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Finite-time quantum-to-classical transition for a Schrödinger-cat state
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The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified
with the transition from a quantum superposition of macroscopically distinguishable states, such as the
Schrödinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized
by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we
show that the quantum-to-classical transition has different dynamical features depending on the measure for
nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow
a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality
measures, the Schrödinger-cat state becomes classical after a finite time. Moreover, our results challenge the
prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition
from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our
results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which
may show a “sudden death.” In fact, whereas the loss of coherences still remains asymptotic, we emphasize that
the transition from quantum to classical can indeed occur at a finite time.
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I. INTRODUCTION

Ever since the early days of quantum theory the gap
between our classical everyday reality and the quantum
mechanical laws that govern the microscopic world has been
acknowledged. The Schröodinger-cat gedanken experiment, in
which a real cat is cleverly put in a superposition of being alive
and dead at the same time, illustrates the seemingly paradoxical
conclusions arising from the application of quantum principles
to macroscopic objects [1].

The prevailing explanation of the emergence of the classical
realm from the quantum is environment-induced decoherence
(EID) [2,3]. According to the EID description the reason
why macroscopic quantum superpositions are not observed
in the classical world is the presence of the environment,
which couples to all systems and effectively monitors quantum
superpositions, inducing a collapse to the corresponding
statistical mixture of classical-like states (pointer states).
Experiments observing the quantum-to-classical transition, for
Schrödinger-cat-like states of both light and massive particles,
have been performed, e.g., in the context of cavity QED and
trapped ions, respectively [4–6].

Quantum superpositions of macroscopically (or mesoscopi-
cally) distinguishable states are sometimes called Schrödinger-
cat states, in the spirit of the original Schrödinger’s thought
experiment. Typically, decoherence of such a quantum super-
position state that leads to a statistical mixture, is identified
with the transition from quantum to classical, i.e., with the
loss of the quantum features initially possessed by the cat
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state [2]. According to one of the earliest definitions, a state
is classical if it can be expressed as a statistical mixture of
coherent states, i.e., if the P function [7–10] of the state is a
positive, well-defined probability distribution [9]. Although
examples of nonclassical states in line with this original
definition exist [11], the P function can also be highly singular,
making its reconstruction very demanding. Different defini-
tions and criteria for nonclassical states have been proposed
in the literature [12–19], also for multimode fields [20–23],
and the decoherence process has been analyzed extensively
[24,25]. The different approaches are not equivalent, so the
complete characterization of nonclassical states, in particular,
a measurable criterion that is both necessary and sufficient,
does not exist, except for pure states [16]. In addition to
their fundamental importance, nonclassicality criteria are of
key relevance also for quantum technologies. Creating and
revealing nonclassical states, e.g., is often a prerequisite to
generate entanglement for quantum information purposes in
all-optical setups [26,27].

In this paper we consider five different definitions of
nonclassicality for a single mode of the quantum harmonic
oscillator, paying special attention to their physical meaning.
We use these definitions to study the quantum-to-classical
transition, i.e., the dynamics of a Schrödinger-cat state in pres-
ence of a dissipative environment inducing decoherence. The
nonclassicality indicators we deal with are as follows: the
peak of the interference fringes of the Wigner function, the
negativity of the Wigner function, Vogel’s noncalssicality
criterion [15], the nonclassical depth [12,13], and the Klyshko
criterion [14,28].

As opposed to the definition based on the fringe visibility
of the Wigner function, which is the most widely used when
describing the quantum-to-classical transition, the other four
criteria offer some advantages. These definitions, indeed, have
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an operatorial interpretation, connecting the transition process
to a measurable physical property. The interference fringes,
on the contrary, are constructed mathematically assuming the
full knowledge of the quantum state. In practice, however, any
technique for quantum state estimation, including tomographic
approaches, leads to a reconstruction of the density matrix
within some confidence interval, so the amount of nonclassi-
cality is crucially influenced in a nonlinear way by the precision
of the reconstruction technique [29].

