terms of the overall energy of the probe. Remark-
ably, by comparison with results coming from global optimization
of the measurement [9,20,21] we found that Gaussian states are
effective resources, which allow to achieve the ultimate bound
on precision. Besides, we found that homodyne detection assisted
by Bayesian analysis may achieve near-optimal sensitivity in any
working regime.

The Letter is structured as follows: in the next section we
briefly review local quantum estimation theory with some re-
marks on the implementation of the optimal measurements. In
Section 3 we evaluate the optimal measurements and the corre-
sponding bounds on precision for the local estimation of bilinear
couplings using Gaussian probes. In Section 4 we address estima-
tion of squeezing using homodyne detection and Bayesian analy-
sis and show that near-optimal precision may be achieved in any
working regime. In Section 5 we compare our results with those
coming from global estimation and close the Letter with some con-
cluding remarks.

2. Local quantum estimation theory

In this section we review some concepts of local quantum es-
timation theory [22,23] which will be used in the rest of the Let-
ter. As a matter of fact, many quantities of interest in different
branches of physics cannot be directly accessed experimentally, ei-
ther in principle, as in the case of field measurement [31], or due
to experimental impediments. In these cases, one has to indirectly
estimate the value of those physical parameters by measuring a
different observable, somehow related to the quantity of interest.
This indirect procedure of parameter estimation implies an addi-
tional uncertainty for the measured value, that cannot be avoided
even in optimal conditions. The aim of quantum estimation theory
is to optimize the inference procedure by minimizing this addi-
tional uncertainty. In the classical theory of parameter estimation
the Cramer–Rao bound [32] establishes a lower bound for the vari-
ance of any unbiased estimator θ̂ of the parameter θ . This lower
bound is given by the inverse of the so-called Fisher information
(FI):

#θ2 ! 1
F (θ)

(1)

where the Fisher information is defined as

F (θ) =
∑

x

p(x|θ)

(
∂ ln p(x|θ)

∂θ

)2

. (2)

Here θ is the parameter to be estimated, and x denotes the out-
come of the measurement of the quantity X related to θ . The
notation p(x|θ) indicates the conditional probability of obtaining
the value x when the parameter has the value θ .

A quantum analogue to Eq. (2) may be found starting from the
Born rule

p(x|θ) = tr[Exρθ ] (3)

where Ex are the elements of a positive operator-valued mea-
sure (POVM) and ρθ is the density operator, parametrized by the
quantity of interest, describing the quantum state of the measured
system. The Fisher information is then rewritten as

F (θ) =
∑

x

ReTr[ρθ ExΛθ ]2
Tr[Exρθ ]

(4)

where we introduced the Symmetric Logarithmic Derivative (SLD)
Λθ , which is the self-adjoint operator defined as

Λθρθ + ρθΛθ

2
≡ ∂ρθ

∂θ
. (5)

It can then be shown [14,15] that the Fisher information (4) is up-
per bounded by the so-called quantum Fisher information (QFI):

F " H ≡ Tr
[
ρθΛ

2
θ

]
. (6)

In turn, the quantity 1/H represents an ultimate lower bound on
precision for any quantum measurement (followed by any classi-
cal data processing) aimed to estimate the parameter θ . The SLD
is itself an optimal measurement, that is, using the POVM Ex ob-
tained from the projectors over the eigenbasis of Λθ we saturate
the inequality (6).

In this work we will focus on systems where the dependence
of ρθ from the parameter θ is generated by a family of unitary
transformations: ρθ = Uθρ0U

†
θ where Uθ = exp(−iθG), G is the

Hamiltonian that generates the transformation and "0 is a given
quantum state used to probe the Hamiltonian process. In this case
it is possible to obtain an explicit formula for the SLD operator and
the QFI. At first we take the eigenbasis of ρ0: ρ0 = ∑

k pk|ψk〉〈ψk|.
From (5) we can rewrite Λθ in this basis as follows

Λθ = 2i
∑

jk

G jk
p j − pk
p j + pk

Uθ |ψ j〉〈ψk|U †
θ (7)

where G jk = 〈ψ j |G|ψk〉 are the matrix elements of the genera-
tor G . Eq. (7) shows that Λθ depends on θ only through the uni-
tary transformation Uθ . As a consequence it is possible to define
the operator Λ0, independent from θ , such that Λθ = UθΛ0U

†
θ . It

also follows that the quantum Fisher information is independent
from θ . In fact, H = Tr[ρθΛ

2
θ ] = Tr[Uθρ0U

†
θUθΛ

2
0U

†
θ ] = Tr[ρ0Λ

2
0].

