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We propose a near-optimum receiver for the discrimination of binary phase-shift-keyed coherent states employ-
ing photon-number-resolving detectors. The receiver exploits a discrimination strategy based on both so-called
homodyne-like and direct detection, thus resulting in a hybrid scheme. We analyze the performance and robust-
ness of the proposed scheme under realistic conditions, namely, in the presence of inefficient detection and dark
counts. We show that the present hybrid setup is near- optimum and beats both the standard quantum limit and the
performance of the Kennedy receiver. © 2023 Optica Publishing Group

https://doi.org/10.1364/JOSAB.470806

1. INTRODUCTION

The problem of discriminating quantum states is a challenging
task in quantum information theory, since quantum mechanics
does not allow perfect discrimination if the considered states
are not orthogonal. In particular, the task of coherent state
discrimination is of great relevance for quantum communica-
tions, since these states are the typical information carrier in
optical channels, finding a large application in both physics and
telecommunication engineering [1]. The simplest scenario is
binary phase shift keying (BPSK), where one has to discriminate
between two coherent states with the same energy but a π phase
difference [1–3]. In this case, the theory developed by Helstrom
[2,3] identifies the minimum error probability, the so-called
Helstrom bound, raising the question concerning the possible
implementation of an optimal receiver able to achieve this
bound.

Several proposals of feasible optimum or near-optimum
receivers have been advanced in literature, based on either
single-shot discrimination or feedback-based strategies.
As regards single-shot strategies, there are several options.
Homodyne receivers [1] are constructed as an extension of
the classical systems for discrimination of signals and are
based on the measurement of the quadratures of the optical
field. The Kennedy receiver [4] is based on a nulling displace-
ment operation followed by photodetection and proves to
be near-optimum, reaching in the high energy regime twice
the Helstrom bound. Recently, such a scheme has also been
improved by Takeoka and Sasaki [5] by optimizing the dis-
placement operation, obtaining a further advantage in the
range of small energies. Finally, Sasaki and Hirota [6] have
proposed a scheme that is able to reach the Helstrom bound
based on the application of unitary operations defined in the

two-dimensional space spanned by coherent states. However,
the realization of such unity would require highly non-linear
optical elements, making this kind of receiver not realizable with
the usual practical linear optics components.

Better results are obtained with feedback strategies. Dolinar
[7] extended the principle of the Kennedy receiver by design-
ing a new receiver employing a time-varying displacement
operation conditioned on the outcome of continuous photode-
tection. The Dolinar receiver is indeed optimum and reaches
the Helstrom bound. More recently, the Dolinar approach has
been revised, and less demanding strategies have been proposed
that employ feed-forward methods exploiting the slicing of the
coherent state. In these discrimination strategies, the incoming
state is split into a finite number of copies with smaller energies,
and each copy is measured conditioning a unitary operation on
the following one [8–10].

In this paper. we address single-shot binary discrimination in
realistic conditions. In particular, we propose a hybrid scheme
based on the combination of homodyne-like and direct detec-
tion and prove it to be robust against detector inefficiencies and
phase noise affecting the input signals. In more detail, we exploit
a homodyne setup that we call homodyne-like, where the usual
p-i-n photodiodes are replaced with photon-number-resolving
(PNR) detectors having a finite photon number resolution [11],
and a low local oscillator (LO) is considered [12,13]. Good
candidates as PNR detectors are hybrid photodetectors, which
are endowed with partial photon number resolution and a lin-
ear response up to 100 photons [14], though with a quantum
efficiency of about 50% in the green spectral region. Very high
quantum efficiencies are obtained with transition-edge sen-
sors (TESs), but their dynamic range falls to approximatively
10 photons. Interestingly, these detectors have been recently
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used to implement homodyne-like detection schemes [15,16].
Therefore, in our theoretical analysis, we include the presence of
quantum efficiencyη < 1, and also of a non-zero dark count rate
ν and visibility reduction ξ < 1.

The structure of the paper is the following. In Sections 2
and 3, we recall the basics of binary discrimination theory and
describe the features of homodyne-like detection, respectively.
Then, in Section 4, we present our proposal of a hybrid receiver
employing both homodyne-like and direct detection schemes
and considering ideal PNRs. In Section 5, we show the robust-
ness of the hybrid receiver against detection inefficiencies (such
as finite resolution of PNRs, quantum efficiency, dark counts,
and interference visibility). Section 6 closes the paper with some
concluding remarks.

2. BINARY DISCRIMINATION OF COHERENT
SIGNALS

The theory of quantum discrimination between non-
orthogonal states has been addressed by Helstrom [2]. In a
general framework, a sender encodes a classical symbol “0”
or “1” onto two quantum states |ψ0〉 and |ψ1〉 with a pri-
ori probabilities q0 and q1, respectively. The states are sent
through a communication channel and a receiver performs
a positive-operator-valued measure (POVM) to infer the
encoded values 0 or 1. If p( j |k) ( j , k ∈ {0, 1}) is the condi-
tional probability of obtaining the outcome j if k was sent, then
the receiver discriminates the states with an error probability
Perr = q0 p(1|0)+ q1 p(0|1). The task is to find an optimal
POVM that minimizes Perr, and the corresponding receiver is
referred to as optimum.

