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We address the one-dimensional quantum Ising model as an example of a system exhibiting criticality and study
in some details the discrimination problem for pairs of states corresponding to different values of the coupling
constant. We evaluate the error probability for single-copy discrimination, the Chernoff bound for n-copy
discrimination in the asymptotic limit, and the Chernoff metric for the discrimination of infinitesimally close
states. We point out scaling properties of the above quantities, and derive the external field optimizing state
discrimination for short chains as well as in the thermodynamical limit, thus assessing criticality as a resource for
quantum discrimination in many-body systems.
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1. Introduction

In quantum state discrimination one should determine
the state of a quantum system based on the outcome of
a certain measurement, and assuming that the system
may be prepared in a state chosen from a given list of
possible candidates. Of course, when the candidate
states are not orthogonal, basic quantum mechanics
dictates that no measurement can distinguish perfectly
between them. The objective is therefore to choose
some figure of merit characterizing the quality of the
state discrimination and optimize it over the space of
allowed quantum measurements. This procedure,
known as quantum state discrimination or quantum
hypothesis testing [1–4], plays a relevant role in the
characterization of signals and devices and, in turn, in
the development of quantum technology.

The two main paradigms of state discrimination are
unambiguous identification [5–9] and (ambiguous)
minimum error discrimination [10–15]. In the first
method, to discriminate among N states one searches
a measurement with Nþ 1 outcomes, where the addi-
tional result accounts for inconclusive detection, and
in turn allows the conclusive determination in the
remaining cases. On the other hand, in ambiguous
discrimination one looks for a measurement with N
outcomes, always leading to a determination of the
state, while accepting the possibility of a wrong
inference. In this paper we restrict ourselves to the
second method, which basically consists in looking

for the optimal measurement that minimizes the
probability of errors, i.e. the overall probability of a
misidentification. For the discrimination between two
states, pure or mixed, the optimal measurement and
the minimum error probability had been derived by
Helstrom [1]. If n copies of the system are available the
scaling of the error probability with the number of
copies may be expressed using the so-called quantum
Chernoff bound !QCB [16,17]. In particular, it has been
proved that !QCB defines a meaningful distinguish-
ability measure when one has to solve the problem of
discriminating two sources that output many identical
copies of two quantum states. In addition, when
considering two states that are infinitesimally close,
the quantum Chernoff bound induces a metric on the
manifold of quantum states.

In this paper we study the discrimination problem
for two ground states or two thermal states of the Ising
model in a transverse magnetic field, which represents
a paradigmatic example of a system which undergoes
a second-order quantum phase transition (QPT).
We consider the system both at zero and finite
temperature, and address discrimination of states
corresponding to different values of the coupling
parameter. In particular, we evaluate the error prob-
ability for single-copy discrimination, the Chernoff
bound for n-copy discrimination in the asymptotic
limit, and the Chernoff metric for the discrimination of
infinitesimally close states. We are interested in the

*Corresponding author. Email: matteo.paris@unimi.it

ISSN 0950–0340 print/ISSN 1362–3044 online

! 2010 Taylor & Francis
DOI: 10.1080/09500340903205173
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
l
a
n
]
 
A
t
:
 
1
2
:
1
7
 
1
 
M
a
r
c
h
 
2
0
1
0



scaling properties of the above quantities with the
coupling itself, the temperature and the size of the
system. Moreover, we look for the optimal value of
the field that minimizes the probability of error and
maximizes both the Chernoff bound and the corre-
sponding metric. It turns out that criticality is a
resource for quantum discrimination of states. Indeed,
at zero temperature the critical point signs a minimum
in the probability of error and a divergence in the QCB
metric. Remarkably, despite the fact that the Chernoff
metric is associated with quantum discrimination and
the Bures metric is related to quantum estimation
[18,19], these different measures show the same critical
behavior and carry the same information about the
QPT of the system [20].

The paper is organized as follows. In Section 2 we
introduce the model. In Section 3 we review the basic
elements of quantum state discrimination and also
illustrate the notion of the quantum Chernoff metric
for the Ising model. In Section 4 we study the
distinguishability of states at zero temperature, both
for the case of a few spins and then in the thermo-
dynamic limit. In Section 5 we consider the effects of
temperature and the scaling properties of the metric.
Section 6 closes the paper with some concluding
remarks.

