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We describe the dynamics of tripartite state mapping and entanglement transfer from qubit-like
radiation states to two-level atoms via optical cavity modes. When the entangled radiation is
carried to the cavities by single-mode ¯bers, optimal pure and mixed state transfer is predicted
for perfect mirror transmittance, and entanglement sudden death (and birth) is demonstrated
for Werner input states. The general case of multi-mode ¯ber coupling is also discussed. The
dynamics is ¯nally investigated under various dissipative e®ects.
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1. Introduction

The quantum correlations identi¯ed by entanglement are the key resources for sev-
eral protocols of quantum information (QI) processing,1 as for example teleporta-
tion,2 cryptography3 and enhanced measurements.4 As a matter of fact, optical
systems have been a privileged framework for encoding and manipulating quantum
information, since bipartite and multipartite entanglement may be e®ectively gen-
erated either in the discrete or continuous variable regime. On the other hand, the
development of QI also requires localized registers, e.g. for the storage of entangle-
ment in quantum memories. Cavity quantum electrodynamics (CQED)5 is a relevant
scenario for this kind of investigations.

The general problem of transferring entanglement from bosonic systems to loca-
lized qubits for bipartite systems was recently addressed6 also in the presence of some
dissipative e®ects. In the framework of CQED the Hamiltonian description of
entanglement exchange from radiation to two-level atoms was theoretically investi-
gated7 and the e®ect of cavity mode decay was numerically analyzed.8 The literature
also provides examples of similar investigations in other physical systems such as

International Journal of Quantum Information
Vol. 9, Suppl. (2011) 83!92
#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0219749911007095

83

http://dx.doi.org/10.1142/S0219749911007095


circuit QED9 or collective spins of atomic ensembles.10 In the case of tripartite sys-
tems the problem of entanglement transfer was investigated in CQED for unitary
dynamics.11,12 In turn, tripartite entanglement of radiation in CV systems has been
widely investigated both theoretically and experimentally (see Refs. 13!18) and,
recently, photon number multipartite entanglement for qubit-like radiation states
was demonstrated.19 Another scheme for quantum state engineering has been
proposed20 allowing also entanglement puri¯cation.21

We recently worked out a full dynamical description of entanglement transfer
from three entangled bosonic modes to three localized qubits through the action of a
local environment.22 Upon exploiting current advances in the optical regime of
CQED,19,23,24 our scheme could be implemented with three entangled radiation
modes, prepared in a qubit-like state, coupled by optical ¯bers to three separated
optical cavities containing each one a trapped two-level atom. For entangled pure
input states we showed the occurrence of optimal state mapping and entanglement
transfer, followed by periodical mapping of quantum correlations onto the tripartite
atomic and cavity mode subsystems. In the case of external radiation prepared in a
mixed Werner state we suggested a way to observe the phenomenon of entanglement
sudden death/birth (ESD/ESB)25,26 for tripartite systems. Also we showed that,
during the time evolution, each subsystem (atoms or cavity modes) can alternatively
exhibit di®erent kinds of entanglement, including genuine tripartite GHZ and W
entanglement. The main dissipative e®ects were included to obtain a realistic
investigation of multipartite entanglement transfer and swapping, that is of interest
for quantum interfaces and memories in quantum networks.27,28 Here we review some
basic results, extending the previous analysis by considering re°ectivity losses at
input cavity mirrors (subsection 3.2) and, in particular, thus providing a generaliz-
ation of the treatment to the case of multi-mode ¯ber couplings between injected and
cavity modes (subsection 3.4).

2. Model of the Physical System

The general scheme we consider is composed of an entangled three-mode bosonic
system (f), prepared in general in a mixed state, which interacts with three qubits (a)
through their local environments (c). The system Hamiltonian in the interaction
picture is:

Ĥ I ¼
X

J¼A;B;C

}gJðĉJ !̂ y
J þ ĉ y

J !̂JÞ
h i

þ
X

J ;K¼A;B;C

}"J ;KðtÞðĉJ f̂
y
K þ ĉ y

J f̂KÞ
h i

ð1Þ

The operators ĉJ ; ĉ
y
Jðf̂ J ; f̂

y
JÞ are the annihilation and creation operators for the local

environment (input bosonic) modes, while !̂J ; !̂
y
J are the lowering and raising

operators for the target qubits in each subsystem ðJ ¼ A;B;CÞ. Without loss of
generality we consider real coupling constants gJ for the qubit-local environment
interaction, whereas "J ;KðtÞ, that couple local environment and bosonic modes, are
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taken real and time dependent in order to simulate the interaction switching-o® at a
suitable time toff .

