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We consider photon-number entangled states (PNES) and study the degradation of their
entanglement in a noisy channel, using di®erent separability criteria and a recently proposed
measure of nonGaussianity as key tools. Upon comparing Gaussian and nonGaussian states
within the class, we collect some evidence that Gaussian states are maximally robust against
noise, i.e. the complete loss of entanglement occurs in maximal time. However, the gap with
respect to nonGaussian states is negligible for su±ciently high energy of the states.
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1. Introduction

Many quantum communication protocols are based on the exploitation of entan-
glement between two distant physical systems.2 Entangled correlations are usually
created by a local process, so that bringing the systems far apart involves trans-
mission of either or both through a noisy channel. During transmission, the noise
causes a continuous degradation of entanglement, which may eventually vanish. The
successful accomplishment of the protocols then requires ability to control the e®ect
of noise on entangled resources.

Several cases of noisy dynamics are described in the literature, covering both
discrete and continuous variable (CV) systems. However, most studies dealing
with CV systems have so far been restricted to Gaussian resources. This should
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not come as a surprise: indeed CV quantum information arose and was developed
with Gaussian states,3!7 which meet the two fundamental requirements of
theoretical simplicity (a complete description of the states is achieved by taking
into account only ¯rst- and second-order moments) and experimental feasibility
(Gaussian states are created and manipulated through Gaussian operations, which
correspond to linear optical devices). Moreover, most communication protocols
originally devised for ¯nite-dimensional Hilbert spaces admit natural analogues in
terms of CV Gaussian states. Nevertheless, recent developments suggest that
going beyond Gaussian states and operations may allow for considerable progress
in long-distance quantum communication: it has been shown, for instance, that
nonGaussianity plays an important role in enhancing entanglement distillation8!12

and swapping, quantum memories,13 cloning14 and teleportation.15!17 For this
reason, decoherence of nonGaussian entangled resources deserves consideration as
well.18

A recent work of ours1 was centered on a basic question which arises quite
naturally in this context: in the case of transmission throuh a noisy environment, are
nonGaussian states more or less robust than Gaussian, i.e. do they lose entanglement
in a longer or shorter time?

We addressed this question by focusing on a particular case of entangled resource,
namely Photon-Number Entangled States (PNES), a class of two-mode CV entan-
gled states comprising both Gaussian and nonGaussian states, and on a particular
instance of noisy environment, namely a Gaussian channel governed by a Markovian
Master Equation. The tools commonly used to analyse Gaussian entanglement (e.g.
Simon's separability criterion) are clearly insu±cient to investigate the degradation
of nonGaussian PNES' entanglement. Consequently, we had to resort to additional
tools, including several separability criteria and a recently introduced measure of
nonGaussianity. As a result, we were able to compare the robustness of Gaussian and
nonGaussian entanglement.

This paper is a detailed review and an extension of that work1: we take into
account more kinds of noise and present a wider range of results on nonGaussian
entanglement evolution. It is organised as follows: in Sec. 2 we introduce PNES and
their properties; in Sec. 3 the main features of the noisy channel are explained; in
Sec. 4 we brie°y review some separability criteria; in Sec. 5 our main results are
described; Sec. 6, ¯nally, closes the paper with some concluding remarks.

2. PNES

As stated in the introduction, we seek for a way to compare the degradation of
Gaussian and nonGaussian entanglement in a noisy channel. A possible strategy is to
focus on a particular class of states. We have chosen to work with a broad and
meaningful class of CV bipartite states endowed with perfect correlations in the
number of photons: Photon-Number Entangled States (PNES). These are states j i
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having Schmidt decomposition in the Fock basis, i.e.

j i ¼
X1

n¼0

 njnijni: ð1Þ

For the sake of simplicity, we shall consider real positive coe±cients  n 2 R,  n > 0,P1
n¼0  

2
n ¼ 1.