2. Quantum Ising model

We consider the one-dimensional Ising model of size L
as an example of a system which undergoes a zero-
temperature quantum phase transition [21–23]. The
model is defined by the Hamiltonian

H ¼ #J
XL

k¼1

"x
k"

x
kþ1 # h

XL

k¼1

"z
k, ð1Þ

where the "#
k are Pauli operators for the kth site. We

also assume periodic boundary conditions "x
Lþ1 ¼ "x

1 .
As the temperature and the field h are varied one
may identify different physical regions. At zero
temperature, the system undergoes a QPT for h¼ J
and becomes gapless. For h5 J the system is in an
ordered phase whereas for h4 J the field dominates,
and the system is in a paramagnetic state. For
temperature T&D, D¼ jJ# hj the system behaves
quasi-classically, whereas for T'D quantum
effects dominate. The Hamiltonian (1) can be exactly
diagonalized by a Bogoliubov transformation,
leading to

H ¼
X

k40

!k $yk$k # 1
! "

, ð2Þ

where !k denotes the one particle energies and $k the
annihilation operator, !k ¼ ð%2k þ D2

kÞ
1=2, Dk¼ J sin(k),

"k¼ (J cos(k)þ h). The one-particle excitations
are created by the action of $yk ¼ cosð&k=2Þdyk þ
i sinð&k=2Þd#k on the ground state

j 0i ¼
O

k

cos
&k
2

# $
j00ik,#k þ i sin

&k
2

# $
j11ik,#k

% &
,

ð3Þ

where #k ¼ tan#1ð%k=DkÞ and dkj00ik,#k¼
d#kj00i#k,k¼ $kj 0i¼ 0. Strictly speaking, Equation (2)
holds in the sector with even number of fermions. In
this case, periodic boundary conditions on the spins
induce antiperiodic BCs on the fermions and the
momenta satisfy k¼ [(2nþ 1)']/L. In the sector with
odd number of particles, instead, one has k¼ [(2n)']/L
and one must carefully treat excitations at k¼ 0 and
k¼'. In any case, the ground state of (1) belongs to
the even sector so that, at zero temperature we can use
Equation (2) for any finite L. At positive temperature
we will be primarily interested in large system sizes
and therefore we can neglect boundary terms in
the Hamiltonian and use Equation (2) in the whole
Fock space.

3. Elements of quantum states discrimination

Suppose we have a quantum system which may be
prepared in different states (k, k¼ 1, . . . ,N, chosen
from a given set, with a priori probability zk,

P
kzk¼ 1.

A discrimination problem arises in any situation where
the system is presented to an experimenter who has to
infer the state of system by performing a measurement.
The states are known, as well as the a priori
probabilities, but we don’t know which state has
been actually sent to the observer. The simplest case
occurs when the system may be prepared in two
possible states, described by the density matrices (1
and (2, with a priori probabilities z1 and z2¼ 1# z1.
Any strategy for the (ambiguous) discrimination
between these two states amounts to defining a two-
outcomes POVM {E1,E2} on the system, where
E1þE2¼ I and Ek( 0 8k. After observing the outcome
j the observer infers that the state of the system is (j.
The probability of inferring the state (j when the
true state is (k is thus given by Pjk¼Tr[(kEj] and
the optimal POVM for the discrimination problem is
the one minimizing the overall probability of a
misidentification, i.e. Pe¼ z1P21þ z2P12. For the sim-
plest case of equiprobable hypotheses (z1¼ z2¼ 1/2)
we have Pe ¼ 1

2 ð1# Tr½E2"*Þ, where "¼ (2# (1. Pe

is minimized by choosing E2 as the projector over
the positive subspace of ". Then we have Tr[E2"]¼
Trj"j and Pe ¼ 1

2 ð1# Trj"jÞ, where jAj¼ (AyA)1/2.
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When (k¼ j kih kj are pure states the error probabil-
ity reduces to Pe ¼ 1