We find that, according to all the operatorial definitions, the
quantum-to-classical transition occurs at a finite time rather
than following an exponential decay, in accordance with the
results found in Refs. [30–32] for the nonclassical depth and
the negativity of the Wigner function. It is worth noting that,
contrarily to entanglement, which is defined independently of
the entanglement measure used, the concept of nonclassicality
or quantumness of the state does depend on the nonclassicality
criterion used. More precisely, even if for mixed states
different entanglement measures may give different numerical
values, they all agree on the minimum zero value indicating
disentanglement. Therefore, entanglement sudden death does
not depend on the specific measure of entanglement chosen.
On the contrary, as we will see, the loss of nonclassicality
does depend on the criterion used to define nonclassicality.
However, all operatorial definitions of nonclassicality show a
similar behavior, reinforcing the idea that the initial cat state
loses its quantum character after a finite time, which we can
identify with the maximum over the times the cat state becomes
classical according to the different criteria.

We also study how the transition depends on the separation
between the two coherent states of the initial superposition,
finding that the dependence of the decoherence time from the
separation, and therefore from the size of the cat state, is not
at all trivial and can be counterintuitive. It is widely believed,
indeed, that the more macroscopic the initial cat state is, the
faster is the quantum-to-classical transition. This is indeed true
for the fringe visibility criterion but, as we will see, using other
criteria the situation changes drastically.

The paper is organized in the following way. In Sec. II we
introduce the initial Schrödinger-cat state and the dynamics
driving the transition. In Sec. III we introduce the five differ-
ent nonclassicality conditions, we derive their environment-
induced dynamics, and, hence, we single out and compare the
characteristic features of the quantum-to-classical transition,
according to each definition. Finally, in Sec. IV we present
concluding remarks and sum up the results.

II. THE SYSTEM

Let us consider a quantum harmonic oscillator initially
prepared in a superposition of coherent states with opposite
phases, i.e., in the so-called Schrödinger-cat state,

|!cat〉 = |α〉 + |−α〉√
N

, (1)

where |α〉 denotes a coherent state and

N = 2[1 + exp(−2|α|2)]

is the normalization constant. For the sake of simplicity we will
assume amplitudeα real throughout the paper. We then assume

that the oscillator interacts with a bosonic bath of oscillators
at thermal equilibrium at temperature T . In the Born-Markov
approximation, and in the interaction picture, the evolution of
the system is governed by the master equation

dρ(t)
dt

= γ (n + 1)[2aρ(t)a† − a†aρ(t) − ρ(t)a†a]

+ γn[2a†ρ(t)a − aa†ρ(t) − ρ(t)aa†] , (2)

where ρ is the density matrix of the quantum harmonic
oscillator, γ the damping rate, a and a† the annihilation and
creation operators, and n the mean occupation number of the
thermal bath.

All the nonclassicality criteria that we will use in the paper
are based on the quasiprobability distributions associated to
quantum states. These are the quantum analogs of the classical
distribution functions so, broadly speaking, any deviation
from a classical probability distribution is considered as
a sign of nonclassicality. The normalized quasiprobability
distributions associated to the density matrix ρ are defined
as the Fourier transforms of the s-parametrized characteristic
functions χ (ξ,s) [10,13]

W (α,s) =
∫

d2ξ

π
eαξ

∗−α∗ξ χ (ξ,s), (3)

where

χ (ξ,s) = Tr[ρ eξ â
†−ξ∗â] e

1
2 s|ξ |2 . (4)

The familiar P function, Wigner function and Husimi Q func-
tion are obtained by choosing s = 1, 0, and −1, respectively.
These distribution functions correspond to normal, symmetric,
and antinormal ordering of the creation and annihilation
operators, respectively, and they can be easily obtained from
one another via convolution, i.e., for s̃ < s ′, one has

W (α,s̃) = W (α,s ′) (G(s ′ − s̃,α)

=
∫

d2βW (β,s ′) G(s ′ − s̃,α − β) , (5)

where

G(κ,α) = 2
πκ

exp
(

−2
|α|2

κ

)
. (6)

Different distributions can be found useful for different
tasks. The Wigner function is often used to characterize
nonclassicality because it is bounded from above allowing
experimental measurements. It is well known, however, that
defining nonclassicality in terms of the properties of different
quasiprobability distributions, e.g., the P function or Wigner
function, does not yield equivalent results. The quantum-to-
classical transition has been studied previously by monitoring
the time evolution of the interference peak in the Wigner
function representation [2]. We include this approach in
our study and compare it to four other possible ways to
characterize the quantum-classical border. Each approach has
a different physical interpretation, with different strengths and
weaknesses. In the next section, we analyze such differences in
an effort to obtain insight into the emergence of classicality. To
this aim we consider the dynamics of different nonclassicality
measures and study the time at which the initial nonclassical

012121-2



FINITE-TIME QUANTUM-TO-CLASSICAL TRANSITION . . . PHYSICAL REVIEW A 84, 012121 (2011)

state evolves into a classical one and the dependence of such
time from the relevant system parameters.