Explicit formulas to calculate H may be given in the eigenbasis
of ρ0

H = 4
∑

nk

pn
pn − pk
pn + pk

G2
nk (8)

= 4
〈
G2〉 − 8

∑

nk

pkpn
pn + pk

GnkGkn. (9)

As it may be seen from the above formulas a probe described by
a pure state ρ0 = |ψ0〉〈ψ0| maximizes the QFI. In those cases the
QFI reduces to the variance of the generating Hamiltonian G , i.e.
H = 4#G2. In addition, for a pure state we have ρ2

θ = ρθ and thus
Λ0 = 2i[ρ0,G], i.e.

Λ0 = 2i
∑

k

(
G0k|ψ0〉〈ψk| − Gk0|ψk〉〈ψ0|

)
. (10)

3. Estimation of bilinear couplings

In this section we address the case of local estimation of vari-
ous bilinear couplings (single- and two-mode squeezing, two-mode
mixing) using Gaussian probes at fixed energy.
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3.1. Single-mode squeezing

Here we consider the estimation of the parameter θ imposed by
the unitary transformation exp(−iθG), where G is the generating
Hamiltonian

G = 1
2

(
a†2 + a2

)
. (11)

We analyze the precision achievable in the estimation of θ by us-
ing different classes of (Gaussian) probe states. The measurement
aimed to estimate θ is made on the transformed state

ρθ = exp(−iθG)ρ0 exp(−iθG). (12)

At first we analyze the case of a Gaussian pure probe, i.e. a
squeezed coherent state of the form ρ0 = |ψ0〉〈ψ0| with |ψ0〉 =
S(r)D(α)|0〉, where

D(α) = exp[αa† − α∗a], (13)

S(r) = exp
[
r
2

(
a†2 − a2

)]
(14)

and where, without loss of generality, we have chosen a real
squeezing parameter r and a complex displacement α = xeiφ . Since
ρ0 is a pure state, the QFI will be given by

H = 4#G2 =
〈(
a†2 + a2

)2〉 −
〈
a†2 + a2

〉2
. (15)

Upon evaluating all the expectation values we obtain:

#G2 = −x2 cos2φ sinh2r + (2N + 1) sinh2 r + N + 1
2

(16)

where N ≡ 〈a†a〉 = x2 + sinh2 r denotes the overall energy of the
probe signal. The signal optimization corresponds to the maximiza-
tion of H over the state parameter with the constraint of fixed N .
The phase φ is a free parameter since it does not influence the
total energy. The choice cos2φ = −1 maximizes H leading to

H = 4
(
N − sinh2 r

)
sinh2r + 4(2N + 1) sinh2 r + 4N + 2 (17)

which grows monotonically with sinh2 r and achieve its maximum

Hmax = 8N2 + 8N + 2 (18)

for sinh2 r = N and α = 0, corresponding to a squeezed vacuum
probe. Thus, to obtain the maximum accuracy in the estimation
of θ it is more efficient to use all the energy in squeezing rather
than field amplitude. Since using mixed states cannot improve the
quality of estimation we conclude that squeezed vacuum is the
optimal Gaussian probe. Summarizing, the most convenient way of
estimating a squeezing parameter is to probe the transformation
by a squeezed vacuum probe. The corresponding QFI scales as H '
8N2 in terms of the overall energy of the probe.