Here we address the discrimination of two pure coherent
states of a single-mode optical field, that is, states of the form
|ζ 〉 = D(ζ )|0〉, ζ ∈C, where D(ζ )= exp(ζa †

− ζ ∗a) is the
displacement operator, a is the field operator, [a , a †

] = 1,
and |0〉 is the vacuum state. In particular, we consider a BPSK
scheme, where the two states to be discriminated are

|α0〉 = |−α〉 and |α1〉 = |α〉, (1)

having the same energy |α|2 but opposite phases (a π phase
shift). In the following, we focus on the case of equal a priori
probabilities q0 = q1 = 1/2, and, without loss of generality, we
assumeα ∈R+.

Helstrom’s theory allows to compute the minimum error
probability, the corresponding Helstrom bound , which reads

PHel =
1

2

[
1−

√
1− 4q0q1|〈α0|α1〉|

2
]

(2)

=
1

2

[
1−

√
1− e−4α2

]
. (3)

The optimal measurement strategy achieving such a
minimum is the “cat state” measurement, defined by the two-
valued POVM {50, 11−50}, 50 = |ψcat〉〈ψcat|, where
|ψcat〉 = c 0(α)|α0〉 + c 1(α)|α1〉 is an optimized cat state [2].
However, a concrete realization of such a POVM is not an
easy task, and therefore, there exist many alternative feasible
schemes. Here we introduce the Kennedy receiver, which will be
taken as a benchmark throughout the whole paper.

The Kennedy receiver [4], also known as a displacement
receiver, consists of the application of a fixed displacement oper-
ation D(α) applied to each of the two pulses sent, with the effect
of mapping

|−α〉→|0〉 and |α〉→ |2α〉. (4)

This can be seen as a nulling operation able to send to the
vacuum one of the two input signals. The displacement can be
implemented by mixing the incoming signals with a properly
chosen LO at a beam splitter with suitable transmissivity. Then,
the discrimination problem is turned into vacuum discrimina-
tion, which can be performed by employing an on–off detector,
leading to the error probability

PK =
|〈0|2α〉|2

2
=

e−4α2

2
. (5)

Although PK > PHel, such receiver is near-optimum, since in
the regimeα2

� 1, we have PK ≈ 2PHel.
In the following, we will consider a generalization of the

Kennedy receiver, which we will refer to as a displacement-
PNR(D-PNR) receiver, where the on–off detector is replaced
by a PNR detector. As will be discussed throughout the paper,
the photon number resolution of the detector will turn out to be
useful to improve the decision strategy in the presence of realistic
inefficiencies of the receiver.

3. HOMODYNE-LIKE MEASUREMENT

With homodyne-like detection, we refer to a homodyne setup
that involves PNR detectors rather than common photodi-
odes [12]. In this scheme, the input state described by the
density operator ρ interferes at a balanced beam splitter with a
low-intensity LO, prepared in the coherent state |z〉, z ∈R+.
Then, PNR detection is performed on the beams outgoing the
beam splitter, having access to the statistics of photon numbers
n and m. Finally, we compute the difference photocurrent
1= n −m,1 ∈Z (see Fig. 1).

In the case of our interest, we consider a coherent input state
ρ = |ζ 〉〈ζ |, ζ ∈C. Then, the photocurrent 1 is the difference

 

Fig. 1. (Top) Implementation of homodyne-like detection. The
incoming signal is mixed at a balanced beam splitter with a low local
oscillator (LO), and then PNR detection is performed on the two
branches. (Bottom) Scheme of the hybrid receiver discussed in the
paper. The input coherent state is split at a beam splitter of variable
transmissivity τ . On the reflected beam, we perform homodyne-like
detection, whose outcome 1 conditions a displacement operation on
the transmitted signal. After that, we apply on–off measurement on it.
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of two Poisson random variables and therefore follows a Skellam
distribution [12]:

S(1; ζ )= e−µc (ζ )−µd (ζ )

[
µc (ζ )

µd (ζ )

]1/2
I1(2

√
µc (ζ )µd (ζ )) ,

(6)
1 ∈Z, where

µc (ζ )=
|ζ + z|2

2
, and µd (ζ )=

|ζ − z|2

2
, (7)

and I1(x ) is the modified Bessel function of the first kind. It is
worth noting that in the regime z2

� |ζ |2,

S(1; ζ )→
P(x =1/(

√
2z); ζ )

√
2z

, (8)

where

P(x ; ζ )=
1
√
π

exp

[
−

(
x −
√

2ζ
)2
]

(9)

is the homodyne probability distribution [17].
The scheme described above can be used to implement a

homodyne-like receiver [13], based on the measured outcome of
the photon number difference: if1< 0, we decide 0; if1> 0,
we decide 1; and if 1= 0, we perform a random choice. The
resulting error probability reads

PHL =
1

2

[∑
1<0

S(1; α)+
∑
1>0

S(1; −α)

]
+

S0

2
, (10)

with S0 = S(0; α)= S(0; −α). According to Eq. (8), in the
limit z2

� |ζ |2, we regain the traditional homodyne receiver
whose corresponding error probability reads

PH =
1

2

[∫
∞

0
dxP(x ; α0)+

∫ 0

−∞

dxP(x ; α1)

]

=
1− erf

(√
2α
)

2
, (11)

known as standard quantum limit (SQL), where erf(x ) is the
error function.