III. LOSS OF NONCLASSICALITY OF THE
SCHRÖDINGER-CAT STATE

Monitoring the dynamics of the cat state as it evolves into
a statistical mixture is a natural way of studying the quantum-
to-classical transition since the initial superposition is not an
element of the macroscopic, classical reality, whereas the final
statistical mixture of minimum uncertainty coherent states is,
the latter states being the closest equivalent of a classical point
in phase space. The precise way of characterizing the transition
leads to different dynamical features and interpretations. In
the following we study analytically the time evolution of the
peak of the interference fringes of the Wigner function, the
nonclassicality depth, the negativity of the Wigner function,
Vogel nonclassicality criterion, and the Klyshko criterion.

A. Peak of the interference fringe

A common way of monitoring the quantum to classical
transition by using the Wigner function is based on the time
evolution of the highest point of the interference term, charac-
terizing the Schrödinger-cat state of Eq. (1). Such a term is an
indicator of the quantumness of the superposition and hence
its disappearance signals the transition to a classical mixture.
The presence of the interference peak can be quantified via the
fringe visibility function

F (α,t) ≡ exp(−Aint)

= 1
2

WI (β,t)|peak

[W (+α)(β,t)|peakW (−α)(β,t)|peak]1/2
, (7)

where WI (β,t)|peak is the value of the Wigner function at β =
(0,0) and W (±α)(β,t)|peak are the values of the Wigner function
at β = (±α,0), respectively. This is a widely used signature for
the emergence of classicality [3] and it has been experimentally
monitored as well [4–6]. The time evolution of the fringe
visibility for an oscillator initially prepared in a cat state and
then evolving in a noisy channel reads as follows

F (α,τ ) = exp
[
−2α2

(
1 − C2

t

1 + 2Dt

)]
, (8)

where

Ct = e−γ t Dt = n(1 − e−2γ t ) . (9)

The time evolution of the same quantity without the Markovian
approximation (i.e., taking into account the memory effects of
structured reservoirs) has been studied in Ref. [33].

As we can see from Eq. (8), the fringes disappear asymp-
totically. If one then takes the peak of the interference fringe
as an indicator of nonclassicality, the quantum-to-classical
transition does not occur at a finite time. No known operatorial
expression, however, can be given for the fringe visibility.
Therefore it can be seen as a calculational tool to describe
decoherence, with no obvious observable associated to it.
Moreover, characterizing decoherence in this way requires
the full knowledge of the state density matrix, obtained with
complete tomographic measurements.

The dependence of the decoherence rate on the initial sepa-
ration can be seen from Eq. (8). This quantity is proportional to
α2, resulting in faster decoherence for more macroscopic initial
cat states. The explanation of the emergence of the classical
world from the quantum one, according to environment
induced decoherence, is heavily based on this observation.
More macroscopic states lose their quantumness faster, and
that is why we do not see any of the bizarre effects predicted
by quantum theory in our daily “macroscopic” life. However,
as we will see in the following subsections, this conclusion is
strongly dependent on the nonclassicality critierion considered
and therefore cannot be used to corroborate the main traits of
the quantum-to-classical transition, such as the dependence of
the decoherence time on the size of the system.

B. Nonclassical depth

Let us now focus on the nonclassical depth that can be
obtained from the properties of the generalized distribution
functions introduced in Sec. II. The nonclassical depth was
first introduced by Lee [12] and, in a slightly different form,
by Lütkenhaus and Barnett [13] some years later.

