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We address the estimation of phase-shifts for qubit systems in the presence of noise. Di®erent
sources of noise are considered including bit °ip, bit-phase °ip and phase °ip. We derive the
ultimate quantum limits to precision of estimation by evaluating the analytical expressions of
the quantum Fisher information and assess performances of feasible measurements by evaluating
the Fisher information for realistic spin-like measurements. We also propose an experimental
scheme to test our results.
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1. Introduction

In this paper, we address the estimation of a phase-shift imposed to a qubit in the
presence of noise. The scheme we have in mind is the following: a unitary rotation is
applied to a qubit initially prepared in a known state, then, before being detected, the
qubit propagates through a noisy channel. We consider a ¯xed axis for the rotation
and three possible kind of noise: bit °ip, phase-bit °ip and phase °ip. Our goal is to ¯nd
the optimal strategy to estimate the value of the phase-shift, i.e. the measurement
achieving the quantum Cram!er-Rao bound to precision, and to compare the per-
formances of feasible qubit measurements with the optimal ones. To this aim, we
employ local quantum estimation theory and evaluate the quantumFisher information
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for three families of output states, as well as the Fisher information of realistic
measurements. As we will see for bit-°ip and phase-bit °ip noises, upon choosing a
suitable initial state, one can always attain the minimum uncertainty in the estimation
allowed by quantummechanics, whereas phase °ip noise leads to an unavoidable loss of
information.

The paper is structured as follows. In Sec. 2 we review the formalism we use
throughout the paper and introduce the description of the di®erent noisy channels.
We also introduce the quantum Fisher information and the Fisher information
needed to evaluate the ultimate bounds on the precision of the estimation. In Sec. 3
we systematically investigate the phase estimation in the presence of the three
possible sources of noise. In particular, we calculate the explicit analytical expressions
of the quantum Fisher information and of the Fisher information. Section 4 is
devoted to the discussion of our results. In this section we give the \geometrical"
interpretation of our results by investigating the dynamics of the system in the Bloch
sphere representation. We also propose an experiment to test our predictions in
Sec. 5. Section 6 closes the paper with some concluding remarks.

2. The System and the Noisy Evolution

Let us consider a single qubit in the pure state (we use the eigenvectors j0i and j1i of
the Pauli matrix !3 as basis):

%0 ¼
cos2# ei’ cos# sin #

e!i’ cos# sin# sin2#

! "
: ð1Þ

Upon introducing the Bloch sphere, the state (1) can be also written as: %0 ¼
1=2ð1þ r & ¾Þ where 1 is the 2' 2 identity matrix, ¾ ¼ ð!1; !2; !3Þ is the Pauli
r ¼ ðsin 2# cos’; cos 2# sin’; cos 2#Þ, 2# is the azimuthal angle (# ¼ 0 and # ¼ "=2
correspond to the north and south poles of the Bloch sphere, that are the states j0i
and j1i, respectively).

Now, we apply a phase shift to %0. The unitary operator associated with the phase
shift is U3ð#Þ ¼ expð!i=2#!3Þ. Since the phase shift imposed by U3ð#Þ is a rotation
around the z-axis of the Bloch sphere, we can put ’ ¼ 0 without loss of generality,
thus, the shifted qubit state reads:

%# ¼ U3ð#Þ %0 U
y
3ð#Þ ¼

cos2# ei# cos# sin#

e!i# cos# sin# sin2#

! "
: ð2Þ

In this paper we address the estimation of # assuming the qubit evolving through a
channel a®ected by one of three possible noises (our analysis can be easily extended to
any combination of these): bit °ip, phase-bit °ip and phase °ip noises.1 These
channels are described by the following map acting on %#:

Ekð%#Þ ¼ "0 %# þ "1 !k %# !k; ð3Þ
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with "1; "2 ( 0, "1 þ "2 ¼ 1. Depending on the value of k, the map (3) describes the
bit °ip ðk ¼ 1Þ, the phase-bit °ip ðk ¼ 2Þ and the phase °ip ðk ¼ 3Þ.1 By investigating
it, we can see that the state is left unchanged with the probability "0, while with
probability "1 it is transformed (undergoes an error) according to the corresponding
Pauli matrix.

The action of the map (3) can also be obtained by applying a suitable Gaussian
noise to the qubit:

Ekð%#Þ ¼
Z

R
d$

e!$ 2=ð4" 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4""2

p Ukð$Þ%#U
y
kð$Þ; ð4Þ

where Ukð$Þ ¼ expð!i=2$ !kÞ and "2 is related to the noise amplitude. The coe±-
cients of the map (3) are related to the Gaussian noise as follows:

"0 ¼ gþð"2Þ; "1 ¼ g!ð"2Þ; g)ð%Þ ¼
1

2
1) e!%
$ %

: ð5Þ

The map in Eq. (4) represents the solution of the noisy dynamics described by the
following Master equation1:

%#
: ¼ &L½!k+ %#; ð6Þ

where L½!k+ %# ¼ 1=2f½!k%#; !k+ þ ½!k; %#!k+g. Eq. (6) gives the same evolution as
above if we put "2 ¼ &t=2.