In the next section, we will see how we can exploit both the
direct detection and homodyne-like receiver to reduce the dis-
crimination error probability. Since the receiver uses at the same
time the two detection strategies, we refer to it as hybrid receiver.

4. NEAR-OPTIMUM HYBRID RECEIVER

The scheme of the hybrid receiver proposed in this paper is
depicted in Fig. 1. The idea is to exploit a D-PNR setup where
the nulling displacement is not assigned a priori, but is condi-
tioned on the outcome of homodyne-like detection performed
on a fraction of the input signal. In more detail, we split the
input coherent state |α0/1〉 = |∓α〉 at a beam splitter of variable
transmissivity τ (this can be obtained, for instance, considering
the polarization of input states and by using a polarizing beam
splitter), such that

|∓α〉 ⊗ |0〉→ |∓
√
τα〉 ⊗ |±

√
1− τα〉. (12)

Table 1. Decision Strategy for the Hybrid Receiver
Depicted in Fig. 1

Outcomes Decision

1≥ 0 off 0
1< 0 on 0
1< 0 off 1
1≥ 0 on 1

Then, we perform homodyne-like detection on the reflected
branch:

|α
(r )
0/1〉 = |±

√
1− τα〉. (13)

After that, we apply a feed-forward nulling displacement
operation on the transmitted part of the signal conditioned on
the outcome1 of the homodyne-like measurement:

1≥ 0→ apply D
(√
τα
)
, (14a)

1< 0→ apply D
(
−
√
τα
)

. (14b)

Finally, on the resulting displaced state, we perform a PNR
measurement in terms of on–off detection: the photon number
resolution of the detector will turn out to be useful in the pres-
ence of dark counts and visibility reduction, as we will see in the
following. The intuitive motivation behind the feed-forward
rule of Eq. (14) is the following. If we suppose that |α0〉was sent,
from the definition of the beam splitter operation of Eq. (12), it
is more likely to obtain1> 0. As a consequence, we decide to
perform a positive displacement sending the transmitted signal
into the vacuum such that the PNR detector does not click, and
we refer to this event as “off.” Of course, there is still a non-zero
probability to get 1< 0, and in that case, we decide to apply
a negative displacement such that the on–off detector is more
likely to count some photon. This event is called “on.” Finally,
for the case of 1= 0, the displacement amplitude is chosen to
be positive simply by convention. Analogous considerations
may be obtained by considering state |α1〉. Given this scenario,
the decision rule at the end of the final measurement is chosen
according to Table 1.

Since

p(1≥ 0; on|0)= p(1< 0; off|1)= 0, (15)

the error probability for the hybrid receiver is equal to

Phyb(τ )=
1

2

[
p(1< 0; off|0)+ p(1≥ 0; off|1)

]
=

1

2

[∑
1<0

S(1; α(r )0 )e
−4τα2

+

∑
1≥0

S(1; α(r )1 )e
−4τα2

]

=
e−4τα2

2

[∑
1<0

S(1;
√

1− τα)+
∑
1≥0

S(1; −
√

1− τα)

]
,

(16)

where we used the Skellam distribution in Eq. (6). For complete-
ness, we note that performing standard homodyne detection
instead of homodyne-like, the error probability of the previous
equation becomes
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P (HD)
hyb (τ )=

e−4τα2

2

{
1− erf

[√
2(1− τ)α

]}
. (17)

Note that if τ = 0, we have the homodyne receiver, whereas
if τ = 1, we retrieve the Kennedy one. This can be understood
since when τ = 1, the information coming from the homodyne
receiver is inconclusive, as it measures the vacuum leading to a
positive or negative outcome with 50% probability. Therefore,
knowing the outcome sign, we can apply the same inference
strategy as in the Kennedy receiver.

Equation (16) depends on τ , and therefore, we can opti-
mize it by finding the transmissivity τopt, which in general is a
function of α2, minimizing the value of Phyb(τ ) for every α2.
Consequently, we obtain the optimized error probability of our
receiver Phyb(τopt). To better enlighten the advantages of the
hybrid receiver, it is also relevant to introduce the ratio with the
standard Kennedy receiver in Eq. (5):

Rh/K =
Phyb(τopt)

PK
. (18)

Plots of Rh/K and τopt (in the inset) are displayed in the
top panel of Fig. 2. It emerges that τopt = 0 up to a threshold
energy Nth(z), which depends on the LO amplitude z, while
for α2 > Nth(z), it is an increasing function of the energy
and reaches asymptotically 1. Note that in the limit τ→ 1,
some information about the signal reaches the homodyne
receiver, and we still have an improvement in performance. If
α2
≤ Nth(z), the optimized strategy is realized with the sole

homodyne-like setup, whereas for larger energies, the more effi-
cient scheme is obtained by the appropriate interplay between
the homodyne-like and D-PNR parts of our receiver. The