2 ð1# ð1# jh 1j 2ij2Þ1=2jÞ.
Let us now suppose that n copies of both (1 and (2

are available for the discrimination. The problem may
be addressed using the above formulas upon
replacing ( with (+n. We thus need to analyze the
quantity Pe,n ¼ 1

2 ð1# Trj(+n
2 # (+n

1 jÞ. It turns out that
in the asymptotic limit of large n the error probability
decreases exponentially with n as Pe,n, exp(#n!QCB),
where the quantity !QCB is called the quantum
Chernoff bound (QCB) and may be evaluated as
follows [16]

!QCB ¼ # log min
0-s-1

Tr (s1(
1#s
2

' (
: ð4Þ

For pure states QCB achieves its superior limit, which
is given in terms of the overlap between the two states
!QCB¼#logjh 1j 2ij2. The QCB introduces a measure
of distinguishability for density operators which
acquires an operational meaning in the asymptotic
limit. For a fixed probability of error Pe, the larger is
the !QCB, the smaller the number of copies of (1 and (2
we will need in order to distinguish them.

Upon considering two nearby states ( and (þd(,
the QCB induces the following distance over the
manifold of quantum states

ds2QCB :¼ 1# expð#!QCBÞ ¼
1

2

X

m,n

jh’mjd(j’nij2

ð(1=2n þ (1=2m Þ2
, ð5Þ

where the j’ni’s are the eigenvectors of (¼P
n(nj’nih’nj. In the following we will consider infin-

itesimally close states obtained upon varying a
Hamiltonian parameter ), and d( will correspond to
d(¼ @(/@)d). The above definition means that the
bigger is the QCB distance, the smaller is the
asymptotic error probability of discriminating a given
states from its close neighbors.

In the following we will consider discrimination for
ground and thermal states. In this case the eigenstates
of ( are those of the Hamiltonian and the distance may
be written as the sum of two contributions

ds2QCB ¼
1

8

X

n

ðd(nÞ2

(n|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
þ 1

2

X

n 6¼m

jh’njd’mij2ð(n#(mÞ
ð(1=2n þ(1=2m Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
,

ds2c ds2nc,

ð6Þ

where ds2c refers to the classical part since it only
depends on the Boltzmann weights of the eigenstates
in the density operator, whereas ds2nc refers to the
nonclassical one because it explicitly depends on the
dependence of the eigenstates from the parameter of
interest. If we consider the Ising model of the previous
section and address discrimination of states labeled by
different values of the coupling J, the QCB distance

can be expressed by the metric gJ, ds2QCB ¼ gJ dJ 2.
We have [20]

gJ ¼
*2

32

X

k

@J!kð Þ2

cosh2 *!k=2ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ 1

4

X

k

tanh2ð*!k=2Þ @J#kð Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:

gcJ gncJ
ð7Þ

Recent results about the Chernoff bound metric ds2QCB

[20,24] have shown that it may be used to investigate
the phase diagram of the Ising model, i.e. to identify, in
terms of different scaling with temperature, quasiclas-
sical and quantum-critical regions. These results extend
recent ones obtained using the Bures metric ds2B (or the
fidelity) [25–27], i.e.

ds2B ¼ 1

2

X

nm

h’mj d(j’ni
** **2

(n þ (m
: ð8Þ

In turn, one has the relation 1
2 ds

2
B - ds2QCB - ds2B which

shows that the Bures and the QCB metric have the
same divergent behavior, i.e. one metric diverges if,
and only if, the other does. Then one can exploit the
results on the scaling behavior of the Bures metric
derived in [25] to discriminate quantum states.
Moreover, in the following we will see that when the
system is in its ground state, ds2QCB ¼ ds2B, whereas at
increasing temperature T, ds2QCB ! 1

2 ds
2
B.

