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We compare the sensitivity of Hilbert and Bures distances between two qubits in reveal-
ing small perturbations occurring to one of the qubits. We also analyze sensitivity in
revealing perturbations to noise parameter of a depolarizing channel.
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The notion of distance between two quantum states is relevant in describing the
degradation of a signal, the noise of a channel or the amount of information gained
in a measurement. The complementary notion of similarity between quantum states
is also important, as, for example, to assess state purification1,2 or teleportation3

protocol, as well as signal cloning,4 remote state preparation5 or estimation.6 For
pure quantum states the similarity between two states may be quantified by the
state overlap. On the other hand, for mixed quantum states, there is not a unique
definition of similarity, nor of distance, and the different quantities should be com-
pared, in order to find the more convenient for a given application.

In this paper we focus our attention on qubit systems and compare Hilbert,7–9

and Bures distances10–13 in terms of their sensitivity in revealing perturbations that
may occur to one of the qubits. As a matter of fact, Bures and Hilbert distances
are monotone with respect to each other. However, this is no longer true for the
sensitivity i.e. the rate of variation occurring after a perturbation, which depends
on the degree of mixing of the qubits, as well as on the kind of perturbation.
The imbalance between the sensitivity of several different figures of merit has been
analyzed14 for the depolarizing channel. Here we consider a restricted set of figures
of merit, corresponding to proper distances, and evaluate sensitivity in revealing
general perturbations occurring to one of the qubits. Application to the detection
of perturbations to the parameter of a depolarizing channel will be discussed. Other
types of noisy channels have been also analyzed.15

The degree of difference between two pure states � = |ϕ〉〈ϕ| and τ = |ψ〉〈ψ| can
be quantified by

D (�, τ) =
√

1 − |〈ϕ|ψ〉|2 , (1)
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which turns out to be a distance on the set of pure quantum states. When the
two states are not pure, then there is not a unique definition, though the different
distances reduce to (1) when applied to pure states. In this paper, we address the
Hilbert–Schmidt distance and the Bures distance. Let us consider two qubit states,
with Bloch representation given by

� =
1
2
(σ0 + r · σ) , τ =

1
2
(σ0 + t · σ) , (2)

where |r|, |t| ≤ 1 and σ = (σ1, σ2, σ3), σk being the Pauli matrices with σ0 = �.
The Hilbert–Schmidt distance (H-distance) is defined as follows

DH(�, τ) ≡
√

1
2
Tr [ (� − τ)2 ] =

√
1
2
(µ� + µτ ) − κ�τ ,

=
1
2

[
3∑

k=1

(rk − tk)2
]1/2

, (3)

where we introduced the purity and the state overlap, namely

µ� = Tr[�2] =
1
2
(1 + |r|2), (4)

κ�τ = Tr[�τ ] =
1
2
(1 + r · t). (5)

Notice that 1/2 ≤ µ� ≤ 1 and 0 ≤ κ�τ ≤ 1. For qubits the Hilbert distance
is also equal to the so-called trace distance DT (�, τ) ≡ 1

2Tr | � − τ | i.e. half of the
Euclidean distance in R

3. Notice also that this equality no longer holds if the Hilbert
space dimension is larger than 2.

The Bures distance (B-distance), is obtained from the fidelity F between the
two states, namely,10,12,13

F (�, τ) ≡
(

Tr
√√

� τ
√

�

)2

. (6)

Bures distance is defined as

DB(�, τ) ≡
√

1 − F (�, τ) . (7)

Properties of Bures distance follow from those of fidelity, which represents the
maximum of the overlap |〈〈ϕ|ψ〉〉|2 taken over all the possible purifications |ϕ〉〉 and
|ψ〉〉 of � and τ , respectively (Uhlmann’s theorem).13

Focusing our attention on qubits we have

DB(�, τ) =

√
1
2
[
1 − r · t −

√
(1 − |r|2)(1 − |t|2)]

=

√
1 − κ�τ −

√
(1 − µ�)(1 − µτ ) , (8)

which can be obtained by explicitly evaluating the fidelity through the diagonal-
ization of the operator A =

√√
� τ

√
�, i.e. by solving the characteristic equation

A2 − ATr [ A ] + �Det[A] = 0 using Bloch representation of qubit states.
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In general, H- and B-distances satisfy the relation

DB (�, τ)2 = DH (�, τ)2 + 1 − 1
2
(µ� + µτ ) −

√
(1 − µ�)(1 − µτ ) , (9)

which implies

DH (�, τ) ≤ DB (�, τ) . (10)

In particular, if � is a pure state we obtain

DH(�, τ) =

√
1
2
(1 + µτ ) − κ�τ , (11)

DB(�, τ) =
√

1 − κ�τ . (12)

In order to compare the effects of a perturbation on the two distances, and in
turn to assess their sensitivity in revealing the perturbation itself, we now evaluate
the distance between a fixed qubit, say �, and a slightly perturbed one, τ . Up to
first order one has