0.1 0.2 0.3 0.4 0.5

0.80

0.85

0.90

0.95

1.00

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.01

0.05

0.10

0.50

Fig. 2. (Top) Plot of the ratio Rh/K as a function of the energy α2 of
encoded pulses for several values of LO intensity z2. In the inset, plot of
the optimized transmissivity τopt as a function of α2. For α2 > Nth(z),
we have τopt = 1− λ(z)/α2. (Bottom) Logarithmic plot of the error
probabilities as a function of α2 of the proposed hybrid scheme
Phyb(τopt) compared to the Kennedy receiver [Eq. (5)], homodyne-like
receiver [Eq. (10)], and Helstrom bound [Eq. (2)]. Here we fix the LO
intensity for the homodyne-like receiver and hybrid receiver to the
value z2

= 5.

choice of the optimal τ makes the receiver near-optimum (see the
bottom panel of Fig. 2) with a ratio Rh/K saturating to the value
R∞ < 1 for every value of the LO intensity.

As we noticed, if we increase the intensity of the LO |z〉, the
performance of homodyne-like detection approaches the stand-
ard homodyne one. In fact, the variance of the homodyne-like
quadrature probability distribution decreases as the LO energy
becomes quite larger with respect to the input signal one [18]. In
this case, the ratio in Eq. (18) reads

R (HD)
h/K =

P (HD)
hyb

PK
=

e 4(1−τ)α2

2

{
1− erf

[√
2(1− τ)α

]}
.

(19)
The saturation of Rh/K for large α2 suggests the following

ansatz on the expression of the optimized τopt, namely,

τopt = 1−
λ(z)
α2

for α2 > Nth(z), (20)

where λ(z) ∈R+ and depends on the LO amplitude z. As an
example, for the homodyne limit z2

→∞, by computing
the derivative of Eq. (19) with respect to τ and inserting the
expression in Eq. (20), we get the following relation that must be
satisfied byλ≡ λ(z=∞):√

2

πλ
− 4e 2λ

[1− erf(
√

2λ)] = 0, (21)

which leads to the numerical solution λ≈ 0.094. Then, the
threshold N(HD)

th ≡ Nth(z=∞) can be obtained by setting

τopt = 0, bringing us to N(HD)
th = λ, and the saturation ratio

reads

R (HD)
∞
= e 4λ

[1− erf(
√

2λ)] ≈ 0.786 . (22)

An identical analysis can be performed for the homodyne-like
case, where we may expectλ(z) < λ.

5. ROBUSTNESS AGAINST DETECTOR
INEFFICIENCIES

To investigate the robustness of our scheme, we now consider
a more realistic scheme of the hybrid receiver where we assume
to have PNR detectors with non-unit quantum efficiency, dark
counts, and finite resolution, namely, the detector can resolve up
to a given number of photons. Moreover, since the displacement
operation is achieved by means of the interference at a beam
splitter between the signal and a suitable coherent state, as men-
tioned above, we also address how non-unit visibility affects the
performance of the receiver.

A. Finite Resolution of PNR Detectors

Realistic PNR detectors have a finite photon number resolu-
tion, that is, they can resolve any number of photons n up to
M; to highlight this feature, we write PNR(M). For instance,
PNR(3) refers to a detector that has only four possible outcomes,
n ∈ {0, 1, 2,≥3}, where “≥3” means three or more photons.
Clearly, PNR(1) is an on–off photodetector.

PNR(M) detection may be described through the
finite-valued POVM {5n}n , n = 0, . . . , M, where
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5n = |n〉〈n| for n = 0, . . . , M − 1, (23)

5M = 11−
M−1∑
n=0

5n . (24)

As a consequence, if we are performing a PNR(M) measure-
ment on a generic coherent state |ζ 〉 (ζ ∈C), the probability of
detecting the outcome n reads

p (M)(n; N)= 〈ζ |5n|ζ 〉 =


e−N Nn

n! n < M ,

1− e−N
M−1∑
j=0

N j

j ! n =M ,

(25)
with a mean photon number N = |ζ |2.

For the receiver proposed in this paper, the exploitation of
a PNR(M) affects the homodyne-like detector. In fact, given
Eq. (25), the probability of getting the photon number dif-
ference 1 after the measurement on the reflected signal 13
reads

S(1; α(r )0/1)=

M∑
n=0

M∑
m=0

δn−m,1 p (M)
(

n;µc

(
α
(r )
0/1

))
p (M)

(
m;µd

(
α
(r )
0/1

))
,

(26)
where 1=−M, . . . , M, with µc/d given in Eq. (7), and
δk, j is the Kronecker delta. In the limit M� 1, S(1; α(r )0/1)

approaches the Skellam distribution in Eq. (6).
The error probability for the hybrid receiver in the presence of

PNR(M) is then equal to

P (M)
hyb (τ )=

e−4τα2

2

[
−1∑

1=−M

S(1; α(r )0 )+

M∑
1=0

S(1; α(r )1 )

]
,

(27)
which can be optimized to find the transmissivity τopt(M),
which shows a behavior qualitatively equivalent to that depicted
in Fig. 2. The ratio

Rh/K (M)=
P (M)

hyb (τopt(M))

PK
(28)

is depicted in Fig. 3. The effect of the finite resolution is to
decrease the saturation ratio R∞(M), which in any case is still
less than one, maintaining the advantages of our receiver with
respect to the Kennedy.
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Fig. 3. Plot of the ratio Rh/K (M) as a function of α2 for several val-
ues of the PNR resolution M. With the notation PNR(∞), we refer to
the case of ideal PNR. We fix a LO intensity to be equal to z2

= 3.