The starting point is the s-parametrized quasidistribution
function given by Eq. (5), with s a continuous parameter.
Setting s ′ = 1 in Eq. (5) one obtains an expression giving
W (α,s) as a convolution of the P function,

W (α,s) = P (α) (G(1 − s,α). (10)

Note that, for s = 1,0,−1, W (α,s) coincides with the P ,
W , and Q functions, respectively. While the P and the W
functions cannot be generally considered proper distribution
function, the Q function can, being always positive and
regular. However, we note in passing that, even if the Q
function is always positive, its marginals are only approximate
(broadened) position and momentum variables. Hence, its use
as an indicator of classicality should be considered with care,
as discussed in some detail, e.g., in Ref. [34].

The nonclassical depth of a given state is

η = 1
2 (1 − s̄),

where s̄ is the largest value of s for which W (α,s) is positive.
For pure states 0 ! η ! 1, while mixed states can have any
value of η < 1. It was shown in Ref. [13] that for all pure states
other than coherent squeezed states the nonclassical depth is
η = 1, squeezed states have 0 ! η ! 1/2, while coherent state
have η = 0, in accordance with the fact that they are the closest
analog to classical states for the quantum harmonic oscillator.

In order to study the dynamics of the nonclassical depth η,
for the initial state of Eq. (1), we note that the time evolution
of the P function, in the presence of a dissipative thermal
environment leading to the master equation (2), can be written
in a form similar to Eq. (10). As we will see in the following,
this allows us to single out an analytic expression for the
instant of time τP which is an upper bound for the loss of
nonclassicality. The solution to the master equation (2) can be
written in terms of the normally ordered characteristic function
χ (ξ,s = 1) ≡ -(ξ ). On denoting by -0(ξ ) the characteristic
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function at t = 0 (i.e., the one of the initial cat state) we have
that the characteristic function at time t is given by

-t (ξ ) = -0(Ctξ ) exp(−Dt |ξ |2), (11)

where the coefficients Ct and Dt are given in Eq. (9). From
Eq. (3), with s = 1, and Eq. (11) one obtains

Pt (Ctα) = 1
C2

t

∫
d2ξ

π
-0(ξ ) e

− Dt

C2
t

|ξ |2+αξ∗−α∗ξ
. (12)

Remembering that the Fourier transform of a product of two
functions is equal to the convolution of the two corresponding
Fourier transforms, we can recast Eq. (12) in the form

C2
t Pt (Ctα) = P0(α) (G(1 − st ,α)

≡ W (α,st ) , (13)

with

st = 1 − 2vt , vt = Dt/C2
t . (14)

Thus, the master equation (2) essentially turns the P function
of the initial state into the quasiprobability distribution
function W (α,s) of the initial state. Indeed, at t = 0, s0 = 1
and the right-hand side reduces to the P function. As time
increases vt increases and, correspondingly, st decreases. An
upper limit to the time at which the state becomes classical
is therefore given by the time tP at which stP = −1, since in
this case the P function of our initial state has become the Q
function, and therefore it is positive. Note that tP is an upper
limit to the disappearance of nonclassicality. Since the evolved
state is always a mixed state, indeed, s̄ can be greater than stP .
It follows via Eq. (14) that the time τP = γ tP is given by

τP = 1
2

ln
(

1
n

+ 1
)

= h̄ω

2kBT
, (15)

in agreement with Marian et al. [32], with ω the frequency
of the harmonic oscillator, kB the Boltzmann constant, and
T the reservoir temperature. After this time the state is clas-
sical; therefore, τP quantifies the lifetime of the nonclassical
Schrödinger-cat state. Note that this time is always finite for
any n '= 0, in this sense we can talk about finite-time transition
from quantum to classical for the Schrödinger-cat state. For
smaller and smaller values of the reservoir temperature, the
lifetime of the cat state increases.

It is worth stressing that τP is an upper bound to the
nonclassical depth, and therefore to the quantum-to-classical
transition time, for any initial nonclassical state since it
corresponds to the time at which the P function of any initial
state has evolved into a positive distribution function, i.e., the
Q function, and since at all times t > 0 the evolved state is a
mixed state.

C. Negativity of the Wigner function

The negativity of the Wigner function has been used widely
as a nonclassicality definition, mostly due to the fact that
the Wigner function is never singular, as opposed to the P
function, and therefore it is possible to reconstruct it in an
approximate way through quantum homodyne tomography.
Recently it was shown that measuring merely two conjugate
variables, instead of performing full state tomography, is

sufficient to observe the negativity of the Wigner function
in a certified, error-free way [35].