3.2. Two-mode mixing

Here we consider the case where the generator G is the two-
mode mixing Hamiltonian:

G = a†b + ab†. (19)

The optimal probe is made by a pure state. However, in order to
see explicitly the effects of thermal contribution we consider a
probe state made by factorized squeezed thermal states:

ρ0 =
[
Sa(r) ⊗ Sb(s)

]
νa ⊗ νb

[
S†a(r) ⊗ S†b(s)

]
(20)

where νa,b are the density matrices of thermal states:

νk = 1
(n̄k + 1)

∑

n

(
n̄k

n̄k + 1

)n

|n〉〈n|. (21)

Eq. (8) rewrites as

H = 4
∑

jkmn

p jk
p jk − pmn

p jk + pmn
G jkmnGmnjk (22)

where pkn = pkpn are the thermal coefficients. The Heisenberg
evolution of the mode operators allows to calculate the matrix el-
ements of G

G jkmn = 〈 j,k|S†a(r)S†b(s)(a†b + ab†)Sa(r)Sb(s)|m,n〉
= cosh(r + s)

(√
(m + 1)(k + 1)δ j=m+1δn=k+1

+
√

( j + 1)(n + 1)δm= j+1δk=n+1
)

+ sinh(r + s)
(√

( j + 1)(k + 1)δm= j+1δn=k+1

+
√

(m + 1)(n + 1)δ j=m+1δk=n+1
)
. (23)

The resulting QFI reads as follows

H = 4
[
sinh2(r + s)

(
(n̄a − n̄b)2

2n̄an̄b + n̄a + n̄b
+ (n̄a + n̄b + 1)2

2n̄an̄b + n̄a + n̄b + 1

)

+ (n̄a − n̄b)2

2n̄an̄b + n̄a + n̄b

]
. (24)

The total photon number of the system is given by the sum

N = n̄a + n̄b + (2n̄a + 1) sinh2 r + (2n̄b + 1) sinh2 s. (25)

The QFI (24) has no point of gradient zero that is compatible with
the energy bound (25). Since it is a continuous function, to find
its maximum we need to investigate its value at the borders of
its domain. Let us first consider the case n̄a = n̄b = 0, i.e. a probe
made by two disentangled squeezed vacuums. The energy writes
as N = sinh2 r + sinh2 s and the QFI becomes H = 4sinh2(r + s)
The maximum is reached when r = s, which gives

H1 = 4N2 + 8N. (26)

The second case is given by two thermal states, when r = s = 0.
The QFI achieves its maximum H2 = 4N for n̄a = 0 n̄b = 0, i.e.
when one of the states is at zero temperature. In this case the
scaling is dramatically degraded and the corresponding precision
is at the so-called shot-noise limit. The last possible combination
is given by a thermal state and a squeezed vacuum, i.e. r = 0 and
n̄b = 0. The total energy is now given by N = n̄a + sinh2 s, and the
QFI by H = 4[N + 2n̄a(N − n̄a)]. The maximum is obtained when
the energy is equally distributed between the thermal state and
the squeezed state, n̄a = sinh2 s = N

2 :

H3 = 2N2 + 4N. (27)

The Fisher information is smaller than the case of two squeezed
vacuum though the scaling as N2 still holds. Overall, we see that
the maximum Fisher information is obtained using two equally
squeezed vacuums. Since this is the combination of two pure
states, we can use (10) to obtain the SLD that realizes the opti-
mal measurement:

Λ0 = 2i
√
N(N + 2)Sa Sb

(
|0,0〉〈1,1| − |1,1〉〈0,0|

)
S†a S

†
b. (28)

In order to investigate the role of entanglement in the estimation
procedure we consider the probe prepared the state

ρ0 = |ψ00〉〈ψ00|, (29)

|ψ jk〉 ≡
∣∣ψ jk(φ,λ)

〉〉
= U (φ)T (λ)| j,k〉 (30)

where

U (φ) = exp
[
−iφ(ab† + a†b)

]
, (31)

T (λ) = exp
[
−iλ(ab + a†b†)

]
. (32)
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The probe is transformed into ρθ = e−iθGρ0eiθG where again we
are using the generator (19). Since we are dealing with a pure
state, the QFI H = 4#G2 is given by