B. Quantum Efficiency η

Concerning the inefficient photodetection, the introduction of
quantum efficiency η has the effect of re-scaling all the coherent
amplitudes of the measured pulses by a factor

√
η, since it corre-

sponds to a photon loss.
For the Kennedy receiver employing inefficient on–off

detection, the error probability is changed into

PK (η)=
e−4ηα2

2
. (29)

Instead, for the hybrid receiver, the efficiency affects
both homodyne-like and PNR measurement schemes. For
homodyne-like detection, we have µc → ηµc and µd→ ηµd ,
respectively, obtaining

Sη
(
1; α

(r )
0/1

)
=

M∑
m=0

δn−m,1 p (M)
(

n; ηµc

(
α
(r )
0/1

))
p (M)

(
m; ηµd

(
α
(r )
0/1

))
.

(30)
On the other hand, an inefficient on–off detection by the

PNR implies the substitution exp(−4τα2)→ exp(−4ητα2).
By performing these substitutions in Eq. (27), we get the
corresponding error probability

P (M)
hyb (τ ; η)=

e−4ητα2

2

[
−1∑

1=−M

Sη(1; α(r )0 )+

M∑
1=0

Sη(1; α(r )1 )

]
,

(31)
and the optimization procedure leads to a different opti-
mized transmissivity τopt(M, η), which shows the same
qualitative behavior depicted in Fig. 2. The optimized
P (M)

hyb (τopt(M, η); η) is depicted in the top panel of Fig. 4.
For a given value of η, exploiting the hybrid receiver is still
preferable to the Kennedy, and the ratio
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Fig. 4. (Top) Logarithmic plot of the error probability of the hybrid
receiver employing PNR(M) detectors and the Kennedy receiver as a
function of α2 for several values of η. Here M = 3. (Bottom) Plot of
the saturation ratio R∞(M; η) as a function of quantum efficiency η
for several PNR(M). The LO intensity for both plots is z2

= 5.
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Rh/K (M, η)=
P (M)

hyb (τopt(M, η); η)

PK (η)
(32)

still saturates to a value R∞(M, η), which depends on η. The
plot of the saturation R∞(M, η) as a function of η is depicted
in the bottom plot of Fig. 4. If M =∞, the saturation ratio is
monotonic and the minimum is achieved for η= 1. On the
contrary, since the value of η re-scales the counting rates and
reduces the negative consequences induced by the truncation
of the Poisson distribution up to M, with a resolution M <∞,
the function is no longer monotonic. Therefore, if η is larger
than a given threshold value, the ratio R∞(M, η) increases
with efficiency, whereas for smaller η, the efficiency is too low,
and R∞(M, η) behaves as a decreasing function. Note that
for M <∞, the curves exhibit a minimum at a given η, whose
actual value approaches one as M→∞.

C. Dark Count Rate ν

Dark counts are random clicks of the PNR due to environ-
mental noise and so not directly correlated to the properties
of the coherent measured pulse. Dark counts can be described
in terms of Poisson counting [19], occurring at rate ν, which
in many realistic conditions takes values ν . 10−3 [20–24].
Generally speaking, the outcome n of an ideal PNR measure-
ment on a generic coherent state |ζ 〉 in the presence of dark
counts turns out to be the sum of two Poisson variables and
therefore still follows a Poisson distribution with a rate equal
to |ζ |2 + ν. [The sum of two Poisson independent random
variables is still a Poisson random variable. If x ∼ P(µ) and
y ∼ P(λ) are two Poisson independent random variables with
rates µ and λ, respectively, the probability that x + y gets the
value k reads p(x + y = k)=

∑k
l=0 p(x = l)p(y = k − l)

= e−µ−λ
∑k

l=0 µ
lλk−l/(l !(k − l)!) = e−µ−λ(µ+ λ)k/k! ∼

P(µ+ λ)]. In the presence of a PNR(M), we have a probability
p (M)(n; N) as in Eq. (25) but with the rate N = |ζ |2 + ν.

The presence of dark counts has a significant effect on the
performances of quantum receivers. In particular, we will now
consider as a benchmark the D-PNR(M) receiver (D-PNRM)
rather than the Kennedy receiver, and exploit the photon num-
ber resolution to choose the decision rule for discrimination in a
more accurate way. Clearly, the D-PNRM receiver with M = 1
performs as the Kennedy. Thus, the analysis will proceed in two
steps, discussing first the cases of D-PNRM and then approach-
ing the hybrid receiver proposed. Without loss of generality, in
the following, we will assumeη= 1.