In the previous section we have seen that the master
equation describing the system dynamics, given by Eq. (2),
essentially transforms the P function of the initial state into
the generalized quasidistribution function W (α,s) of the initial
state, according to Eq. (12). This equation describes also the
evolution of the initial Wigner function since at a certain
time t̄ , st̄ = 0 and the dissipative channel has transformed the
initial P function of our state into the W function. It follows
straightforwardly that an upper limit to the disappearance of
negativity of the Wigner function is given by the time tW such
that stW = 0, i.e., following Eq. (14),

τW = γ tW = 1
2

ln
(

1
2n

+ 1
)

. (16)

Note that, for high T reservoirs, i.e., for n ( 1, τW ≈ 1/4n, and
τP ≈ 1/2n = 2τW , indicating that the negativity of the Wigner
function disappears faster than the nonclassical depth.

D. Vogel criterion

1. First-order nonclassicality criterion

The Vogel nonclassicality criterion states that a state is
nonclassical if there exist values of u and v such that

|-(ξ )| > 1 (17)

for the normally ordered characteristic function, where ξ =
u + iv. In terms of the symmetrically ordered characteristic
function χ (ξ,0) the condition reads

|χ (ξ,0)| > χ0(ξ,0) ≡ exp
(
− 1

2 |ξ |2
)

(18)

where χ0(ξ,0) is the characteristic function of the ground
state of the system oscillator [15]. It is worth noting that the
symmetric characteristic function can be directly measured
via balanced homodyne detection. Formulating a criterion
for nonclassicality in terms of the inequality (18) therefore
means that complete state tomography is no longer necessary
to characterize the nonclassical status of a state. A single
measurement satisfying inequality (18) is sufficient, and main-
taining a stable relation between the local oscillator and the
optical state becomes unnecessary [36]. This makes checking
for the nonclassicality of a state much simpler compared to full
state tomography. Experiments demonstrating the usefulness
of the nonclassicality criterion in Eq. (18) have already been
performed [36].

However, some nonclassical states may not be captured by
this definition, as demonstrated by Diósi in Ref. [37]. This
criterion is therefore sufficient but not necessary. The criterion
was later generalized by Richter and Vogel to give necessary
and sufficient conditions for nonclassicality [16]. The new
criterion consists of an infinite set of conditions, considerably
affecting its practical usability. The original simple criterion
of Eq. (18) is still extremely useful as it can reliably and
with few measurements confirm an unknown quantum state
as nonclassical. For the initial cat state of Eq. (1) the time
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FIG. 1. Vogel nonclassicality condition as a function of τ = γ t

and u for v = 0, n = 100, and α = 2. The solid line corresponds to
-t (u,0) = 1. The state is nonclassical in the area under the curve.
The time τV is the time at which the state becomes classical.

evolution of the normally ordered characteristic function reads
[38]

-t (u,v) = 2
N

e−Dt (u2+v2)[ cos(2Ctαv)

+ e−2α2
cosh(2Ctαu)

]
. (19)

Using Eq. (19), we have investigated numerically the time evo-
lution of Eq. (17) in the high T limit finding that, after a finite
time, it is no longer satisfied. Since-t (u,v) ! -t (u,0), we plot
in Fig. 1 the contour line corresponding to -t (u,0) = 1. This
contour line indicates the transition from quantum to classical,
according to Vogel first-order nonclassicality criterion. The
dashed line indicates the time τV (α) after which the quantum
property connected to the initially macroscopically separated
cat state, namely the one described by condition (18), is lost.

2. Dependence on the size of the cat state

We now focus on the dependence of τV (α) on the initial
wave-packet separation α. In Fig. 2 we show how the
contour line-t (u,0) = 1, indicating the loss of nonclassicality,
changes for increasing values of α. In more detail, we vary α
in unit step size from 1 to 10, corresponding to the curves
from left to right. Interestingly, the time τV (α) of loss of
nonclassicality of the Schrödinger-cat state increases with the
initial wave-packet separation. This means essentially that the
more macroscopic the initial state is, the longer it takes to
become classical. This is in strong contrast with the usual
picture of emergence of the classical world from the quantum
world in terms of environment induced decoherence, according
to which the more macroscopic the cat state is, the faster is the
quantum-to-classical transition. Our results show that this is
in fact only true for the peak of interference fringes but not for
other nonclassicality indicators, such as the Vogel first-order
criterion.