4. Discrimination of ground states

At zero temperature the system is in the ground state
and the problem is that of discriminating two pure
states corresponding to two different values J1 and J2
of the coupling J. The probability of error is given in
terms of the overlap jh 1j 2ij2, whereas the minimum
of Tr (s1(

1#s
2

' (
reduces to the overlap itself since for

pure states (s¼ ( 8s. Thus, the probability of error
for the discrimination with n copies scales as Pe,n,
jh 1j 2ij2n. In other words, the QCB may be
expressed as !QCB¼#log[4 Pe(1#Pe)]. In this section
we address the discrimination problem at zero tem-
perature by evaluating the probability of error and
the QCB metric, pointing out scaling properties,
and minimizing (maximizing) them as a function of
the external field. We first consider systems made
of a few spins and then address the thermodynamic
limit.

4.1. Short Ising chains, L^ 2, 3, 4

The probability of making a misidentification Pe may
be minimized by varying the value of the external field.
For the case L¼ 2, 3 and 4, Pe is obtained by explicit
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diagonalization of the Ising Hamiltonian. Minima of
Pe correspond to the field value ~h ¼ ðJ1J2Þ1=2, i.e. the
geometrical mean of the two (pseudo) critical values,
and follows the scaling behavior Pe,min(J1, J2,
(J1J2)

1/2)¼Pe,min(1, J2/J1, (J2/J1)
1/2). More generally

the probability of error is such that

PeðkJ1, kJ2, khÞ ¼ PeðJ1, J2, hÞ 8k4 0: ð9Þ

Upon exploiting this scaling and fixing J1¼ 1 we can
study Pe at ~h as a function of J2. J. The behavior of
Q(J).Pe,min(1, J, J

1/2) is illustrated in Figure 1(a). The
function has a cusp in J¼ 1, whereas the tails of the
curve for J! 0 and J!1 go to zero faster with
increasing size. This means that as the number of spins
increases, the overlap between two different ground
states approaches to zero. According to the scaling in
Equation (9) the relevant parameter is the ratio
between the two couplings and not the absolute
difference. In turn, this means that Q(J) is symmetric
around J¼ 1 in a log-linear plot. Expanding Q(J)

around J¼ 1 and J¼ 0 we obtain the following
behavior

QðJÞ ¼J’1 1

2
# #L J# 1j jþO J# 1j j2,

QðJÞ ¼J!0 1

2
# AL þ *L

ffiffiffi
J

p
þ +LJþOðJ3=2Þ,

ð10Þ

where #L2 (0, 1/2) is an increasing function of L.
According to the scaling (9) the behavior of Q(J) for
large J is obtained by the replacement of J! 1/J in the
second line of Equation (10). The parameters AL, #L,
*L, and +L are reported in Table 1 for L¼ 2, 3, 4. The
corresponding Chernoff bound !J¼#log [4Q(J)
(1#Q(J))] does not carry additional information
about the discrimination problem, but exhibits a
simpler behavior

!J ¼J’1 ,L
16

J# 1j j2 þO J# 1j j3,

!J ¼J!0
L log 2# L

ffiffiffi
J

p
þ L

2
JþOðJ3=2Þ,

ð11Þ

0.01 0.1 1 10 100
J

0.2

0.4

Q(a) (b )

increasing L

0.01 0.1 1 10 100
J

0.4

0.8

1.2

1.6

2.0

x J

increasing L

Figure 1. (a) Log-linear plot of the zero temperature rescaled minimum probability of error Q(J).Pe,min(1, J, J
1/2) as a function

of J for L¼ 2, 3, 4 (green, blue and red lines, respectively). The function has a cusp in J¼ 1 and the two tails go to zero faster with
increasing size. According to the scaling in Equation (9) the relevant parameter is the ratio between the two couplings and not the
absolute difference. In the log-linear plot, this means that Q(J) is symmetric around J¼ 1. (b) The Chernoff bound under the
same conditions. (The color version of this figure is included in the online version of the journal.)

Table 1. Parameters. AL, #L, *L, and +L appearing in Equation (10), i.e. the expansion of the rescaled probability
of error Q(J) around J¼ 0 and J¼ 1.