D (�, τ + dτ) = D (�, τ) + ∇D(�, τ) · dt, (13)

where

τ + dτ =
1
2
[σ0 + (t + dt) · σ] , (14)

with |t + dt| ≤ 1.
In the following, we calculate the gradient ∇D for H- and B-distance and com-

pare the quadratic norm of the two vectors, taken as a measure of the ability in
revealing the occurrence of a perturbation, i.e. as a measure of sensitivity. We have

∇DH(�, τ) =
t − r

4DH(�, τ)
=

1
2
, (15)

∇DB(�, τ) =
√

ω�τ t − r

4DB(�, τ)
, (16)

with

ω�τ =
1 − |r|2
1 − |t|2 =

1 − µ�

1 − µτ
. (17)

In turn, the quadratic norms of (15) and (16) read as follows:

|∇DH(�, τ)|2 =
1
4
, (18)

|∇DB(�, τ)|2 =
ω�τ (2µτ − 1) + 2µ� + 1 − 4κ�τ

√
ω�τ

[4DB(�, τ)]2
. (19)
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In order to establish which distance is more sensitive, we compare the quadratic
norms of distance gradients. The inequality | ∇DB |2 ≤ |∇DH |2 corresponds to

2(µ� − 1) + 2κ�τ (1 −√
ω�τ ) +

√
ω�τ +

1
2
(ω�τ − 3) + 2

√
(1 − µ�)(1 − µτ ) ≤ 0 .

(20)

If � is a pure state the inequality reduces to κ�τ ≤ 3
4 , whereas, if � is a completely

mixed state, we have

1
1 − µτ

+ 4
√

2(1 − µτ ) ≤ 6 . (21)

This inequality is saturated for µτ = 1
2 whereas it has no solution when 1

2 < µτ ≤ 1.
For the general case, we illustrate the regions where inequality (20) holds in Fig. 1
as a function of the initial purities and for different values of the overlap: the gray
regions correspond to |∇DB |2 ≤ |∇DH |2, i.e. where the H-distance is more sensitive
than the B-distance.

The evolution of a given signal, as the propagation of a qubit in a real channel, is
usually affected by the interaction with the environment, which makes the evolution
non-unitary. A relevant example is given by the depolarizing channel, which reduces
a qubit state � to the completely mixed state σ0/2 with a certain probability p.
The depolarizing map reads as follows

Ep(�) = p
σ0

2
+ (1 − p) � . (22)

Fig. 1. Comparison of sensitivities as a function of the initial purities and different values of the
overlap. The gray regions correspond to |∇DB|2 ≤ |∇DH |2, i.e. where the H-distance is more
sensitive than the B-distance.
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Under the action of the operation (22), the Bloch vector r associate with � is
contracted by a factor 1 − p, i.e. r → (1 − p) r. The H- and B-distance between a
given state � and its perturbed version are given by

DH(�, Ep(�)) ≡ DH(p, µ�) =
p

2
√

2µ� − 1 , (23)

DB(�, Ep(�)) ≡ DB(p, µ�) =

√
1
2
[1 − (1 − p)(2µ� − 1) − 2g(p, µ�)] , (24)

where

g(p, µ�) =
{

1
2
(1 − µ�)

[
1 − (1 − p)2 (2µ� − 1)

]}1/2

. (25)

The two distances, besides the depolarizing parameter p, depend only on the initial
purity µ�. Their derivatives with respect to p quantify the sensitivity in revealing
small changes in the strength of the operation Ep. We have

∂pDH(p, µ�) =
1
2
√

2µ� − 1, (26)

∂pDB(p, µ�) =
2µ� − 1

4 DB(p, µ�)

[
1 − (1 − µ�)(1 − p)

g(p, µ�)

]
. (27)

The region for which ∂pDB ≤ ∂pDH , namely where H-distance is more sensitive
than the B-distance, corresponds to the values of p and µ satisfying the inequality

1
DB(p, µ�)

√
2µ� − 1

[
1 − (1 − µ�)(1 − p)

g(p, µ�)

]
≤ 1 . (28)

Inequality (28) holds for p > p∗ where 1/2 < p∗ < 2/3 is a monotonically decreasing
function of µ, shown in Fig. 2. We conclude that H-distance is more sensitive in the
high noise regime, whereas the influence of the initial purity is less pronounced.

In conclusion, we addressed the detection of small perturbations occurring to a
qubit through the change of the distance from a fixed qubit. In addition, we ana-
lyzed the detection of small changes in the noise parameter of a depolarizing channel
by evaluating the distance of the perturbed state to the initial one. In both cases

Fig. 2. The function p∗(µ�). For p > p∗ the H-distance is more sensitive than B-distance in
revealing changes to the noise parameter of a depolarizing channel.
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we have compared Bures and Hilbert distances in terms of their sensitivity to per-
turbation. A general relation is derived, as well as a specific bound for depolarizing
channel, where the H-distance becomes more sensitive for large values of the noise
parameter.
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