Another interesting feature shown in Fig. 2 is that the time
after which the nonclassicality condition (18) ceases to be
satisfied seems to saturate, possibly indicating an upper bound
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FIG. 2. (Color online) Vogel nonclassicality condition-t (u,0) =
1 as a function of τ = γ t and u for v = 0, n = 100 and initial
separations α ranging from 1 to 10 (lines from left to right,
respectively). The dashed line marks the saturation time τV (α → ∞)
after which the state is classical.

for the onset of classicality for initially highly nonclassical
states. In fact it is possible to calculate such an upper bound
analytically, noting that for α → ∞ one has

-t (u,0) ≈ e−Dtu
2 + 1

2e−Dt (|u|−αCt/Dt )2
e−α2(2−C2

t /Dt ). (20)

From the equation above one can easily prove that a necessary
and sufficient condition for the state to be classical according
to the first-order Vogel nonclassicality criterion, in the limit
α → ∞, is given by the equation

C2
t ! 2Dt. (21)

Note that Eq. (21) coincides with the equation defining the time
for the loss of nonclassicality, τW , in terms of the negativity of
the Wigner function. Hence,

τV (α)
α→∞−→ 1

2
ln

(
1 + 1

2n

)
≡ τW . (22)

3. Second-order nonclassicality criterion

The loss of nonclassicality, in the sense of P function
not being a probability density, is not guaranteed by the
condition (17). Nonetheless, the use of Vogel first-order
nonclassicality criterion to characterize the quantumness of
a state has some benefits. In most cases, indeed, it correctly
identifies nonclassical states, the only known exception being
the example given by Diósi in Ref. [37]. Moreover, it is suffi-
ciently simple to be of use in experiments and, in the context of
cat states and quantum-to-classical transition, it can be used as
a meaningful characterization of the dynamics since the initial
state satisfies Eq. (17) but along the evolution the inequality
becomes invalid and, hence, the state classical. In other words,
a property connected to the initially macroscopically separated
cat state, namely the one described in Eq. (17), has been lost,
and we choose to use this property as a characterization of the
quantum-to-classical transition.
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FIG. 3. The Klyshko quantity B(1) as a function of the rescaled time τ = γ t for different values of the thermal noise and different separation
amplitude (left, α = 2; right, α = 3). Nonclassical states turn into classical ones at a threshold time τK depending on both the amplitude and
the thermal noise. In both plots solid lines are for n = 1, dashed for n = 10, and dotted for n = 100.

Although we argue that the nonclassicality criterion (17)
could be used to indicate the finite-time quantum-to-classical
transition, and do not aim to use in this paper the infinite set of
nonclassicality conditions by Richter and Vogel [16], we have
also numerically studied the time evolution of the second-order
criterion which, in terms of the normally ordered characteristic
function, reads

|-1|2 + |-2|2 + |-12|2 − 2Re|-1-2-
∗
12| > 1, (23)

where -i = -(u1,v1) and -ij = -(ui + uj ,vi + vj ). We
have verified that the finite-time quantum-to-classical tran-
sition of the cat state occurs also in second order but it takes a
slightly longer time than in the case of the first-order condition.

E. Klyshko criterion

The final nonclassicality criterion we are going to consider
is based on the work of Klyshko [14]. It takes the form
of an inequality involving terms from the photon number
distribution of the mode under investigation. Since photon
number distributions may be effectively reconstructed [39,40]
and in some cases also directly measured [41,42], this method
has a clear experimental advantage. Klyshko showed that an
equivalence between a phase-averaged P function,

F (r) =
∫ 2π

0

dφ

2π
P (reiφ), (24)

and an infinite set of inequalities concerning photon number
probabilities p(n) = 〈n|ρ̂|n〉 exists, providing a necessary and
sufficient condition for nonclassicality in terms of negativity
of F (r). The simplest sufficient criterion for nonclassicality
takes the form [14,28]

B(n) ≡ (n + 2)p(n)p(n + 2) − (n + 1)[p(n + 1)]2 < 0.