D-PNRM receiver. In the presence of dark counts, employ-
ing a PNR(M) detector after the displacement operation rather
than an on–off detector brings some advantages. Indeed, in such
a situation, the PNR may click even if the vacuum is measured,
vanishing the principle behind the nulling technique. As a con-
sequence, the decision rule should be changed according to the
maximum a posteriori probability (MAP) criterion, discussed
in Appendix A. If |α0〉 is sent, the probability of detecting n
photons is p (M)(n; ν), whereas if |α1〉 is sent, the probability
is p (M)(n; 4α2

+ ν). The error probability for the D-PNRM
receiver is then obtained as

PD(M, ν)= 1−
1

2

M∑
n=0

max[p (M)(n; ν), p (M)(n; 4α2
+ ν)].

(33)
The procedure of maximizing the a posteriori probability is

equivalent to defining a discrimination threshold nth(ν) such
that all measurement outcomes n ≥ nth(ν) are assigned to state
1, and all n < nth(ν) are assigned to state 0. The threshold num-
ber is obtained requiring p (M)(nth; ν)= p (M)(nth; 4α2

+ ν)

and reads

nth(ν)=min

[⌈
4α2

ln
(
1+ 4α2/ν

)⌉ , M

]
, (34)

where d·e is the ceiling function. We note that the threshold is
a function of α2. For the case of PNR(1), we have nth(ν)= 1,
retrieving the on–off discrimination of the standard Kennedy
receiver.

Plots of the error probabilities for different PNR(M) are
depicted in Fig. 5, where it emerges that dark counts have a
drastic effect on large energies, making the error probability
saturating. The origin of such an effect may be addressed to the
finite resolution M of the PNR. Indeed, if α2 is large enough,
according to Eq. (34), the discrimination threshold will be
chosen as nth(ν)=M; thus, the sole outcome M will infer state
1, and all other outcomes smaller than M will infer state 0. In
such a situation, the receiver makes the wrong decision only if an
M outcome were actually induced by the state |α0〉. Then, the
error probability for largeα2 should be

PD(M, ν)≈
p (M)(M; ν)

2
=

1

2

1− e−ν
M−1∑
j=0

ν j

j !

 , (35)

which is independent of the energy of the pulsesα2.
Hybrid receiver. When considering the hybrid receiver, the

presence of dark counts affects also homodyne-like detection.
Indeed, the probability of obtaining the photocurrent difference
1=−M, . . . , M reads

Sν
(
1; α

(r )
0/1

)
=

M∑
n=0

M∑
m=0

δn−m,1 p (M)
(

n;µc

(
α
(r )
0/1

)
+ ν

)
p (M)

×

(
m;µd

(
α
(r )
0/1

)
+ ν

)
.

(36)
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Fig. 5. Logarithmic plot of the error probability for the
displacement-PNR(M) receiver as a function of α2 for several values of
M. The dark count rate is set to ν = 10−3.
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Table 2. Decision Rule for Hybrid Receiver in
Presence of Dark Counts

Outcomes Decision

1≥ 0 n < nth(ν) 0
1< 0 n ≥ nth(ν) 0
1< 0 n < nth(ν) 1
1≥ 0 n ≥ nth(ν) 1

Given all the previous considerations, the decision rule for the
hybrid receiver in the presence of dark counts should be modi-
fied into that of Table 2. The error probability then reads

P (M)
hyb (τ ; ν)= q0 [p(1< 0, n < nth(ν)|0)+ p(1≥ 0, n ≥ nth(ν)|0)]

+ q1 [p(1< 0, n ≥ nth(ν)|1)+ p(1≥ 0, n < nth(ν)|1)]

=
1

2

nth(ν)−1∑
n=0

p (M)(n; 4τα2
+ ν)

[
−1∑

1=−M

Sν(1; α(r )0 )+

M∑
1=0

Sν(1; α(r )1 )

]

+
1

2

M∑
n=nth(ν)

p (M)(n; ν)

[
−1∑

1=−M

Sν(1; α(r )1 )+

M∑
1=0

Sν(1; α(r )0 )

]
. (37)

The optimized error probability P (M)
hyb (τopt(M, ν); ν) is

depicted in the top panel of Fig. 6, whereas the optimized trans-
missivity τopt(M, ν) is depicted in its bottom panel. For better
visualization of the advantages brought by the hybrid receiver
with respect to the D-PNRM, in the inset of Fig. 6 (top panel),

2 4 6 8 10
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Fig. 6. (Top) Logarithmic plot of the error probability for the
hybrid receiver employing PNR(M) detectors as a function of α2 for
several values of M. In the inset, plot of the ratio Rh/D(M, ν) as a func-
tion of α2. (Bottom) Plot of the optimized τopt(M, ν) as a function of
α2 for several M. Here the dark count rate is set to the value ν = 10−3,
and the LO for the homodyne-like detector is z2

= 5.

we plot also the ratio

Rh/D(M, ν)=
P (M)

hyb (τopt(M, ν); ν)

PD(M, ν)
. (38)

The behavior is different from that of Section 4: first, the
value of τopt(M, ν) increases with α2 until reaching exactly the
value 1, i.e., performing as a D-PNRM. Accordingly, the ratio
Rh/D(M, ν) does not saturate but shows a plateau, after which
increasing towards 1. For larger energies, according to the reso-
lution M, there appear M − 1 “sawteeth,” that is, other M − 1
regions in which τopt(M, ν) [and Rh/D(M, ν) together with it]

decreases to a value smaller than 1 and increases further to again
reach 1. Finally, given the results of the previous subsection, we
note that if a quantum efficiency η < 1 were also present, its
only effect would be the modification of the plateau value of
Rh/D(M, ν), preserving the same qualitative behavior.