The optical regime of CQED is a realistic framework where our scheme may be
implemented, choosing a tripartite photon-number entangled ¯eld for the bosonic
modes (f), guided by optical ¯bers, and two-level atoms as the target qubits (a). Each
qubit is trapped in a one-sided optical cavity, operating as the local environment (c).
We consider the optical ¯bers in the short-¯ber limit where radiation is carried by
discrete modes.29 In the following section, we shall distinguish the cases of single-
mode and multi-mode ¯bers that couple to the corresponding cavities.

If the system is open, it is subjected to several dissipative e®ects, such as cavity
losses at a rate #c due to interaction with a reservoir at zero temperature, atomic
spontaneous emission with a decay rate $a, and leakage of photons from the ¯bers at
a rate #f . Hence the time evolution of the whole system is described by the following
master equation (ME) in the Lindblad form for the density operator %̂ðtÞ:

%̂
:
¼ ! i

} Ĥe; %̂
! "

þ
X

J¼A;B;C

Ĉ f;J %̂Ĉ
y
f;J þ Ĉ c;J %̂Ĉ

y
c;J þ Ĉ a;J%Ĉ

y
a;J

h i
ð2Þ

where the non-Hermitian e®ective Hamiltonian is

Ĥe ¼ Ĥ I ! i}
2

X

J¼A;B;C

Ĉ
y
f;J Ĉ f;J þ Ĉ

y
c;J Ĉ c;J þ Ĉ

y
a;J Ĉ a;J

h i
ð3Þ

The jump operators for the atoms are Ĉ a;J ¼ ffiffiffiffiffi
$a

p
!̂J , for the ¯bers Ĉ f;J ¼ ffiffiffiffiffi

#f
p

f̂ J and
for the cavity modes Ĉ c;J ¼ ffiffiffiffiffi

#c
p

ĉJ . The choice of an environment at zero tempera-
ture is supported by the fact that in optical cavities thermal noise is negligible.
Moreover in the optical regime spontaneous emission can be e®ectively suppressed
and single atoms can stay trapped even for several seconds.23 From now on we
consider dimensionless parameters, all scaled to the coupling constant gA, and times
& ¼ gAt, introducing the dimensionless switching-o® time &off ¼ gAtoff .

3. Entanglement Transfer and State Mapping
in the Hamiltonian Regime

In this section we shall treat the unitary dynamics of the system, described in detail in
a previous work,22 taking into account some e®ects like the cavity mirror transmit-
tance, ESD and ESB phenomena for some initial mixed state and the e®ect of multi-
mode coupling between ¯bers and cavities.

3.1. Qubit-like external radiation carried by single-mode ¯bers

In order to better understand the problem of transferring the entanglement from the
external ¯eld to the atomic and cavity modes subsystems, we ¯rstly consider the case
of radiation coupled to the cavity modes by means of single mode ¯bers ("JK ¼ 0 if
J 6¼ K and "J ;J ¼ gA for all J). This can be achieved performing the \short ¯ber
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limit"29 which essentially allows only a single mode of the ¯ber to interact with the
cavity. Starting from a qubit-like entangled state %̂fð0Þ all subsystems (a, c, f) behave
as qubits and their multipartite entanglement dynamics can be described by com-
bining the information from tripartite negativity,30 entanglement witnesses31 for the
two inequivalent classes GHZ and W,32 and some criteria for separability.33 In fact,
the tripartite negativity E ð'Þð&Þð' ¼ a; c; fÞ, de¯ned as the geometric mean of the
three bipartite negativities,34 is an entanglement measure that provides only a
su±cient condition for entanglement detection, although its positivity guarantees
GHZ-distillability.

We ¯rst illustrate the case of an external ¯eld prepared in an entangled pure state
j"ð0Þif , atoms initially in the lower state jgggia and cavities in the vacuum state
j000ic. Overall we are dealing with an interacting 9-qubit system where the input
¯eld is switched o® at the time &off , for instance by rotating the ¯ber polarization.