The motivation for the choice of PNES is manifold. First, PNES are su±ciently
simple but at the same time meaningful: several experimental realizations of PNES
have been reported19!22 and many PNES-based quantum communication schemes
have been proposed.23!27 Second, the set of PNES is particularly suitable for our
purpose since it contains mostly nonGaussian states but includes, as a subclass, two-
mode squeezed vacua, i.e. the basic Gaussian resource for CV quantum information,
thus allowing for a direct comparison between Gaussian and nonGaussian states.
Finally, PNES are good candidates for the role of entangled resource in long-distance
quantum communication, because their entanglement is robust against phase di®u-
sion noise and losses (see Sec. 5).

Numerical calculations require speci¯c numerical choices of the coe±cients  n. We
shall therefore consider several special subclasses of PNES with speci¯c parametric
dependence (we omit normalization):

(i) the two-mode squeezed vacua or twin-beam states (TWB)  n / xn with
0 % x < 1. These are the sole Gaussian states within the PNES class and
represent the preferred (Gaussian) resources in protocols based on CV
entanglement;

(ii) the photon subtracted two-mode squeezed vacua (PSSV)31  n / ðnþ 1Þxnþ1

and the photon-added two-mode squeezed vacua (PASV)32  n / nxn!1, which
are obtained from the TWB by the experimentally feasible33–35 operations of
photon subtraction %! a1a2%a

y
1a

y
2 and addition %! a y

1a
y
2%a1a2 respectively;

(iii) the pair-coherent or two-mode coherently correlated states (TMC)36,37 with
Poissonian pro¯le  n / !n=n!, ! 2 R.

The mean energy of PNES, E ¼ h ja y
1a1 þ a y

2a2j i ¼ 2N is given in terms of the
mean photon numberN ¼

P1
n¼0 j nj2n, whereas correlations between the modes can

be quanti¯ed by C ¼ Re
P1

n¼0  
'
n nþ1ðnþ 1Þ. In turn, the covariance matrix of a

PNES equals that of a symmetric Gaussian state in standard form, with diagonal
elements equal to N þ ð1=2Þ and o®-diagonal blocks given by C ¼ diagðC;!CÞ. The
entanglement of PNES can be assessed by the von Neumann entropy of the partial
traces, "0 ¼

P
n j nj2 log j nj2.

For numerical purposes, states have to be truncated: i.e. one deals with j i ¼PD
n¼0  njnijni where D is a suitable truncation threshold. We shall always consider

D ¼ 20 and energies in the range 0 % E % 10. The adopted truncation results in a
negligible error for all subclasses of states.
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3. Noisy Environment

If a system is coupled to its environment, the Hamiltonian dynamics appropriate for
an isolated system %ðtÞ ¼ e!iHt%ð0ÞeiHt is to be replaced by a class of linear maps "t:
%ðtÞ ¼ "t%ð0Þ which must be completely positive and trace-preserving in order for "t

to be physical. The environment is usually assumed to be Markovian, which is for-
malized by the semigroup property "t1þt2 ¼ "t1"t2 . Lindblad has shown38 that "t ¼
eLt is a (quantum) semigroup i® L% ¼ !i½H; %) þ

P
j2I ½Vj%;V

'
j ) þ ½Vj; %V

'
j ) where H

is Hermitian, which implies that the evolution of % is governed by the Master
Equation d=dt% ¼ L% ¼ !i½H; %) þ

P
j½Vj%;V

y
j ) þ ½Vj; %V

y
j ).