2.1. Quantum Fisher information and Fisher information
for spin measurements

The minimum uncertainty Varm½#+ achievable in the phase estimation is given by the
quantum Cram#er-Rao bound:

Varm½#+ ¼ 1=Hð#Þ; ð7Þ

Hð#Þ being the quantum Fisher information (QFI),2!5 which can be calculated
starting from the eigenvalues and eigenvectors of the signal carrying the information.
In the present case, if we call ' ðkÞ

) , ' ðkÞ
) ð#Þ the two eigenvalues of the state Ekð%#Þ

and j' ðkÞ
) i , j' ðkÞ

) ð#Þi the corresponding eigenvectors, the QFI can be written as8:

Hk ¼
1

' ðkÞ
þ

½@#'
ðkÞ
þ +2 þ 1

' ðkÞ
!

½@#'
ðkÞ
! +2

þ ½' ðkÞ
þ ! ' ðkÞ

! +2

' ðkÞ
þ þ ' ðkÞ

!
ls½jh' ðkÞ

þ j@#'
ðkÞ
! ij2 þ jh' ðkÞ

! j@#'
ðkÞ
þ ij2+: ð8Þ

Since we are interested in the estimation of the phase shift around the z-axis, one can
show that the optimal states for the estimation are the equatorial states of the Bloch
sphere7: for this reason we can set # ¼ "=4 in Eq. (2).

On the other hand, if we assume that, after the noisy evolution, we perform the
measurement of the two-outcome observable:

$ð(Þ ¼ !1 cos(þ !2 sin(; ð9Þ
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then the minimum uncertainty on the estimation of # is given by the Fisher infor-
mation, namely:

Fkð#; (Þ ¼
1

p ðkÞ
!

½@#p
ðkÞ
! +2 þ 1

p ðkÞ
þ

½@#p
ðkÞ
þ +2; ð10Þ

with p ðkÞ
) , p ðkÞ

) ð#;"2; (Þ:

p ðkÞ
) , pkð)1j#Þ ¼ Tr½Ekð%#Þ%)ð(Þ+ ð11Þ

where we introduced the projectors:

%)ð(Þ ¼ j$)ð(Þih$)ð(Þj ð12Þ

j$)ð(Þi being the eigenvectors of $ð(Þ: $ð(Þj$)ð(Þi ¼ )j$)ð(Þi. Note that p ðkÞ
) , as

de¯ned above, represent the conditional probabilities of the outcomes )1 given #.

3. Optimal Phase Estimation

3.1. Bit °ip noise

For k ¼ 1 in Eq. (3) or, equivalently, in Eq. (4), one has the so-called bit-°ip noise.
The eigenvectors and eigenvalues of Ekð%#Þ read (in the eigenbasis of !3 and for
# ¼ "=4):

j' ð1Þ
) i ¼ 1ffiffiffi

2
p ½j1i ) f ð1Þð#;"2Þj0i+; ð13Þ

and

' ð1Þ
) ¼ 1

2
½1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþð2"2Þ þ g!ð2"2Þ cos 2#

q
+; ð14Þ

respectively, where the functions g)ð%Þ are given in Eq. (5):

f ð1Þð#;"2Þ ¼ cos#! ie!" 2 sin#

cos2#þ e!2" 2sin2#
½' ð1Þ

þ þ ' ð1Þ
! +: ð15Þ

From Eq. (8) one ¯nds:

H1 ¼ 1; ð16Þ

that is the QFI is always maximum and, thus, the uncertainty in the estimation is
minimum.

The conditional probabilities p ð1Þ
) ¼ Tr½E1ð%#Þ%)ð(Þ+ in Eq. (11) read:

p ð1Þ
) ð#;"2; (Þ ¼ 1

2
½1) ðcos( cos#þ e!"

2
sin( sin#Þ+ ð17Þ

in turn, the Fisher information (10) becomes:

F1ð#; (Þ ¼
ðcos( sin#! e!" 2 sin( cos#Þ2

1! ðe!"2 sin( sin#þ cos( cos#Þ2
; ð18Þ
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that leads to F1 ¼ 1 8# if we set ( ¼ 0, i.e. we measure !1: this measurement leads to
the optimal estimation of #.