L # * + A

2 #2¼ 1/8¼ 0.125 *2¼ 1/2(21/2)’ 0.354 +2¼ 1/4(21/2)’ 0.177 A2¼ 1/2(21/2)’ 0.354

3 #3¼ 31/2/8’ 0.217 *3¼ 31/2/8’ 0.217 +3¼ 5(31/2)/32’ 0.271 A3¼ 31/2/4’ 0.433

4 #4 ’ 0.306 *4¼ 1/2(141/2)’ 0.134 +4¼ 23/28 (141/2)’ 0.220 A4¼ 141/2/8’ 0.468
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where ,L¼L!/4L for L¼ 3, 4 and half of this value
for L¼ 2. The behavior of !J for large J is again
obtained by replacing J! 1/J in the second line of
Equation (11). In Figure 1(b) we show !J as a function
of J for L¼ 2, 3, 4.

As mentioned in the previous section, when we
compare ground states of Hamiltonians with infinites-
imally close values of the coupling J, the proper
measure to be considered is the QCB metric, with
the point of maximal discriminability of two states
corresponding to maxima of the QCB metric tensor. At
zero temperature ds2QCB ¼ ds2B and thus [19]

gJ ¼
h2

4ðh2 þ J2Þ2
, L ¼ 2,

gJ ¼
3h2

16ðh2 # hJþ J2Þ2
, L ¼ 3,

gJ ¼
h2ðh4 þ 4h2J2 þ J4Þ

4ðh4 þ J4Þ2
, L ¼ 4: ð12Þ

Notice the simple scaling gJ(kJ, kh)¼ gJ(J, h), which is
valid 8L. Maxima of gJ are thus obtained for h*¼ J for
L¼ 2, 3, 4, and actually this is true for any L (see also
the next section). The pseudo-critical point h* which
maximizes the QCB metric, turns out to be indepen-
dent of L and equal to the true critical point, hc¼ J,
8L. At its maximum gJ goes like 1/J

2 which means that
it is easier to discriminate two infinitesimally close
ground states for small J rather than for large ones.

4.2. Large L

For large L, the overlap (fidelity F ) between two
different ground states j ki. j 0(Jk)i, k¼ 1, 2 is
given by

F ¼ h 1j 2i ¼
Y

k

cos
&1k # &2k

2
, ð13Þ

where k¼ (2nþ 1)'/L and n runs from 1 to L/2.
Obviously, F¼ 1 if J1¼ J2. Otherwise, one has
cos[(&1k# &2k)/2]5 1 and the fidelity F quickly decays
as the ratio of the couplings is different from one.
Solving @h cos[(&1k# &2k)/2]¼ 0 one finds that the
overlap has a cusp in ~h ¼ /ðJ1J2Þ1=2, where it achieves
the minimum value, corresponding to the minimum of
the probability of error Pe. In the thermodynamic limit
L!1, the overlap between two different ground
states goes to zero no matter how small is the
difference in the parameters J1 and J2. In other
words, the different ground states become mutually
orthogonal, a behavior known as orthogonality catas-
trophe [28]. In the critical region, corresponding to the
vanishing of one of the single particle energies
%2k þ D2

k ¼ 0 with k¼ 2'/L, this behavior is enhanced,

occurs for smaller L, and corresponds to a drop in the
fidelity even for small values of jJ2# J1j.

For that which concerns the QCB metric, upon
taking the limit T! 0 in Equation (7), we have that
the classical part ds2c , which depends only on ther-
mal fluctuations, vanishes due to the factor of
(cosh(*!k/2))

#2. Therefore, at zero temperature only
the nonclassical part of Equation (7) survives and one
obtains gJ ¼ 1

4

P
kð@J#kÞ

2, where

@J#k ¼
1

1þ ðDk=%kÞ2
@J

Dk

%k

# $
¼ #h sin k

!2
k

:

Since we are in the ground state, the allowed quasi-
momenta are k¼ [(2nþ 1)']/L with n¼ 0, . . . ,L/2# 1.
Explicitly we have

gJ ¼
1

4

X

k

h2 sinðkÞ2

L4
k

: ð14Þ

We are interested in the behavior of the QCB metric in
the quasi-critical region, which is described by small
values of the scaling variable z.L(h# J)’L/!, that is
z0 0. Conversely the off-critical region is given by
z!1. We substitute h¼ Jþ z/L in Equation (14) and
expand around z¼ 0 to obtain the scaling of gJ in the
quasi-critical regime

gJ ¼
1

4

X

kn

½Jþ ðz=LÞ*2 sin2ðknÞ
ðz2=L2Þ þ 4J½Jþ ðz=LÞ* sin2ðkn=2Þ
' (2

.
X

kn

fknðzÞ:

Since @z f(0)¼ 0, the maximum of gJ is always at z¼ 0
for all values of L, in turn, the pseudo-critical point is
h1 ¼ J ¼ hc 8L. Going to second order and using the
Euler–Maclaurin formula, we get

gJ ¼
L2

4

1

8J2
# z2

384J4

# $
# L

8J2
þOðL0Þ, ð15Þ

which shows explicitly that at h¼ J the QCB metric has
a maximum and there it behaves as

gJ ’
L2

32J2
þOðLÞ: ð16Þ

From Equation (16) one concludes that the 1/J2 scaling
of the metric may be compensated by using long
chains, which thus appears as the natural setting to
address the discrimination problem for large J.

5. Discrimination of thermal states

In this section we address the problem of discriminat-
ing two states at finite temperature, i.e. we consider
two thermal states of the form (J¼Z#1exp[#*H(J)],
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Z¼Tr{exp[#*H(J)]}, and analyze the behavior of
the error probability, the Chernoff bound and the
Chernoff metric as a function of the temperature and
the external field. We discuss short chains L¼ 2, 3, 4
and then the case of large L.

5.1. Short Ising chains L^2, 3, 4

For short chains we have evaluated the probability
of error by explicit diagonalization of (2# (1,
with (k. (Jk. The probability of error follows the
scaling

PeðkJ1, kJ2, kh,*=kÞ ¼ PeðJ1, J2, h,*Þ, ð17Þ

which may be exploited to analyze its behavior upon
fixing J1¼ 1. The main difference with the zero
temperature case is that the error probability does
depend on the absolute difference between the two
couplings, and not only on the ratio between them. The
optimal field ~h, minimizing Q*ðJÞ ¼ Peð1, J, ~h,*Þ is zero
for small J, then we have a transient behavior and
finally, for large J, ~h ¼ J1=2. The range of J for which
~h ’ 0 increases with temperature (small *). In
Figure 2(a) we compare Q*(J) for L¼ 2 and different
values of * to the analogous zero temperature quantity
Q1(J). As is apparent from the plot the main effect of
temperature is the loss of symmetry around J¼ 1.
Analogous behavior may be observed for larger L.

Notice that discrimination at finite temperature is not
necessarily degraded.

Upon diagonalization of the Hamiltonian we have
also evaluated the quantum Chernoff bound by
numerical minimization of mins Tr (s1(

1#s
2

' (
and

obtained for !QCB the same scaling properties (17)
observed for the error probability. In Figure 2(b) we
compare the QCB for L¼ 2 and different values of * to
the analogous zero temperature quantity. Again the
main effect of temperature is the loss of symmetry
around J¼ 1. Analogous behavior may be observed for
larger L. For vanishing J the Chernoff bound
!QCB(1, J! 0, J1/2,*). !0 saturates to a limiting value
scaling with * as

!0 ’ *2=2, * ! 0, ð18Þ

!0 ’
ffiffiffi
2

p

p
arctanð*=2Þ, * ! 1: ð19Þ

On the other hand, for diverging J, !QCB(1, J!1,
J1/2,*). !1 shows the non-monotone behaviour
illustrated in Figure 3(b). In Figure 3(a) we report !0
as a function of * together with the approximating
functions of Equations (18) and (19). Overall, we
notice that both for the single-copy and many-copy
case, increasing the temperature may also result in an
improvement of discrimination, at least in the region
of large couplings and intermediate temperatures.

0.01 0.1 1 10 100

0.2

0.3

0.4

Qb

0.01 0.1 1 10 100
JJ

0.2

0.4

0.6

0.8

xQCB(a) (b )

Figure 2. (a) Log-linear plot of the rescaled minimum probability of error Q*(J).Pe,min(1, J, J
1/2, *) for L¼ 2 as a function of J.