In our case, the propagation in noisy channels can be modeled as the interaction of
the two modes with two independent thermal baths of oscillators. In the Markovian
approximation, the resulting dynamics is a Gaussian channel, governed by the
two!mode Lindblad-type Master Equation39

%
: ¼
X

j¼1;2

#

2
NjL½a

y
j)%þ

#

2
ðNj þ 1ÞL½aj)% ð2Þ

describing losses and thermal hopping in the presence of (local) non!classical °uc-
tuations of the environment. Dot stands for time!derivative and the Lindblad
superoperator is de¯ned by L½O)% * 2O%Oy !OyO%! %OyO. # is a loss coe±cient
and Nj are the mean photon-numbers in the stationary state, which is a two-mode
thermal state #12 ¼ #1 + #2, #j ¼ ð1=ðNj þ 1ÞÞ

P1
n¼0 ðNj=ðNj þ 1ÞÞnjnij jhnj. We

consider baths at equal temperature N1 ¼ N2 ¼ NT .
As shown by D'Ariano,40 the above Master Equation admits the operator

solution:

%ðtÞ ¼ "t%ð0Þ ¼ Tr34½Utð%ð0Þ + #34ÞUt): ð3Þ

In the formula above, "t denotes the evolution map corresponding to the noisy
channel; 3, 4 are two additional ¯ctitious modes in a thermal state #34 ¼ #3 + #4
which mirrors the asymptotic thermal state #12 of the system; Ut ¼ U13ð$tÞ + U24ð$tÞ;
Uijð$tÞ ¼ expð$ta

y
i aj ! $ '

t a
y
jaiÞ is the two-mode mixing operator, with $t ¼

arctan ðe#t ! 1Þ1=2.
In addition to losses and thermal hopping, one can consider phase di®usion noise,

modeled by a ME41

%
: ¼
X

j¼1;2

#

2
L½a y

ja)%: ð4Þ

The solution of Eq. (4) for initial PNES, % ¼
P1

mn  n mjnnihmmj, is simply

%ðtÞ ¼
X1

mn

 n me
!#tjm!nj 2 jnnihmmj: ð5Þ
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4. Separability Criteria and NonGaussianity

In order to control the evolution of entanglement of PNES under the action of noise,
we ought to make use of several tools, including many entanglement criteria and a
recently introduced measure of nonGaussianity.

As it is well-known, in the CV case a necessary-and-su±cient separability criterion
exists only for Gaussian states: it is Simon's criterion (SI).42 The latter is equivalent
to the positivity of the partial transpose density matrix and can be cast in the
following form43: a Gaussian state is separable i® ~d! < 1=2, where ~d! is the least
symplectic eigenvalue of the covariance matrix corresponding to the partial-trans-
posed state. Yet when dealing with nonGaussian states Simon's criterion (which is
then equivalent to the separability of a Gaussian state having the same covariance
matrix as the given state) is only su±cient for entanglement.

This actually holds for any available criterion: if the state under consideration is
entangled, a given test may or may not detect its entanglement; in turn, if a given test
does not detect entanglement, we cannot conclude that the state is separable. Con-
sequently, the only way to draw reliable conclusions about the entanglement/
separability of a given state is to use several di®erent criteria, which provide inde-
pendent separability conditions, thus minimizing the possibility of failure in entan-
glement detection. From the most relevant criteria available for CV systems, we
select some which we deem particularly suitable for our case.

First, we consider Shchukin and Vogel's criterion (SH),44,45 conceived as an
extension of the PPT criterion to the nonGaussian case. SH is based on the evalu-
ation of a series of M ,M matrices whose entries are moments up to a given order:
non-positive-de¯niteness of any ¯nite submatrix is a su±cient condition for entan-
glement. Upon considering ¯rst and second-order moments only (M ¼ 5) we obtain a
condition which is equivalent to Simon's criterion. If one considers larger minors,
moments of higher order are involved and we get a stronger condition. We have
considered moments up to order 8.