If "2 - 1, then the expansion of Eq. (18) reads:

F1ð#; (Þ . 1! 2sin2ð(Þ
sin2ð(! #Þ

"2: ð19Þ

3.2. Phase-bit °ip noise

The phase-bit °ip corresponds to set k ¼ 2 in Eq. (3). Now the eigenvectors and
eigenvalues are:

j' ð2Þ
) i ¼ 1ffiffiffi

2
p ½j1i ) f ð2Þð#;"2Þj0i+; ð20Þ

and

' ð2Þ
) ¼ 1

2
½1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþð2"2Þ ! g!ð2"2Þ cos 2#

q
+; ð21Þ

respectively, where g)ð%Þ are still given in Eq. (5) and:

f ð2Þð#;"2Þ ¼ e!" 2 cos#! i sin#

e!2" 2cos2#þ sin2#
½' ð2Þ

þ þ ' ð2Þ
! +: ð22Þ

From Eq. (8) one ¯nds:

H2 ¼ 1; ð23Þ

that is the QFI is always maximum as for the bit °ip case.
The conditional probabilities p ð2Þ

) ¼ Tr½E2ð%#Þ%)ð(Þ+ read:

p ð2Þ
) ð#;"2; (Þ ¼ 1

2
½1) ðsin( sin#þ e!"

2
cos( cos#Þ+; ð24Þ

and the Fisher information (10) is:

F2ð#; (Þ ¼
ðsin( cos#! e!" 2 cos( sin#Þ2

1! ðe!" 2 cos( cos#þ sin( sin#Þ2
; ð25Þ

that leads to F2 ¼ 1 8# if we set ( ¼ "=2, i.e. we measure !2.
If "2 - 1, then the expansion of Eq. (25) reads:

F2ð#; (Þ . 1! 2cos2ð(Þ
sin2ð(! #Þ"

2: ð26Þ

3.3. Phase °ip noise

This case describes a qubit undergoing phase di®usion during its propagation.7 The
eigenvectors and eigenvalues of Ekð%#Þ are simply:

j' ð3Þ
) i ¼ 1ffiffiffi

2
p ðj1i ) e!i#j0iÞ ð27Þ
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and:

' ð3Þ
) ¼ 1

2
ð1) e!"

2Þ; ð28Þ

that lead to the following QFI:

H3 ¼ e!2" 2
: ð29Þ

Now, since the conditional probabilities p ð3Þ
) ¼ Tr½E3ð%#Þ%)ð(Þ+ reads:

p ð3Þ
) ð#;"2; (Þ ¼ 1

2
½1) e!"

2
cosð(! #Þ+; ð30Þ

the Fisher information (10) reduces to:

F3ð#; (Þ ¼
e!2"2sin2ð(! #Þ

1! e!2" 2cos2ð(! #Þ
; ð31Þ

that reaches the maximum F3 ¼ e!2" 2 ¼ H3 for ( ¼ #þ "=2. Since # is unknown,
the achievement of the maximum value requires a two-step adaptive method as
described in Ref. 7.

If "2 - 1, then the expansion of Eq. (31) reads:

F3ð#; (Þ . 1! 2

sin2ð(! #Þ"
2: ð32Þ

It is worth to note that now the QFI H3 is equal to unity only in the absence of
noise ("2 ¼ 0): it has been investigated in Ref. 9.

4. Discussion

In Fig. 1 we show the deformation of the Bloch sphere under the action of the three
di®erent noises described above. If the initial qubit state is represented by the vector
r ¼ ðrx; ry; rzÞ, we have the following evolutions depending on the noise:

r ! ðrx; e!"
2
ry; e

!" 2
rzÞ ðbit flipÞ; ð33Þ

r ! ðe!"2
rx; ry; e

!"2
rzÞ ðbit-phase flipÞ; ð34Þ

r ! ðe!"2
rx; e

!"2
ry; rzÞ ðphase flipÞ: ð35Þ

If we start from an equatorial state, i.e. rz ¼ 0, then in the presence of bit °ip and bit-
phase °ip the x and y components of r, respectively, are left unchanged, whereas the
other is rescaled by the factor e!"

2
(left and middle plots in Fig. 1); in the case of the

phase °ip noise (right plot in Fig. 1) both the x and y components are rescaled. It is
now clear why in the case of the ¯rst two kinds of noise it is possible to achieve the
optimal estimation (F ¼ H ¼ 1) by a suitable choice of the measurements: these
correspond to measure the component of r, which is not a®ected by the noise. This is
not possible for the phase noise, where both the components x and y are equally
degraded.
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So far we have addressed the case in which the noise a®ects the propagation of the
qubit after the phase-shift. Let us now extend our analysis to the case of noise
occurring before the phase-shift operation. We can distinguish between two cases: (i)
the bit °ip and the phase-bit °ip noises and (ii) the phase °ip noise. In the ¯rst two
cases (bit and bit-phase °ip), we can cancel the e®ect of noise by choosing suitable
input equatorial states (see the left and middle plots of Fig. 1). Since we are interested
in the achievement of the optimal estimation, in the case of E1 we should use j)i ¼
1=

ffiffiffi
2

p
ðj0i ) j1iÞ as input signals: they are the eigenstates of !1 and, thus, are invar-

iant under the map E1, i.e.