(25)

For F (r) to be negative, it is sufficient that this condition
is satisfied by just one non-negative integer number n. The
photon number probabilities can be obtained from

p(n,t) = 1
π

∫
du dv-t (u,v)χn(u,v), (26)

where-t (u,v) is the characteristic function of the (evolved) cat
state from Eq. (19) and χn(u,v) = exp(−u2 − v2)Ln(u2 + v2)
is the antinormally ordered characteristic function of Eq. (4),
with s = −1, for the Fock number state |n〉, Ln(x) being the
nth Laguerre polynomials. For our initial cat state, the simplest
condition showing the nonclassicality is provided by negativity
of B(1).

In Fig. 3 we show the time evolution of B(1) for different
values of the amplitude α and the thermal noise n. As it
is apparent from the plot, all the states exhibit a crossing
from quantum to classical state at a threshold time τK which
is a decreasing function of the thermal noise. The effect of
initial separation, i.e., the function τK(α), is depicted in Fig. 4
for different values of the thermal noise. The nonclassicality
condition B(1) < 0 is satisfied in the gray areas of the plot,
showing the transition time from quantum to classical as a
function of the initial wave-packet separation. We see that
the classical domain is reached quite quickly for small and
large amplitudes, with weak dependence on the thermal noise,
whereas an optimum region of separation amplitudes exists
(α ≈ 2) which maximizes the survival of nonclassicality and
introduces a strong dependence on the thermal noise.

The behavior of B(n), for n > 1, becomes increasingly
difficult to obtain analytically. We have done some numerical

0 2 4 6 8 10 α

0.05

0.1

τ

FIG. 4. The nonclassicality condition B(1) < 0 is satisfied in the
gray areas of the plot showing the transition time from quantum to
classical as a function of the initial wave-packet separation. Here
τ = γ t , and (from larger to smaller areas) n = 1,10,100. The border
of each gray area individuates the function τK(α).

012121-6



FINITE-TIME QUANTUM-TO-CLASSICAL TRANSITION . . . PHYSICAL REVIEW A 84, 012121 (2011)

TABLE I. Threshold time for quantum-to-classical transition according to different indicators of nonclassicality for α = 2 and n = 100.
The last two columns summarize the dependence of the threshold value on the cat-state amplitude and on the mean occupation number of the
thermal bath, i.e., on the temperature.

Nonclassicality measure Threshold time τ Dependence on α Dependence on n

Klyshko criterion 0.0019 τ is maximum for α ≈ 2 Decreasing with n, see Fig. 4
Vogel criterion 0.0023 Saturates with growing α Decreasing with n

Negativity of W (α) 0.0025 Independent of α Decreasing with n, see Eq. (16)
Negativity of P (α) 0.0050 Independent of α Decreasing with n, see Eq. (15)
Fringe visibility ∞ Proportional to α2 Still asymptotic, converges faster, see Eq. (8)

comparisons and found indications that the nonclassicality
thresholds obtained for higher-order B(n) are subsumed by
that of B(1). This was numerically confirmed for B(2) and
B(3).

The dependence of the Klyshko criterion on the initial
separation α differs qualitatively from the ones predicted by
all other criteria discussed in the paper. As can be viewed from
Fig. 4, there exists a specific value, α ≈ 2, that maximizes
the time of nonclassicality for the initial cat state. This is
unique, since it implies that certain, arbitrary, cat states are
favored in terms of the endurance of quantumness. Actually,
this is due to the structure of the quantity B(1), which is
built from the overlap of the cat-state characteristic function
with the characteristic functions of Fock states with small
values of n, all localized in the proximity of the phase-space
origin. This circumstance, together with the fact that higher-
order nonclassical tests seem to be subsumed by B(1) < 0,
suggest that the Klyshko criterion is not suitable to follow
the time evolution of nonclassicality for highly separated
superpositions.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have addressed the problem of the
quantum-to-classical transition by examining the loss of
crucial quantum properties in an initial Schrödinger-cat state,
which we identify with a quantum superposition of two
coherent states with opposite phases. Under the influence of
a dissipative environment the state decoheres and eventually
reaches a state that can be considered purely classical, namely
a statistical mixture of the two coherent states.