Green triangles correspond to *¼ 0.05, blue circles to *¼ 0.1 and red squares to *¼ 1. The black solid curve is the probability of
error in the zero temperature case. The main effect of temperature is the loss of symmetry around J¼ 1. (b) Log-linear plot of the
quantum Chernoff bound !QCB for L¼ 2. Green triangles correspond to *¼ 0.05, blue circles to *¼ 0.1 and red squares to *¼ 1.
We also report the zero temperature QCB for comparison (solid black curve). (The color version of this figure is included in the
online version of the journal.)
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Finally, we have evaluated the QCB metric and
found that it follows the scaling

gJðJ, h,*Þ ¼ *2#Lð*J,*hÞ, ð20Þ

where the form of the function #L depends on the size
only. The same scaling is also true for the Bures metric
with different functions #L. Indeed, this behavior
follows directly from the common structure of the two
metrics and by the fact that gJ is obtained from the
square of the derivative with respect to J. The scaling
is actually true for any size L. The optimal value h* of
the external field, which maximizes the QCB metric at
fixed J and * may be found numerically. Upon
exploiting the scaling properties we consider *¼ 1

and found that h* is zero for small J, then we have a
transient behavior and finally, for large J, h*¼ J.
According to the scaling above, the range of J for
which h*’ 0 increases with temperature (small *) and
vice versa. In turn, for *!1 we recover the results of
the previous section, i.e. the critical point is always the
optimal one for discrimination. This behavior is
illustrated in Figure 4(a), where we report the optimal
field h* as a function of J for *¼ 1. The inset shows the
small J region. As we have noticed in the previous
section the two metrics are equal in the zero temper-
ature limit. For finite temperature this is no longer true
and a question arises on whether the whole range of
values allowed by the inequality ds2B=2 - ds2QCB - ds2B

10–4 0.01 1 100 104

10–10

10–8

10–6

10–4

0.01

1

10–6 10–4 0.01 1 100
bb

0.2

0.4

0.6

0.8

1.0

1.2

x
x0

(a) (b )

Figure 3. (a) Log-log plot of the Chernoff bound for vanishing J, !0. !QCB(1, J! 0, J1/2, *), as a function of inverse
temperature * (blue points) together with the approximating functions of Equation (18) (green line) and (19) (red line). (b) Log-
linear plot of the Chernoff bound for diverging J, !1. !QCB(1, J!1, J1/2, *), as a function of inverse temperature *. (The color
version of this figure is included in the online version of the journal.)

0.01 0.1 1 10 100
J

0.6

0.7

0.8

0.9

1.0
γ

increasing L

(a) (b )

Figure 4. (a) Linear plot of the optimal field h* maximizing the QCB metric as a function of J for *¼ 1. The inset shows the
region of small J. (b) Log-linear plot of the ratio + between the (maximized) QCB and Bures metrics as a function of J for L¼ 2,
3, 4 (green, blue and red lines, respectively) and *¼ 1. (The color version of this figure is included in the online version of the
journal.)
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is actually spanned by the QCB metric. This is indeed
the case, as may be seen by analyzing the behavior of
the ratio + ¼ ds2QCB=d

2
Bs at the (pseudo) critical point

h* (we take the maximum of both the metrics, which
generally occurs at different values of the field). In
Figure 4(b) we report + as a function of J for *¼ 1 and
L¼ 2, 3, 4. As it is apparent from the plot, for small J
we have ds2QCB ’ 1

2 ds
2
B, whereas for large J the two

quantities become equal ds2QCB ’ ds2B. The ratio is not
monotone and the dependence on the size is weak.
Upon exploiting the scaling in Equation (20) we may
easily see that the range of J for which the two metrics
are almost equal increases with *. For vanishing
temperature (*!1) ds2QCB ’ ds2B everywhere and we
recover the results of the previous section. Conversely,
for high temperature we have ds2QCB ’ 1

2 ds
2
B also for

very large J. Also the transient region is shrinking for
increasing temperature.