E1ðj) ih)jÞ ¼ j) ih) j; ð36Þ

Analogously, in the presence of the noise E2, we should use jli ¼ 1=
ffiffiffi
2

p
ðj0i þ ij1iÞ and

jri ¼ 1=
ffiffiffi
2

p
ðj0i ! ij1iÞ, that are the eigenstates of !2 and, thus:

E2ðjlihljÞ ¼ jlihlj; E2ðjrihrjÞ ¼ jrihrj; ð37Þ

i.e. they are left unchanged under the action of the map E2.
For what concerns E3, the situation is quite di®erent. In this case, as one can see

from the right plot in Fig. 1, there is not an equatorial state which is left unchanged
[see also Eq. (35)]: a phase noise along this channel leads to a unavoidable loss of
information. Nevertheless, one can address this case as if all the noise a®ects the
propagation only after the phase shift, since E3 and U3ð#Þ commute, being both
functions of !3, as we described in Refs. 6 and 7.

Fig. 1. Deformation of the Bloch sphere and the corresponding equatorial projection under bit °ip (left),
phase-bit °ip (middle) and phase °ip (right) noises. In the case of bit °ip and phase-bit °ip the x and y
component, respectively, of the qubit are left unchanged during the evolution (dashed lines). See the text
for details. The dot refers to the evolving qubit state.
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5. Experimental Proposal

In this section we discuss the experimental implementation of the phase estimation in
the presence of bit and phase-bit °ip noises (we thoroughly investigated the last case,
the phase °ip noise, in Ref. 7). As qubit we take the polarization degree of freedom of
a single photon state: in this case j0i ! jHi and j1i ! jV i, jHi and jV i denoting the
horizontal and vertical polarization states, respectively), thus, j)i correspond to the
linear-polarized states at )45/, while jli and jri to left- and right-handed circular
polarized states, respectively.

As discussed above, without loss of generality we can focus on the presence of the
noisy channel Ek; k ¼ 1; 2, after the phase shift operation. In Fig. 2 we sketched the
schemes referring to the two di®erent noisy channels. The phase shift U3ð#Þ is
imposed to the initial qubit in the (equatorial) state jþi by using a KDP crystal, as
described in Ref. 7, while the noise is simulated following Eq. (4), that is by applying
to the phase-shifted qubit the operation Ukð$Þ; k ¼ 1; 2, with the value of the real
parameter $ distributed according to a normal distribution with zero mean and 2"2

variance [see Eq. (4)]. Operations U1ð$Þ and U2ð$Þ may be experimentally im-
plemented by means of a KDP crystal preceded and followed by a half-wave plate
(HWP), in the case of U1ð$Þ, or by a suitable quarter-wave plate (QWP) and a HWP,
in the case of U2ð$Þ, as depicted in Fig. 2.

6. Conclusion

In this paper we discussed the estimation of the phase shift imposed to a qubit in the
presence of di®erent sources of noises. We showed that in the case of bit and phase-bit

Fig. 2. A polarization qubit state, initially in the state jþi, undergoes a phase shift of an amount # by a
¯rst KDP crystal (KDP1). In order to simulate the di®erence sources of noise, a second KDP crystal
(KDP2) imposes the phase shift $, with $ distributed according to a normal distribution with zero mean
and 2"2 variance [see Eq. (4)]. The noisy channels Ek are simulated as follows. To simulate the bit °ip noise
(k ¼ 1) we need to insert a half wave plate @ 22:5/ (HWP) before and after the KDP2, while to simulate
the bit-phase °ip noise ðk ¼ 2Þ we insert a quarter wave plate with fast axis horizontal ðQWPHÞ before the
KDP2 and a quarter wave plate with fast axis vertical ðQWPV Þ after the KDP2, together with the two
HWPs. The phase °ip noise ðk ¼ 3Þ is implemented by means of the KDP2, i.e. removing the HWPs and
the QWPs. Depending on the noisy channel, the measurement $ð(Þ is implemented by a polarizing beam
splitter (PBS), together with a HWP@ 22:5/, in the case of E1, or by a QWP with fast axis horizontal and a
HWP @ 22:5/, for E1 or E2, respectively.

386 E. Tesio, S. Olivares & M. G. A. Paris



°ip noises, upon choosing a suitable initial state, one can always attain the minimum
uncertainty in the estimation allowed by quantum mechanics (the quantum Cram#er-
Rao bound). On the other hand, the presence of the phase °ip noise leads to an
unavoidable loss of information and, thus, to a decrease of the QFI, that has been
experimentally veri¯ed in Ref. 7. Experimental schemes to test our predictions have
been also proposed.
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