We have shown that, depending on the measure of non-
classicality considered, the time at which one can say that
the state has become classical varies. In Table I we list
the different methods that we have compared in the paper,
along with the numerical value of the time threshold τ
after which the nonclassicality is lost for a given value of
α and of the bath temperature T . We also summarize the
dependence of the threshold value on the separation between
the components of the quantum superposition and on T . The
only quantitatively different threshold time τ , is related to the
fringe visibility criterion, which gives an asymptotic transition
from quantum to classical. All the other measures predict that
the quantumness of the state is lost after a finite time, i.e., there
exists a sudden transition from quantum to classical for the
Schrödinger-cat state. It is notable that for the fringe visibility
no known operatorial interpretation exists, as far as the authors
are aware.

By contrast, the quadrature characteristic function used in
Vogel nonclassicality criterion can be measured for freely
propagating radiation modes, cavity-field modes [43] and the
quantized center-of-mass motion of a trapped ion in a harmonic
potential [44]. This last methods offers an operatorial approach
to the nonclassicality problem. It was shown in Ref. [44]
that the full state information of the vibrational motion of a
trapped ion can be obtained simply by monitoring the evolution
of the ground-state occupation probability in a long-living
electronic transition. We stress once more, however, that Vogel
criterion, as given by Eq. (18), does not capture all nonclassical
states, as Diósi demonstrated in Ref. [37]. However, since
the criterion is satisfied for the initial cat states, it singles
out a property that belongs to such superpositions. In this
case the finite-time quantum-to-classical transition of the
cat state coincides with the time at which the nonclassi-
cality property associated to Vogel’s first-order criterion is
lost.

For the master equation (2), and for finite bath temperatures,
there exists always a transition from quantum to classical,
according to the original P function criterion for nonclassi-
cality. This can be seen from the nonclassical depth. Studying
this quantity one sees that there exists always a specific time
tP (or equivalently an amount of noise that needs to be added
to the system) after which the P function of the initial state
evolves into a classical Q function. The explicit expression of
τP , given by Eq. (15), suggests the conjecture that classicality
emerges on a time scale inversely proportional to the effective
temperature of the environment, for very general systems and
environments. It is noteworthy in this definition that all pure
initial states, apart from coherent squeezed states, have the
same threshold time for the quantum-to-classical transition
(or, equivalently, they can withstand the same amount of noise
added before losing their quantumness).

The negativity of the Wigner function is another widely
used indicator for nonclassicality. However, it is well known
that this quantity is unable to identify all the states that are
nonclassical according to the P function (squeezed states
are a prime example). The popularity of the Wigner function
negativity stems from the fact that the Wigner function, unlike
the P function, can be measured with homodyne detection.

Finally, the Klyshko criterion, which expresses the
positivity of the phase-averaged P function in terms of
the moments of the photon number distribution, is the
most sensitive of all the criteria discussed here. It has the
advantage of being experimentally accessible since the photon
number distribution, and in particular the probabilities needed
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to calculate B(1), may be reliably measured even by an
on/off detector [40]. On the other hand, this quantity does
not appear suitable for superpositions of states with large
separations.

The most important result of this paper is to challenge
the current view regarding the quantum-to-classical transition
due to environment induced decoherence. Indeed, it has been
widely accepted that the more macroscopic the initial quantum
superposition state is, the faster is the decoherence and,
hence, the transition from quantum to classical. However, our
results show that, for almost all the nonclassicality indicators,
an increase in the initial wave-packet separation does not
necessarily increase the time after which decoherence has
destroyed all nonclassical properties. The analysis of the
Vogel and Klyshko criteria, e.g., shows that the dependence
on α can be more complicated. In some cases, indeed, the
transition time from quantum to classical can increase, instead
of decreasing, with the separation between the components of
the superposition.

What is conceptually interesting in our results is that
they bridge the gap existing between decoherence and entan-
glement. Nonclassicality is a prerequisite for entanglement.
However, the phenomenon of entanglement sudden death, dis-
covered in 2001 [45], showed that entanglement can disappear
completely after a finite time while decoherence, responsible
for the loss of nonclassicality, decays only asymptotically
[46]. The comparison of the dynamical features of several
nonclassicality measures clearly shows that, while the loss
of quantum coherences is indeed asymptotic, the quantum
properties present in the initial state, which are defined by the
measure chosen, disappear after a finite time.
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