In Fig. 1, we summarize the dynamics for the external ¯eld prepared in the GHZ
state j"ð0Þif ¼ ðj000if þ j111ifÞ=

ffiffiffi
2

p
. We ¯rst describe the transient regime 0 <

& & &off , where &off ¼ (=
ffiffiffi
2

p
corresponds to the maximum of the probability peð&Þ:

each input qubit transfers its excitation to the cavity which in turn passes it onto the
atom (see Fig. 1(a)). Each cavity mode, simultaneously coupled to the external ¯eld
and to the atom, exchanges energy according to a Tavis-Cummings dynamics at an
e®ective frequency5,35 gA

ffiffiffi
2

p
and the mean photon number N ðcÞð&Þ ' hĉ yĉið&Þ in each

cavity completes a cycle. In Fig. 1(b) we also see that the atomic tripartite negativity
is always positive and E ðaÞð&offÞ ¼ 1, that is the value for the injected GHZ state.
Until &off the dynamics maps the whole initial state j"ð0Þif ( j000ic ( jgggia onto
the pure state j000if ( j000ic ( j"ð0Þia, where j"ð0Þia is obtained from j"ð0Þif by
the correspondence j0if ! jgia and j1if ! jeia. As for the cavity mode dynamics we
note that (see Fig. 1(b)) the local maximum of E ðcÞð&off=2Þ does not correspond to a
pure state, i.e. the initial state j"ð0Þif cannot be exactly mapped onto the cavity
modes during the transient regime. Therefore we have that entanglement is only
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Fig. 1. Dynamics of the nine-qubit system for the external ¯eld initially prepared in a GHZ state. In (a)
the average number of photons N ðcÞ (dashed), N ðfÞ (dotted) and the probability of excited state pe (solid).
In (b) the tripartite negativity E ð'Þ for atoms (solid), cavity modes (dashed) and external ¯eld (dotted).
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partially transferred to the cavity modes but nevertheless this is enough for the
building up of full atomic entanglement later on. At the end of the transient regime the
external radiation is turned o® and the subsequent dynamics is described by a triple
Jaynes-Cummings36 (JC) model ruled by oscillations at the vacuum Rabi frequency
2gA, hence with a dimensionless period ( as shown by cavity mean photon number and
atomic probability in Fig. 1(a). The analysis of the purities and the ¯delities has been
widely carried out in a recent work,22 con¯rming the optimal state mapping. We also
notice that this benchmark can be reached starting from any tripartite qubit-like pure
state, which can be written in a generalized Schmidt decomposition.32

3.2. E®ect of cavity mirror transmittance

By choosing to turn o® the external ¯eld at times & 0 & &off we ¯nd a progressive
degradation of the entanglement transfer to the atomic and cavity subsystems. This
e®ect is fully equivalent to the presence of a reduced cavity mirror transmittance,
which may be de¯ned as T ð& 0Þ ¼ 1!N ðfÞð& 0Þ=N ðfÞð0Þ. For several fraction of the
initial mean photon number injected in the cavities (see Fig. 2(a)) we analyze the
subsequent dynamics of the subsystems. In particular in Fig. 2(b) we show the time
evolution of cavity mean photon number N ðcÞð&Þ and in Fig. 2(c) the atomic exci-
tation probability peð&Þ. The in°uence on the entanglement transfer scheme of a
reduced intensity of the transmitted radiation is well-described by the plots of the
tripartite negativity for both the atomic and cavity subsystems in (Figs. 3(a) and 3(b)).
As expected, the lower the input energy into the local environments, the worse is the
entanglement transfer e±ciency. Nevertheless even for a 10% change in the value of
&off , the ¯delity remains above 99.9%, i.e. entanglement transfer is robust against
°uctuations of the switching-o® time and this feature is a relevant one in view of
possible implementations.

3.3. Entanglement sudden death and birth

Here we resume some results and considerations about ESD and ESB e®ects which
occur in the time evolution of (a) and (c) subsystems starting from some peculiar
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Fig. 2. Mean photon number of the external radiation and of the cavity modes and atomic excitation
probability for di®erent values of mirror transmittance: (1) T ð2:22Þ ¼ 1:0, (2) T ð1:38Þ ¼ 0:9, (3)
T ð1:19Þ ¼ 0:8, (4) T ð1:04Þ ¼ 0:7, (5) T ð0:92Þ ¼ 0:6, (6) T ð0:81Þ ¼ 0:5, (7) T ð0:70Þ ¼ 0:4.
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mixed states. If we consider as injected ¯eld the Werner state %̂fð0Þ ¼
ð1! pÞjGHZihGHZjþ p=8Î ; ð0 & p & 1Þ, it is possible to classify the entanglement
properties for di®erent ranges of the mixing parameters p. As soon as the evolution of
the system starts, the density matrices of all subsystems lose the form of a GHZ state
mixed with white noise, but still preserve invariance under all permutations of the
three qubits and present only one non vanishing coherence as in %̂fð0Þ. Nevertheless it
is still possible to single out and di®erentiate the genuine tripartite entanglement
of GHZ and W type, from the classes of biseparable and fully separable states.
In particular we ¯nd genuine tripartite ESD and ESB phenomena for the atomic
subsystem and, for ¯xed values of p, the atomic state may exhibit transition from W
to GHZ entanglement class and viceversa in a ¯nite time. The same e®ects hold for
the cavity modes and they are allowed by the non-unitarity of the partial trace over
non-atomic degrees of freedom, which implies that the overall map on the initial three
qubits is not SLOCC. We also notice that for times & ) &off we can solve exactly the
triple JC dynamics, thus con¯rming our numerical results and providing generaliz-
ation of the results for mixed states.37