Another class of criteria is based on linear entanglement witnesses (EW).46 A
witness is any operator W such that Tr½%sepW ) - 0 on any separable state %sep. Then
Tr½%entW ) < 0 implies that the state %ent is entangled. Sperling and Vogel (SP)47

showed that this condition can be rephrased in the following form: a state % is
entangled if h%j%j%i > maxnfjmnj2g where j%i is a pure entangled state with Schmidt
coe±cients fmng. In our study we test this condition by using 104 randomly gen-
erated witnesses of the form: j%i ¼

PD
n¼1 %njnijni with D ¼ 20, i.e. the witnesses are

themselves truncated PNES. This particular form was chosen since the bath does not
create quantum correlations but only destroys those originally present.

The realignment criterion (RE)48,49 is the last criterion considered. It is based on
positivity of a linear contraction map: a state % is entangled if jj~%jj > 1 where jjAjj
denotes the trace norm of operator A and hmjh&j~%jnij#i ¼ hmjhnj%j#ij&i.

The propagation in noisy channels, besides entanglement, also destroys the non-
Gaussian character of the initial state, which unavoidably evolves towards the
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asymptotic, Gaussian thermal state. We wish to take into account both processes
(separation and Gaussi¯cation) in parallel and explore the relations between them.
The nonGaussian character of a state % is measured by 'ð%Þ ¼ Sð(Þ ! Sð%Þ i.e. the
relative entropy between % and the reference Gaussian state ( having the same
covariance matrix. Genoni et al.50 showed that 'ð%Þ is a good measure of non-
Gaussianity, i.e. it is non-negative, continuous, invariant under unitary Gaussian
maps and nonincreasing under general Gaussian maps.

5. Robustness of PNES Entanglement Against Noise

5.1. Robustness against phase di®usion noise

Having gathered all necessary tools, we can now consider the e®ect of the noisy
environment on PNES.

First of all, we shall assess the e®ect of phase di®usion noise (4). We shall prove
that all Gaussian and nonGaussian PNES are robust against this kind of noise:
indeed by explicitly constructing an EW we can show that phase noise never leads to
a separable state, i.e. the entanglement is never destroyed for any value of #t.41 An
entanglement witness can be constructed28!30 asW ¼ ðj"ih"jÞPT , PT denoting partial
transposition and j"i being the eigenvector of %PT corresponding to the least eigen-
value. From (5) we have the partial transpose %PT ðtÞ ¼

P1
mn  n me!#tjm!nj2

jmnihnmj. The eigenvalue equation %PT ðtÞj%i ¼ !j%i is solved by !nm ¼
. n me!#tjm!nj 2 , j%.

nmi ¼ ð1=
ffiffiffi
2

p
Þðjnmi. jmniÞ. The eigenvector corresponding to

the least eigenvalue is j%01i ¼ ð1=
ffiffiffi
2

p
Þðj01i! j10iÞ and we have Tr½%j%01ih%01j) ¼

! 0 1e!#t < 0. This implies the thesis: entanglement is never destroyed for any
value of #t.

5.2. Robustness against loss and hopping: Simon's criterion

We now address the e®ect of losses and thermal hopping. We emphasize that the map
"t (3), being the product of two local maps, can never build but only disrupt
quantum correlations: as shown below, for any NT 6¼ 0 we have a complete loss of
entanglement within a ¯nite, state dependent, time tS ¼ tSð%Þ which we refer to as
the separation time.

Using separability criteria, we obtain lower bounds on separation times. Indeed,
for any given criterion K and state %, let us denote by tKð%Þ the maximum time for
which K proves that % is entangled: clearly tKð%Þ is a lower bound for tS . Upon
considering the best bound we have tSð%Þ - maxKtKð%Þ.