D. Visibility ξ

Finally, we address the effect of the interference visibility ξ ≤ 1
of the displacement operations employed in the realization of
the receiver. This effect is a consequence of the mode mismatch
at the beam splitter, which implements practically a displace-
ment. The value ξ < 1 quantifies the overlap between the spatial
areas of the signal and the auxiliary field mixed at the beam
splitter. As discussed in [11,25], a reduction in visibility affects
crucially the performances of quantum receivers.

Generally speaking, we consider a coherent state |ζ 〉 that
we want to displace by a quantity β into the state |ζ + β〉.
For the sake of simplicity, we assume ζ, β ∈R. Then, we
can describe the effect induced by imperfect mode match-
ing by stating that the outcome n of the subsequent PNR
measurement follows a Poisson distribution with rate
N = ζ 2

+ β2
+ 2ξζβ 6= (ζ + β)2. As in the previous sub-

section, we first analyze the cases of the D-PNRM receiver and
then address the hybrid receiver. As before, we fixη= 1.

D-PNRM receiver. In the presence of visibility reduction,
the approach is quite similar to Section 5.C. If |α0〉 is sent, the
probability of detecting outcome n is p (M)(n; 2α2(1− ξ)),
whereas for |α1〉, the probability is p (M)(n; 2α2(1+ ξ)). By
following the MAP criterion, the error probability then reads
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PD(M, ξ)= 1−
1

2

M∑
n=0

max
[

p (M)(n; g−), p (M)(n; g+)
]
,

(39)
where

g± = 2α2(1±ξ), (40)

associated with the threshold outcome nth(ξ):

nth(ξ)=min

[⌈
4ξα2

ln(1+ ξ)− ln(1− ξ)

⌉
, M

]
. (41)

We recall that the case of PNR(1) is equivalent to the on–
off Kennedy receiver. The consequences of a <1 visibility on
error probabilities is shown in Fig. 7. For dark counts, visibility
reduction makes the error probability nonmonotonic, and in
particular increasing for largeα2. As before, this is a consequence
of the finite resolution M. In the regime of large α2, the thresh-
old outcome becomes nth(ξ)=M; thus, the error probability
is due to outcomes M induced by the state |α0〉, which is not
perfectly “nulled” due to the imperfect displacement operation.
Therefore, we have

PD(M, ξ)≈
p (M)(M; g−)

2

=
1

2

1− e−2α2(1−ξ)
M−1∑
j=0

(2α2(1− ξ)) j

j !

 ,
(42)

which is an increasing function ofα2.
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Fig. 7. (Top) Logarithmic plot of the error probability for the
hybrid receiver employing PNR(M) detectors and the displacement-
PNR(M) receiver as a function of α2 for several values of M. (Bottom)
Plot of the optimized τopt(M, ξ) as a function of α2 for several M.
Here the visibility is set to the value ξ = 0.998, and the LO for the
homodyne-like detector is z2

= 5.

Table 3. Decision Rule for Hybrid Receiver in
Presence of Visibility Reduction

Outcomes Decision

1≥ 0 n < nth(ξ) 0
1< 0 n ≥ nth(ξ) 0
1< 0 n < nth(ξ) 1
1≥ 0 n ≥ nth(ξ) 1

Hybrid receiver. For the hybrid receiver, we should also
include visibility reduction in the balanced beam splitter inside
the homodyne-like detector. As a consequence, the probability
of measuring the photocurrent 1=−M, . . . , M is changed
into

Sξ
(
1; α

(r )
0/1

)
=

M∑
n=0

M∑
m=0

δn−m,1 p (M)
(

n; µ̃c

(
α
(r )
0/1; ξ

))
p (M)

×

(
m; µ̃d

(
α
(r )
0/1; ξ

))
,

(43)

where

µ̃c (α
(r )
0/1; ξ)=

(α
(r )
0/1)

2
+ z2
+ 2ξ zα(r )0/1

2
, (44a)

µ̃d (α
(r )
0/1; ξ)=

(α
(r )
0/1)

2
+ z2
− 2ξ zα(r )0/1

2
, (44b)

where p (M)(n; N) is the same as in Eq. (25).
The decision rule for the hybrid receiver, displayed in Table 3,

is identical to the case of dark counts. The error probability then
reads

P (M)
hyb (τ ; ξ)

= q0 [p(1< 0, n < nth(ξ)|0)+ p(1≥ 0, n ≥ nth(ξ)|0)]

+ q1[p(1< 0, n ≥ nth(ξ)|1)+ p(1≥ 0, n < nth(ξ)|1)]

=
1

2

nth(ξ)−1∑
n=0

p (M)(n; τ g+)

×

[
−1∑

1=−M

Sξ (1; α(r )0 )+

M∑
1=0

Sξ (1; α(r )1 )

]

+
1

2

M∑
n=nth(ξ)

p (M)(n; τ g−)

×

[
−1∑

1=−M

Sξ (1; α(r )1 )+

M∑
1=0

Sξ (1; α(r )0 )

]
.