H = 16cosh2 |λ| sinh2 |λ|
(
1− 4cos2 φ sin2 φ

)
(33)

where we have used the Heisenberg evolution of the mode opera-
tors. The energy constraint is given by

N = 〈a†a〉 + 〈b†b〉 = 2sinh2 |λ|, (34)

thus the QFI can be rewritten as

H =
(
4N2 + 8N

)(
1− 4cos2 φ sin2 φ

)
. (35)

Since ∂φN = 0, we can freely choose a value for φ, in order to
maximize H . The maximum Fisher information is obtained for
cos4φ = 1 and corresponds to H = 4N2 + 8N , i.e. no improvement
is obtained using an entangled probe. The SLD operator that real-
izes the optimal measurement is found using (10):

Λ0 = 2i
√
2N(N + 1)

{
|ψ00〉〈ψ20| + |ψ00〉〈ψ02|

− |ψ20〉〈ψ00| − |ψ02〉〈ψ00|
}
. (36)

3.3. Two-mode squeezing

The procedure used for the case of two-mode mixing may be
analogously applied when the generator G is given by the two-
mode squeezing Hamiltonian:

G = ab + a†b†. (37)

First we analyze the case of an initial density matrix, see (20),
that describes two disentangled squeezed thermal states. The same
steps done to obtain (24) can be repeated, using the Hamiltonian
(37) instead of (19). The maximum of the QFI is again achieved by
a probe made by two equally squeezed vacuum states and corre-
sponds to

Hmax = 4(2N + 1)2 (38)

where N = 2sinh r. The SLD reads as follows

Λ0 = 2i(N + 1)Sa Sb
(
|0,0〉〈1,1| − |1,1〉〈0,0|

)
S†a S

†
b. (39)

The same can be done for the case of a probe such as (29). The
corresponding QFI is given by

H = 8cosh2 |λ|
[(
cos2 φ − sin2 φ

)2
cos(2argλ) sinh2 |λ|

+ 2sinh2 |λ| + 1
]
. (40)

The maximum Fisher information Hmax = 4N2 + 8N is achieved
when cos(arg2λ) = 1 and cos2φ = 1 and using the SLD

Λ0 = 2i(2N + 1)
(
|ψ00〉〈ψ11| − |ψ11〉〈ψ00|

)
. (41)

4. Estimation of squeezing by homodyne detection

In Section 3 we have shown that squeezed vacuum is the
optimal reference Gaussian state to estimate the parameter of
a squeezing transformation. However, the optimal measurement
maximizing the QFI, that is the SLD, is not realizable with cur-
rent technology. It is thus of interest to investigate whether a
feasible measure may be used to effectively probe the perturbed
squeezed vacuum. We focus to the case of single-mode squeezing
estimation; an analogue analysis may be performed for two-mode
operations. Our approach is to exploit homodyne detection to mea-
sure field-quadrature:

xα = 1
2

(
ae−iα + a†eiα

)
(42)

and inferring the squeezing parameter through the results ob-
tained with multiple homodyne measurements. The homodyne
probability p(x|θ) is given by

p(x|θ) = Tr
[
ρθΠx(θ)

]
, (43)

Πx = |x〉θ θ〈x| being the spectral measure of the quadrature (42).
The resulting distribution for a squeezed vacuum to which an un-
known squeezing has been applied, is a zero mean (Tr[ρθ xα] = 0)
Gaussian distribution

p(x|θ) = 1
√
2πΣ2

θ

exp
{
− x2

2Σ2
θ

}
(44)

with variance

Σ2
θ = cos(2α)

√
N(N + 1)

+
(
N + 1

2

)[
cosh(2θ) + sin(2α) sinh(2θ)

]
. (45)

The reason to choose homodyne detection is that the classical
Fisher information (2) of the homodyne distribution pα(x|θ) may
be optimized over α in order to achieve the same scaling as the
QFI versus the energy of the probe. Being α1 = argmaxα Fα(θ) we
have

cosα1 =
[
−

√
1
2

−
√
N(N + 1)

(1 + 2N) cosh θ − sinh θ

]
, (46)