The Simon separation time tSI can be computed analytically. At the level of
covariance matrix, the map "t induces the evolution )t ¼ )0e!#t þ )1ð1! e!#tÞ
where )1 ¼ diagðNT þ 1=2; . . . ;NT þ 1=2Þ is the asymptotic thermal state's co-
variance matrix. The covariance matrix corresponding to the partial-transposed state
is given by ")t", where " ¼ diagð1; 1; 1;!1Þ,42 and its least symplectic eigenvalue is
~d! ¼ ðNT þ 1=2Þð1! e!#tÞ þ ðN þ 1=2Þe!#t ! jCje!#t. Therefore, for NT 6¼ 0 we
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have a lower bound to separability

tSI ¼
1

#
log 1þ jCj!N

NT

" #
ð6Þ

We deduce that if no hopping is present (NT ¼ 0), then entanglement of PNES is
never destroyed for any ¯nite value of #t) since tS - tSI ¼ 1. For (NT 6¼ 0), how-
ever, entanglement is expected to vanish within a ¯nite time.

Let us focus our attention on the dependence of the Simon separation time tSI on
the initial nonGaussianity '0. We have '0 ¼ 2fðd!Þ where d! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1=2Þ2 ! jCj2

p

is the least symplectic eigenvalue of the covariance matrix and fðxÞ ¼ ðxþ 1=2Þ,
logðxþ 1=2Þ ! ðx! 1=2Þ logðx! 1=2Þ monotonically increases with x.6,7 Upon
de¯ning g ¼ f!1, tSI can be written as

tSI ¼
1

#
log 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1=2Þ2 ! g2ð'0=2Þ

p
!N

NT

 !

ð7Þ

which shows that tSI is a decreasing function of '0 at any ¯xedN, and it is maximized
by TWB for which '0 ¼ 0.

5.3. Robustness against loss and hopping: beyond Simon's criterion

Through Simon's criterion, we have derived an analytical estimate of the PNES
separation times, suggesting that they decrease with the initial nonGaussianity and
are maximal for Gaussian states, at any ¯xed energy. However, the Simon separation
time is only a lower bound tSI % tS . Can we consider tSI as a reliable estimate of tS?

We shall now address this question. By means of separabililty criteria other than
Simon's, we shall verify whether we can obtain better bounds on tS ; by means of the
nonGaussianity, we shall get an independent estimate on how reliable Simon's cri-
terion is, since when the nonGaussianity is low (i.e. when the states are nearly
Gaussian), Simon's criterion is expected to be very reliable.

In order to perform entanglement tests and to compute the nonGaussianity, we
must work at the density matrix level, not at the covariance matrix level. Calcu-
lations cannot be carried over analytically and we ought to use numerical methods.
Using solution (3), the evolved density matrix %ðtÞ can be computed numerically from
the initial state %ð0Þ upon truncating the Hilbert space dimension D. We then con-
sider states with maximal photon number D ¼ 20 and total energy 0 % 2N % 10 (in
this range of energies, and for all subclasses of states, the e®ect of truncation is
negligible).

In order to explore the e®ect of noise in a wide range of conditions and initial states
we then consider TMC, PSSV and PASV of di®erent energies. We compute the
evolved density matrix for 0 % t % 15 in units of inverse loss 1=#. At any time t,
entanglement is tested with all the above mentioned criteria and the value of the
nonGaussianity ' is computed. From these data we evaluate tK , i.e. lower bounds to
separation times according to di®erent criteria, and Gaussi¯cation times tG, i.e. times
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for which nonGaussianity ' falls below a ¯xed Gaussi¯cation threshold 'G (we
consider di®erent thresholds 'G ¼ 0:1; 0:01; 0:001). The procedure is then repeated
for di®erent values of the temperature T corresponding to NT in the range
½10!5; 10!1).

It turns out that all states exhibit approximately the same qualitative behaviour.
In Fig. 1 we report tK for di®erent PNES subclasses and di®erent criteria as a
function of N for the lowest (highest) temperature considered NT ¼ 10!5ð10!1Þ. We
notice the following facts:

(i) at both temperatures SI and SH criteria yield very similar curves. Also RE shows
very good agreement with SI and SH (except for PASV and PSSV at low T). As
for the SP criterion, it yields much worse bounds for the separation time. Thus
we have numerically proved that for the whole class of states we have considered,
the SI, SH and RE criteria yield qualitatively the same results and SI, which
o®ers analytical advantages, is the optimal one.