(45)

Figure 7 shows the optimized τopt(M, ξ) and the optimized

probability P (M)
hyb (τopt(M, ξ); ξ). If α2 is small, we have a
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behavior similar to the dark count case, but for large α2, the
transmissivity changes discontinuously, and the resulting
P (M)

hyb (τopt(M, ξ); ξ) always stays below PD(M, ξ). This shows
that by choosing appropriately the energy of the signals under-
going homodyne-like and D-PNR measurements, it is possible
to regain part of the information lost to the finite resolution of
the detectors. As a result, the interplay between the two schemes
allows to mitigate the negative effects introduced by visibility
reduction.

6. CONCLUSION

In this paper, we have advanced the proposal of a new hybrid
receiver for binary coherent discrimination, based on the com-
bination of homodyne-like and Kennedy setups. The incoming
signal is split at a beam splitter of variable transmissivity τ , and
the reflected beam undergoes homodyne-like detection, whose
outcome determines a conditioned displacement operation on
the transmitted beam, followed by on–off measurement. We
have shown that the possibility of adjusting the value of τ for
every value of the energy (for example, by exploiting a polarizing
beam splitter) makes such receiver near-optimum and capable
of beating both the SQL, i.e., the homodyne error probability in
Eq. (11), and the Kennedy limit.

Moreover, we have shown that the receiver proves to be robust
against the presence of inefficiencies of the experimental setup
implementing the receiver, making it a valuable option for
realistic experimental implementations of binary receivers.
In particular, we have shown that in the presence of a finite
resolution M of the PNR detector, an appropriate choice of
transmissivity τ makes the hybrid receiver beat the perfor-
mances of the sole D-PNR(M) receiver. Indeed, the possibility
of splitting the energy of the coherent seed into two branches
allows to regain part of the information lost because of the finite
resolution of the detector.

Further advantages in the regime of small energies may be
obtained by following the philosophy of the improved Kennedy
receiver [5], that is, by optimizing also the amplitude of the
displacement operation conditioned on the homodyne-like out-
come1. By considering an optimized displacement D(±βopt),
we expect to maintain the quasi-optimality of the receiver and
also to reduce the error probabilities for energiesα2 < 1.

The homodyne-like scheme used together with other kinds
of receivers can lead to enhancing their performances. For
instance, promising results can be obtained combining it with
displacement receivers with feed-forward operations [9,10],
thus fostering further research in this direction.

APPENDIX A: MAXIMUM A POSTERIORI
PROBABILITY CRITERION

We consider a generic displacement photon counting discrimi-
nation scheme to discriminate between coherent states |−α〉
and |α〉 (α ∈R+) generated with equal a priori probabilities
p(±α)= 1/2. We apply a fixed displacement of β onto the
incoming signal, mapping the states into

|±α〉→ |± α + β〉. (A1)

Then we perform a PNR measurement on the displaced state.
The MAP criterion states that, given the outcome n, we infer the
state with the highest a posteriori probability:

p(±α|n)=
p(n|±α) p(±α)

p(n)
, (A2)

where

p(n|±α)= e−|±α+β|
2 |± α + β|2n

n!
(A3)

is the probability of getting n photons given±α, and

p(n)= p(α)p(n|α)+ p(−α)p(n|−α)=
p(n|α)+ p(n|−α)

2

is the global probability of detecting n photons. For example,
we infer |−α〉 if p(−α|n) > p(α|n), which is equivalent to the
condition p(n|−α) > p(n|α) since we have p(±α)= 1/2.

The correct decision probability is then equal to

Pc = p(−α)
∞∑

n=0

p(n|−α)χ−α + p(α)
∞∑

n=0

p(n|α)χα (A4)

=
1

2

∞∑
n=0

max[p(n|−α), p(n|α)], (A5)

where χ−α = 1 if p(n|−α) > p(n|α) and zero otherwise, and
χα = 1 if p(n|α) > p(n|−α) and zero otherwise. The error
probability is obtained immediately as Perr = 1− Pc .

The decision rule p(n|−α) <> p(n|α) is equivalent to the
definition of a threshold outcome nth such that all measurement
outcomes n ≥ nth are assigned to state α, and all n < nth are
assigned to state −α. The threshold number is obtained by
equating p(nth|−α)= p(nth|α) and reads

nth =

⌈
|α + β|2 − |α − β|2

ln(|α + β|2)− ln(|α − β|2)

⌉
, (A6)

where dxe is the ceiling function, returning the smallest integer
greater than x .

Finally, we note that for the standard Kennedy receiver, the
displacement amplitude is β = α, such that p(n|−α)= δn,0,
and therefore, the correct probability of Eq. (A5) reduces to
Pc = 1− exp(−4α2)/2.
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