Fα1 (θ)
N*1' 8N2. (47)

This means that homodyne detection with optimized phase α is
a good candidate to achieve ultimate bounds to precision, as far
as it saturates the classical Cramer–Rao bound. Indeed, Von Mises–
Bernstein–Laplace theorem ensures that Bayesian a posteriori distri-
bution p(θ |{x}M), representing the probability of the squeezing to
be θ given the homodyne sample {x}M , converges asymptotically
to a Gaussian distribution, centered in the true value with vari-
ance saturating the Cramer–Rao bound. In other words, Bayesian
estimators are asymptotically unbiased and efficient. In the follow-
ing, we thus discuss in some details estimation of squeezing by
homodyne detection and Bayesian analysis. We consider a large
number M of homodyne measurements on repeated preparations
of the same system. Since the measurements are independent, the
a posteriori distribution is proportional to the product of the single
data distribution

p
(
θ
∣∣{x}M

)
∝

M∏

k=1

p(θ |xk) =
M∏

k=1

p(xk|θ)p(θ)

p(xk)
(48)

where we repeatedly used the Bayes Theorem. p(θ) is the a priori
distribution of the parameter, p(x) the overall probability of the
outcome x, while p(x|θ) is the probability to obtain the outcome x
when the squeezing parameter is θ . The probability p(θ |{x}M) has
to be normalized, Eq. (48) thus rewrites as

p
(
θ
∣∣{x}M

)
= 1

A
p(θ)M

M∏

k=1

p(xk|θ)

p(xk)
(49)

where A is the normalization constant given by

A =
+∞∫

−∞
p(θ)M

M∏

k=1

p(xk|θ)

p(xk)
. (50)

We assume to have no a priori information on the squeezing θ , i.e.
we take p(θ) as a uniform function. Notice also that the product
of the distributions p(xk) does not depend on θ and it cancels out
due to normalization. Finally, since we wish to perform a large



Author's personal copy

938 R. Gaiba, M.G.A. Paris / Physics Letters A 373 (2009) 934–939

Fig. 2. (Color online.) Left: Rescaled a posteriori distribution qM (θ) for M = 5, N = 40 (black), M = 10, N = 20 (blue), M = 20, N = 10 (red), M = 40, N = 5 (green). Right:
LogPlot of the rescaled a posteriori distribution for the same values of the parameters.

number M * 1 of measurements, the product in (49) will contain
many repeated elements: each outcome x is obtained a number of
times proportional to its probability p(x|θ∗), being θ∗ the true (and
unknown) value of the squeezing parameter. We can then re-order
the product so that its index now runs through all possible values
of x:

p
(
θ
∣∣{x}M

)
' 1

A

∏

x

p(x|θ)Mp(x|θ∗)

= 1
A
exp

{
M

∫
p(x|θ∗) ln p(x|θ)dx

}
(51)

where we have taken a limit to the continuum for the variable x.
The integral in (51) can be solved leading to

+∞∫

−∞
p(x|θ∗) ln p(x|θ)dx = −1

2

[
Σ2

∗
Σ2

θ

+ ln
(
2πΣ2

θ

)]
(52)

where we have introduced the short notation Σ2
∗ ≡ Σ2

θ∗ . Overall,
we obtain

p
(
θ
∣∣{x}M

)
= 1

A

[
Σ2

θ exp
(

Σ2
∗

Σ2
θ

)]−M/2

(53)

where we have redefined A so to include all terms independent
from θ . The mean θ̄ of the a posteriori distribution p(θ |{x}M) is
our estimator and the variance #θ2 the corresponding confidence
interval

θ̄ =
+∞∫

−∞
dθ θ p

(
θ
∣∣{x}M

)
, (54)

#θ2 =
+∞∫

−∞
dθ (θ − θ̄ )2p

(
θ
∣∣{x}M

)
. (55)

An optimal value for the homodyne phase α is obtained upon
minimizing the variance of the a posteriori distribution. Be-
sides the value α1 reported above we found that optimal scaling
(∝ M−1N−2) of the variance may be achieved also for the phase
value

α2 = −sign(θ∗)arccos
[√

sech(2θ∗) sinh2 θ∗ ]
,

which, remarkably, is independent on the probe energy N (indeed,
we have α1 = α2 + O (1/N)).