(ii) both at high and low T , tK rapidly increases to an asymptotic value $tK which is
reached at N / 1; $tK is a decreasing function of T , i.e. entanglement loss is
strongly a®ected by the increase of the temperature.

Fig. 1. (Color on line) Separation and Gaussi¯cation times for TMC (left), PASV (center), PSSV (right)
as a function of the mean energy for low (NT ¼ 10!5, top) and high (NT ¼ 10!1, bottom) temperature. In
all plots we report separation times according to di®erent criteria: tRE (green, triangle), tSP (blue, square),
tSH (red, circle), tSI (purple, rhombus), and Gaussi¯cation times for di®erent thresholds: 'G ¼ 10!1 (solid
black, star), 'G ¼ 10!2 (dashed black, star), 'G ¼ 10!3 (dotted black, star).
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In Fig. 1 we also show Gaussi¯cation times as a function of energy. Upon comparing
separation and Gaussi¯cation times we notice that:
(iii) the behaviour of nonGaussianity is only weakly a®ected by the increase of T.
(iv) at low T states become nearly Gaussian well before they become separable:

tG < tK % tS ; at high T , on the contrary, Gaussi¯cation times are greater than
our bounds on separation times: tG > tK .

Observation (iv) deserves futher consideration. Indeed, the relation tG < tK % tS
implies that for low T the bounds provided by Simon's criterion properly estimate the
actual PNES separation times i.e., tSI ’ tS . This can be understood by ¯rst noticing
that when t > tG, the states are nearly Gaussian and therefore Simon's criterion is
expected to be very reliable. Furthermore, at any t - tSI > tG the reference Gaussian
state is obviously separable and thus the nonGaussianity can be compared with a
measure of entanglement: the relative entropy51Eð%Þ ¼ min)2%½Sð%jj)Þ) that quan-
ti¯es the distance between % and the whole set of separable states %. When t - tSI
one has that Eð%Þ % 'ð%Þ 0 1, and this con¯rms that in this limit the states are very
poorly entangled (if they are) and SI allows us to reliably estimate tS . The fact that
other criteria provide very close bounds on tS strengthens this conclusion. For high T ,
Gaussi¯cation times are greater than tK provided by all the criteria and we cannot
draw the same conclusion, i.e. times tK must be considered just as lower bounds.
However, the relative agreement between di®erent criteria is still an indication that
tK should be regarded as rather e®ective bounds.

5.4. Robustness against loss and hopping: extremality of Gaussian
entanglement

From the above considerations, it follows that in the low T regime (where tSI ’ tS)
Gaussian states have maximal separation times at any ¯xed energy. This is shown
in the left panel of Fig. 2 where the separation times and the initial

Fig. 2. (color on line) separation times tS (straight lines) and initial nonGaussianities '0 (dashed lines) for
NT ¼ 10!5 (left) and NT ¼ 10!1 (right) and for di®erent PNES classes, PASV (brown, circle), PSSV
(orange, square), TMC (red, triangle), TWB (blue) as a function of initial energy N.