Starting, instead, from a mixed state in the form %̂fð0Þ ¼ pjGHZihGHZjþ
ð1! pÞjW ihW j, ð0 & p & 1Þ, we cannot demonstrate ESD or ESB for these kind of
states in the whole parameter space fp; &g, because the symmetry under qubit per-
mutations is lost during the time evolution. We can anyway a±rm that, for some ¯xed
values of p, there is a discontinuity for the atomic full tripartite entanglement time
evolution.38

3.4. Entanglement transfer for multi-mode ¯ber coupling

Finally, we consider multi-mode coupling of the external ¯eld to each cavity mode.
For simplicity we choose equal dimensionless coupling constants ~"J ;K ' "J ;K=gA 6¼ 0
if K 6¼ J and we consider values up to 1:4. In the transient regime, the dynamics is
sharply modi¯ed with respect to the case of single mode ¯ber shown in Fig. 1. By
increasing the values of ~"J ;K the period of energy exchange decreases from 2(=

ffiffiffi
2

p
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Fig. 3. E®ect of cavity mirror transmittance T on the dynamics of atomic and cavity entanglement E ða;cÞ:
(1) T ð2:22Þ ¼ 1:0, (2) T ð1:38Þ ¼ 0:9, (3) T ð1:19Þ ¼ 0:8, (4) T ð1:04Þ ¼ 0:7, (5) T ð0:92Þ ¼ 0:6, (6)
T ð0:81Þ ¼ 0:5, (7) T ð0:70Þ ¼ 0:4.
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toffi 2:6. The maximum of cavity mode mean photon number grows up toN ðcÞ ffi 0:41
whereas the maximum of atomic excitation probability decreases to pe ffi 0:24. The
external ¯eldmean photon number does not vanish but it reaches aminimum, that can
always be found between the two maxima of N ðcÞð&Þ and peð&Þ, such that 0:002 <
N ðfÞ < 0:02 changing ~"J ;K from 0.1 to 1.4. We investigate the di®erences in the
entanglement transfer for three selections of the switching-o® time &off corresponding
to the maximum of peð&Þ, the minimum of N ðfÞð&Þ and the maximum of N ðcÞð&Þ.

In Fig. 4(a) we show the dependence of &off on ~"J ;K 6¼J . Switching o® the external
¯eld at times &off corresponding to the maxima of peð&Þ, as in the previous case with
single-mode ¯bers, we ¯nd (Figs. 4(b) and 4(c)) that the maxima of tripartite nega-
tivities E ð'Þð&Þ after the transient regime reduce for increasing values of ~"J ;K for both
atomic and cavity mode subsystems. If we consider &off corresponding to the minimum
of N ðfÞð&Þ (Figs. 5(a) and 5(b)) we observe a small reduction of the peak values of
E ð'Þð&Þ. Finally, if we turn o® the external ¯eld at the ¯rst maximum of the cavity ¯eld
mean photon number we note that by increasing the values of ~"J ;K it is possible to
improve the entanglement transfer (Figs. 5(c) and 5(d)). The peak value of tripartite
negativity grows up to ffi 0:93 for ~"J ;K ¼ 1:4 and the ¯delity up to ffi 0:95 for both
subsystems (a) and (c). We remark that these values cannot be signi¯cantly increased
for larger values of ~"J ;K .

In conclusion, for all the above choices of switching-o® time &off we observe that, by
increasing the values of ~"J ;K , the amount of entanglement that can be transferred to the
cavity modes in the transient regime also increases. This is due to the fact that the
amount of energy transferred to each cavity mode increases: in fact, the peak value of
N ðcÞð&Þ progressively grows up from ffi 0:25 to ffi 0:41. Nevertheless, multi-mode coup-
ling for larger values of &off results in a less favorite condition for entanglement transfer.