5.2. Large L

In the limit of large size L the behavior of the
Chernoff metric follows the same scaling of Equation
(20) found for short chains. The optimal value of
the field which maximizes the QCB metric is h*¼ J
for any finite temperature, where the metric element
has a cusp. We have studied the QCB metric in the
quantum-critical region *jJ# hj& 1 and for low
temperature T! 0. The classical elements of the
metric vanish due to the factor 1/cosh2(*!k/2) and we
are left to analyze the nonclassical part gncJ as a
function of T. Bounding the metric by functions that
have the same scaling behavior in * [20], will ensure
that the metric itself scales with the same exponent.
The dispersion relation is linear around k¼ 0 and we
approximate !k, Jk at the critical point J¼ h. Upon
defining

f ð*, kÞ ¼
*2k2=4, 0 - k - 2=*,

1, 2=* - k - p,

(

we have, for all * and k, 1
2 f ð*, kÞ5 tanh2ð*Jk=2Þ5

f ð*, kÞ. For large L, the sum on the classical part of the
QCB metric may be replaced by the integral L

Ð
dk, thus

leading to

gncJ ’ L

2p

ð2=*

0
dk tanh2 ð*Jk=2Þ 1

J2k2

þ L

2p

ðp

2=*
dk tanh2 ð*!k=2Þ

J2 sin2ðkÞ
!4

k

: ð21Þ

This is a good approximation in the limit *!1
because the upper integration limit 2/* becomes

arbitrarily close to 0. The first integral is bounded by

L

2p

ð2=*

0
dk

f ð*, kÞ
2

1

J2k2
- L

2p

ð2=*

0
dk tanh2 ð*Jk=2Þ 1

J2k2

- L

2p

ð2=*

0
dkf ð*, kÞ 1

J2k2
:

The bounding integrals scale as L* and the first
integral must scale in the same way for *!1. The
second term is upper bounded by

L

2p

ðp

2=*
dk tanh2 ð*!k=2Þ

J2 sin2ðkÞ
!4

k

- L

2p

ðp

2=*
dk

1

J2k2
,L*:

Therefore, since the bounding integral scales as *L, gncJ
must scale as *L to the highest order. Observe that in
the quantum-critical region gJ,L is extensive, whereas
at the critical point it has a superextensive behavior
gJ,L2. The nonclassical element scales algebraically
with temperature and in the zero temperature limit it
diverges, matching the ground state behavior that we
described in the previous section. These results remark
that criticality provide a resource for quantum state
discrimination, and that the discrimination of quantum
states is indeed improved upon approaching the QCP.

6. Conclusions

We have addressed the problem of discriminating two
ground states or two thermal states corresponding to
different values of the coupling constant in the one-
dimensional quantum Ising model. We have analyzed
both short and long chains with the aim of assessing
the role of criticality (pseudo criticality for short
chains) in single-copy and many-copy discrimination
as well as in the discrimination of infinitesimally closed
states.

At zero temperature both, the error probability for
single-copy discrimination, and the Chernoff bound
for n-copy discrimination in the asymptotic limit, are
optimized by choosing the external field as the
geometric mean of the two (pseudo) critical points.
In this regime, the relevant parameter governing both
quantities is the ratio between the two values of the
coupling constant. On the other hand, the Chernoff
metric is equal to the Bures metric and is maximized at
the (pseudo) critical point. For finite temperature we
have analyzed in some detail the scaling properties of
all the above quantities and have derived the optimal
external field. We found that the effect of finite
temperature is twofold. On the one hand, critical
values of the field are optimal only for large values of
the coupling constants. On the other hand, the ratio
between the couplings is no longer the only relevant
parameter for both the error probability and the
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Chernoff bound, which also depends on the absolute
difference. The ratio between the Chernoff metric
and the Bures metric decreases continuously, but not
monotonically, for increasing temperature and
approaches 1/2 in the limit of high-temperature.

In conclusion, upon considering the one-dimen-
sional Ising model as a paradigmatic example we
have quantitatively shown how and to which extent
criticality may represent a resource for state discrim-
ination in many-body systems.
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