In Fig. 2 we report the rescaled distribution qM(θ) = p(θ |{x}M)/
(MN) for different values of the probe energy and the number
of measurements, we also report p(θ |{x}M)/(MN) in a logarithmic
scale to enlighten the differences in the distribution tails. As it is
apparent from the plots the relevant parameter is the energy of
the probe. For highly excited probes, i.e. for N * 1, we expand Σ2

θ
as

Σ2
θ =

(
N + 1

2

)[
cos(2α) + cosh(2θ) + sin(2α) sinh(2θ)

]

− cos(2α)

8N
+ O

(
1
N2

)
(56)

and neglect all orders scaling as N−2 or higher. Upon choosing the
homodyne phase α2 we have

Σ2
∗ ' sech(2θ∗)

8N
, (57)

Σ2
θ ' sech(2θ∗)

[
(2N + 1) sinh2(θ − θ∗) + 1

8N

]
. (58)

Upon substituting (57) and (58) into (53) we see explicitly that
p(θ |{x}M) = p(θ − θ∗|{x}M) and that the estimator is indeed unbi-
ased, i.e. θ̄ = θ∗ . We also found that the variance is independent
from the true value of the squeezing θ∗: Numerical computation
shows that the variance #θ2 scales as ∼ 1

4MN2 for large N , that
is, apart from a factor two, the same scaling of the inverse of the
QFI (18). Notice that the optimal phase α2, depends on θ∗ , which
is the unknown parameter that we are trying to estimate. This is
consistent with the local nature of the estimator procedure. From
a practical point of view this means that some kind of feedback
mechanism or adaptive technique should be employed to adjust
the phase of the homodyne detector [16,33]. We conclude that ho-
modyne detection with Bayesian analysis is a robust and accurate
estimation technique for the squeezing parameter. Remarkably, this
scheme may be implemented with current technology.

5. Conclusions

In this Letter we have addressed local quantum estimation of
bilinear Hamiltonians probed by Gaussian states. We evaluated the
relevant quantum Fisher information (QFI) thus obtaining the ul-
timate bound on precision. Upon maximizing the QFI we found
that single- and two-mode squeezed vacuum represent an optimal
and universal class of probe states, achieving the so-called Heisen-
berg limit to precision in terms of the overall energy of the probe.
For two-mode operations no improvement may be obtained using
two-mode entangled probes. Notice, however, that we have not in-
vestigated the use of probes made by states of the system under
investigation (either single- or two-mode) entangled with auxiliary
modes. This may improve estimation of the parameter [34]: work
along these lines is in progress and results will be reported else-
where.

It is worth noting that the Heisenberg scaling #θ ∼ N−1 in
terms of the overall energy of the probe may be achieved also
using global quantum estimation techniques (see e.g. [9] for the
case of two-mode mixing). In that case, however, optimization
of the probe have been performed over the whole set of quan-
tum states, not focusing on Gaussian states. In turn, this means
that Gaussian states are effective resources, which allow to achieve
the ultimate bound on precision imposed by quantum mechan-
ics using measurement schemes feasible with current technology.
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This has been confirmed by a Bayesian analysis applied to the
estimation of squeezing by homodyne detection, which achieves
near-optimal sensitivity in any working regime, i.e. for any (true)
value of the squeezing parameter. For the estimation of squeezing,
Heisenberg scaling for Gaussian probes has been also found ex-
ploiting global strategies [21]. In that case, however, though the
measurement does not depend on the value of the parameter,
there is a strong dependence on the probe states. We have also
explicitly obtained the optimal observables based on the symmet-
ric logarithmic derivative, which however do not correspond, in
general, to a feasible detection scheme.

Our results confirm, in term of statistical distinguishability, that
Gaussian states and Gaussian measurements assisted by Bayesian
analysis represent robust and accurate resources for the estimation
of unitary operations of interest in continuous variable quantum
information.
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