4. Dissipative E®ects on the State Mapping

In the perspective of an experimental implementation of our scheme, an important
issue is the detrimental e®ect of dissipation on both state mapping and entanglement
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Fig. 4. E®ect of multi-mode coupling. a) Dependence of &off on the coupling constants ~"J;K for di®erent
choices of switching-o® the external ¯eld: maximum of peð&Þ (o), minimum ofN ðfÞð&Þ (x), and maximum of
N ðcÞð&Þ (+). b,c) Tripartite negativities E ð'Þ ð' ¼ a; cÞ for ~"J;K ¼ 0 (solid gray), 0.3 (dashed), 0.6 (dotted),
1.0 (dashed-dotted), and 1.4 (solid black) when &off corresponds to the maximum of peð&Þ.
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transfer. Here we provide some examples, obtained by numerically solving the full
ME (2) through Monte Carlo Wave Function method,39 in order to give a quanti-
tative behavior of the system in realistic conditions. Starting with an external ¯eld
prepared in a GHZ pure state, we analyze the e®ect of cavity decay rates in the range
0 < ~#c & 0:5 for negligible values of all other decay rates. We consider the ¯delities
F ð'Þ and the tripartite negativities E ð'Þ at the ¯rst peaks (' ¼ c; f) as function of ~#c.
In the left panel of Fig. 6 we see that all these quantities can be well-¯tted by

(a) (b)

(c) (d)

Fig. 5. E®ect of multi-mode coupling on tripartite negativities E ð'Þ ð' ¼ a; cÞ for ~"J;K ¼ 0 (solid gray),
0.3 (dashed), 0.6 (dotted), 1.0 (dashed-dotted), and 1.4 (solid black): a,b) &off in the minimum of N ðfÞð&Þ;
c,d) &off in the maximum of N ðcÞð&Þ.
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Fig. 6. (Left): E®ect of cavity dissipation. Tripartite negativities at the ¯rst peak and ¯delities vs.
~#c ' #c=gA: F ðaÞ (1), E ðaÞ(2), F ðcÞ (3), E ðcÞ (4). (Right): E®ect of ¯ber dissipation. Atomic tripartite
negativity Ea(solid), ¯delity F a(dash-dot), and atomic probability pe(dot) at time &off ; cavity mean
photon number N ðcÞ(dash) at time &off=2, vs ~#f ' #f=gA for ~#c + 1; ~$a + 1.
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exponential functions, with decay rates ) ðaÞ
F ¼ 0:75;) ðaÞ

E ¼ 1:09 for the atomic sub-
system, and ) ðcÞ

F ¼ 1:80;) ðcÞ
E ¼ 2:94 for the cavity modes. As one may expect,

quantum state mapping and entanglement transfer are by far more e±cient onto
atomic than cavity qubits. For instance, if ~#c ¼ 0:1 we obtain a state mapping onto
the atoms (cavity modes) with a ¯delity of ffi 0:93 ðffi 0:83Þ. Upon adding a nonzero
atomic decay we see that this is a minor e®ect compared to cavity decay. As an
example, ¯xing the value of atomic decay rate ~$a ¼ 0:03 and cavity decay rate
~#c ¼ 0:1, the ¯delity of the atomic (cavity mode) subsystem reduces by 4:4% ð8:9%Þ.
Finally, we address the e®ect of ¯ber losses, which is of course relevant only up to the
time &off . We evaluated the e®ects of decay rates ~#f up to 1.0 for negligible values of
atomic and cavity decay rates (~#c + 1, ~$a + 1) (see the right panel of Fig. 6). We
show the e®ect of ¯ber losses ~#f on cavity ¯eld mean photon numberN ðcÞð&off=2Þ and
atomic excitation probability peð&offÞ and we see that the amount of energy trans-
ferred to the atoms and to the cavity modes decreases exponentially for increasing
values of ~#f ; the decay rates are ffi 0:42 and ffi 0:82, respectively. The behavior of the
tripartite negativity E ðaÞ and the ¯delity F ðaÞ at the ¯rst peak can be described by
exponential functions of ~#f , whose decay rates are ffi 1:51 and ffi 1:95, respectively.

5. Conclusion

We have described the mapping of quantum states and the transfer of quantum
entanglement for three qubit-like radiation modes to three localized qubits via optical
¯bers coupled to (one-sided) optical cavities. The scheme exhibits optimal perform-
ance for input radiation prepared in GHZ or W states, and leads to tripartite ESD/
ESB e®ects for mixed Werner states.22 We have elucidated the dynamical description
of cavity mirror re°ectivity in the protocol. Moreover we have generalized the
treatment in Ref. 22 to the case of multi-mode ¯ber coupling, showing that when the
protocol is not optimal, it is possible to (partially) compensate the re°ectivity losses.
The open system dynamics has been also investigated to evaluate the limits dictated
by cavity, atomic and ¯ber mode decays.
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