Robustness of Gaussian and NonGaussian Entanglement in a Noisy Environment 35



nonGaussianities of di®erent PNES are plotted against N (for tS we use
tM ¼ maxKtKð%Þ) for NT ¼ 10!5: at any ¯xed N , the states with higher '0 have
shorter separation times. From the right panel of Fig. 2 we see that the same
behaviour shows up also at low T (where tSI is only a lower bound and the relation
between tS and '0 is not necessarily represented by (7)). This behaviour is con-
nected with the fact that Gaussian states are maximally entangled at any ¯xed
energy.6,7 However, the relation between separation times, nonGaussianity and the
initial entanglement of the states is not trivial, as we shall now discuss. As shown
in Fig. 3, where tS and '0 are plotted as a function of the initial entanglement "0,
the dependence is by no means universal. However, we notice that also at ¯xed "0
states with higher '0 show shorter tS : this trend is not represented by an exact
relation, but it is a clear indication that nonGaussianity speeds up the loss of
entanglement, making Gaussian entanglement more robust than nonGaussian one.
The robustness of Gaussian entanglement can be conjectured to be a general fea-
ture of CV systems evolving in noisy Markovian channels. Indeed, within the
Markovian approximation, propagation in CV noisy channels corresponds to a
Master Equation in Linblad form, which induces a Gaussian map and enforces
Gaussi¯cation of any initial state. The results of our analysis, together with the
above discussions, naturally lead us to formulate the following general conjecture:
for any ¯xed value of the global energy of a PNES, and for any given noisy Mar-
kovian evolution with losses and thermal hopping, the Gaussian states are those that
have maximal separation times.

Besides, from Fig. 2 we also extract another very relevant feature: in the high-
energy limit and independently of the temperature there is an approximate uni-
versality in separation times i.e. tS are nearly constant and similar for all classes of
states, nonGaussian ones being nearly as robust as Gaussian ones, i.e. the e®ect of the
departure from Gaussianity is very small.

Fig. 3. (color on line) separation times tS (straight lines) and initial nonGaussianities '0 (dashed lines) for
NT ¼ 10!5 (left) and NT ¼ 10!1 (right) for di®erent PNES classes, PASV (brown, circle), PSSV (orange,
square), TMC (red, triangle), TWB (blue) as a function of "0.
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6. Final Remarks

We have considered a class of states (PNES) including Gaussian and nonGaussian
subclasses, assessing the robustness of their entanglement to di®erent kinds of noise.

We have found that all PNES are robust against phase di®usion noise, i.e.
entanglement is never destroyed for any ¯nite time, and the same is true if mere losses
are cosidered. When both losses and thermal hopping are present, entanglement
vanishes within a ¯nite time (separation time). To estimate the separation time, we
have used several entanglement criteria: our analysis shows that no criterion is able
to give better bounds than those provided by Simon's criterion, which is then opti-
mal. At low temperature, estimates provided by Simon's criterion are very reliable
since PNES gaussify well before they lose entanglement, whereas at high temperature
they represent just lower bounds on separation times. At any ¯xed energy, separation
times decrease with the initial non-Gaussianity '0, both at high and at low tempera-
ture. We conjecture that this feature holds in general for any Markovian evolution
with losses and thermal hopping. Moreover, for any ¯xed initial entanglement "0
separation time is longer for states with lower '0, i.e. Gaussian entanglement is the
most robust against noise. Yet, in the high energy limit and independently of the
temperature, the di®erences among separation times of di®erent subclasses are small,
nonGaussian states being nearly as robust as Gaussian ones.

As a consequence, as long as PNES are considered, Gaussian states are optimal
resources in terms of robustness to noise. On the other hand, our analysis shows that
robustness of nonGaussian states is comparable with that of Gaussian states for
su±ciently high energy of the states. This implies that in these regimes, nonGaussian
resources can be exploited to improve quantum communication protocols approxi-
mately over the same distances.

References

1. M. Allegra et al., quant-ph/1003.3331 (2010).
2. R. Horodecki et al., Rev. Mod. Phys. 81(2) (2009) 865.
3. B.-G. Englert and K. Wódkiewicz, Int. J. Q. Inf. 1 (2003) 153.
4. J. Eisert et al., Int. J. Quant. Inf. 1 (2003) 479.
5. S. L. Braunstein et al., Rev. Mod. Phys. 77 (2005) 513.
6. A. Ferraro et al., Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).
7. F. Dell'Anno et al., Phys. Rep. 428 (2006) 53.
8. G. Giedke and J. I. Cirac, Phys. Rev. A 66 (2002) 032316.
9. J. Eisert et al., Phys. Rev. Lett. 89 (2002) 137903.
10. J. Fiurasek, Phys. Rev. Lett. 89 (2002) 137904.
11. R. Dong et al., Nature Phys. 4 (2008) 919.
12. H. Takahashi et al., Nature Phot. 4 (2010) 178.
13. F. Casagrande et al., Phys. Rev. A 75 (2007) 032336.
14. N. J. Cerf et al., Phys. Rev. Lett. 95 (2005) 070501.
15. T. Opatrny et al., Phys. Rev. A 61 (2000) 032302.
16. P. T. Cochrane et al., Phys. Rev. A 65 (2002) 062306.
17. S. Olivares et al., Phys. Rev. A 67 (2003) 032314.

Robustness of Gaussian and NonGaussian Entanglement in a Noisy Environment 37



18. F. Dell'Anno et al., Phys. Rev. A 81 (2010) 012333.
19. O. Ayhür and P. Kumar, Phys. Rev. Lett. 65 (1990) 1551.
20. O. Haderka et al., Phys. Rev. A 71 (2005) 033815.
21. K. Hayasaka et al., Opt. Lett. 29 (2004) 1665.
22. J. Laurat et al., Phys. Rev. Lett. 91 (2003) 213601.
23. A. C. Funk and M. G. Raymer, Phys. Rev. A 65 (2001) 042307.
24. L. Mista Jr. et al., Phys. Rev. A 65 (2001) 062315.
25. V. C. Usenko and B. I. Lev, Phys. Lett. A 348 (2005) 17.
26. V. C. Usenko and M. G. A. Paris, Phys. Rev. A 75 (2007) 043812.
27. Y. Zhang et al., Opt. Exp. 11 (2003) 3592.
28. M. Lewenstein et al., Phys. Rev. A 62 (2000) 052310.
29. M. Lewenstein, Phys. Rev. A 63 (2001) 044304.
30. D. Bruss et al., J. Mod. Opt. 49 (2002) 1399.
31. M. Dakna et al., Phys. Rev. A 55 (1997) 3184.
32. Z. X. Zhang and H. Y. Fan, Phys. Lett. A 165 (1992) 14.
33. J. Wenger et al., Phys. Rev. Lett. 92 (2004) 153601.
34. M. S. Kim et al., Phys. Rev. Lett. 101 (2008) 260401.
35. A. Zavatta et al., Phys. Rev. A 75 (2007) 052106.
36. G. S. Agarwal, Phys. Rev. Lett. 57 (1986) 827.
37. G. S. Agarwal, J. Opt. Soc. Am. B 5 (1988) 1940.
38. G. Lindblad, Commun. Math. Phys. 48 (1976) 119.
39. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2006).
40. G. M. D'Ariano, Phys. Lett. A 187 (1994) 231.
41. G. M. D'Ariano et al., Phys. Rev. A 67 (2003) 042310.
42. R. Simon, Phys. Rev. Lett. 84 (2000) 2726.
43. A. Sera¯ni et al., J. Opt. B 7 (2005) R19-R36.
44. E. Shchukin and W. Vogel, Phys. Rev. Lett. 95 (2005) 230502.
45. A. Miranowicz and M. Piani, Phys. Rev. Lett. 97 (2006) 058901.
46. M. Horodecki et al., Phys. Lett. A 223 (1996) 1.
47. J. Sperling and W. Vogel, Phys. Rev. A 79 (2009) 022318.
48. K. Chen and L. Wu, Quant. Inf. and Comp. 3 (2003) 193.
49. O. Rudolph, J. Phys. A 33 (2000) 3951.
50. M. G. Genoni et al., Phys. Rev. A 78 (2008) 060303.
51. V. Vedral, Rev. Mod. Phys. 74 (2002) 197.
52. M. M. Wolf et al., Phys. Rev. Lett. 96 (2006) 080502.

38 M. Allegra, P. Giorda & M. G. A. Paris


