
IOP PUBLISHING METROLOGIA

Metrologia 49 (2012) L14–L16 doi:10.1088/0026-1394/49/3/L14

SHORT COMMUNICATION

About the probability distribution of a
quantity with given mean and variance
Stefano Olivares1,2,3 and Matteo G A Paris2,3,4
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Abstract
Supplement 1 to the GUM (GUM-S1) recommends the use of the maximum entropy principle
(MaxEnt) in determining the probability distribution of a quantity having specified properties,
e.g., specified central moments. When we only know the mean value and the variance of a
variable, GUM-S1 prescribes a Gaussian probability distribution for that variable. When
further information is available, in the form of a finite interval in which the variable is known
to lie, we indicate how the distribution for the variable in this case can be obtained. A Gaussian
distribution should only be used in this case when the standard deviation is small compared
with the range of variation (the length of the interval). In general, when the interval is finite,
the parameters of the distribution should be evaluated numerically, as suggested by Lira (2009
Metrologia 46 L27). Here we note that the knowledge of the range of variation is equivalent to
a bias of the distribution towards a flat distribution in that range, and the principle of minimum
Kullback entropy (mKE) should be used in the derivation of the probability distribution rather
than the MaxEnt, thus leading to an exponential distribution with non-Gaussian features.
Furthermore, up to evaluating the distribution negentropy, we quantify the deviation of mKE
distributions from MaxEnt ones and, thus, we rigorously justify the use of the GUM-S1
recommendation also if we have further information on the range of variation of a quantity,
namely, provided that its standard uncertainty is sufficiently small compared with the range.

(Some figures may appear in colour only in the online journal)

Supplement 1 to the GUM (GUM-S1) [1] provides
assignments of probability density functions for some common
circumstances. In particular, it is stated that if we know only
the mean value x̄ and the variance σ 2

X of a certain quantity
X, we should assign a Gaussian probability distribution to
that quantity, according to the principle of maximum entropy
(MaxEnt) [2, 3]. The derivation is quite simple, as one has
to look for the distribution p(x) maximizing the Shannon
entropy:

S[p] = −
∫

R
dx p(x) log p(x), (1)

which is given by

p(x) = exp{−λ0 − λ1x − λ2x
2}, (2)

where the values of the coefficients λk should be determined
to satisfy the constraints:

∫

R
dx p(x) xk = Mk, (3)

with

M0 = 1, M1 = x̄, M2 = σ 2
X + x̄2. (4)

However, sometimes we also know the range of the possible
values of the quantity X. Two relevant examples are given
by the phase-shift in interferometry, which is topologically
confined in a 2π window, and by the displacement amplitude
of a harmonic oscillator, whose range of variation is dictated
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by energy constraints. In this case, it has been noticed by Lira
in [4] that a Gaussian probability distribution with support on
the real axis can be rigorously justified only if the standard
uncertainty is sufficiently small with respect to the range of
variation of the quantity. In more detail, if we have any
information about the range of variation, then this information
should be employed in deriving the distribution maximizing the
entropy as well as in evaluating the values of the coefficients
{λ0, λ1, λ2} of the distribution.

We denote by B ⊂ R the range of the quantity X, i.e. the
subset of the real line where the values of X have non-zero
probability to occur. The functional form of the distribution
is still given by the exponential function in equation (2), but
with non-zero support only in B, whereas the coefficients
are to be determined by formulae like those in equation (3),
again with R replaced by B. It then follows, e.g., that for a
variable which is known a priori to lie in a given interval,
the MaxEnt distribution is not Gaussian, and the Gaussian
approximation may be employed only if the standard deviation
is small compared with the range of possible values of the
quantity.

Here we point out that having information about the range
of variation may be expressed as a bias of the distribution
towards a flat distribution in that range and the reasoning
presented in [4] may be subsumed by the minimum Kullback
entropy principle (mKE) [5, 6, 7]. The Kullback entropy,
or relative entropy, or Kullback–Leibler divergence, of two
distributions p(x) and q(x) reads

K[p|q] =
∫

R
dx p(x) log[p(x)/q(x)]. (5)

According to the mKE, in order to find the distribution p(x)

given a bias towards q(x), we should minimize the function

K[p] = K[p|q] +
2∑

k=0

λk

[∫

R
dx p(x) xk − Mk

]
, (6)

with respect to the function p(x), obtaining

p(x) = q(x) exp{−λ0 − λ1x − λ2x
2}, (7)

where the parameters λk can be still (numerically) computed
using equation (3). Equation (7) represents the probability
distribution satisfying the given constraints, but with a bias
towards the distribution q(x), which, for instance, may contain
the information about the range of the variable x. This
information, which in the case of the MaxEnt is not explicitly
taken into account, is now naturally considered from the
beginning. Remarkably, this is a different scenario from that
covered in GUM-S1, i.e. when further information on the
quantity is available, namely, the interval of values within
which the quantity is known to lie is finite.

Indeed, as mentioned above, if the standard uncertainty
is sufficiently small with respect to the range of variation of
the quantity, we can adopt a Gaussian probability distribution
over the whole real axis and, thus, use the GUM-S1
recommendation. In order to rigorously justify this statement,
which has been qualitatively addressed in [4], we assess

Figure 1. Scaling of the negentropy of mKE distribution for zero
mean value and a variable known to lie in a symmetric interval
[−a, a]. We report the negentropy of the distribution as a function
of the ratio a/σX for different values of the variance: σ 2

X = 0.5
(green squares), 1 (red circles), 2 (blue triangles).

quantitatively how the knowledge of the range of variation
influences the assignment of a probability distribution by
considering the deviation of the mKE distribution from a
Gaussian distribution, which would represents the MaxEnt
solution in the absence of any information about the range
of variation. The deviation from normality of the mKE
distribution (7) may be quantified by its negentropy [8]:

N [p] = 1
2

[
1 + log

(
2πσ 2

X

)]
− S[p], (8)

where S[p] is the Shannon entropy (1) of the distribution (7).
As for example, for a variable known to lie in a given interval
[a, b] ⊂ R, a < b, that corresponds to a bias of p(x) towards
the flat distribution:

q(x) =
{
(b − a)−1 if x ∈ [a, b],
0 otherwise, (9)

the negentropy (8) reads

N [p] = 1
2

[
1 + log

(
2πσ 2

X

)]
− log (b − a) − λ0 − λ1x̄

− λ2(σ
2
X + x̄2). (10)

In the simplest case, namely when x̄ = 0 and x ∈ [−a, a],
the dependence of the coefficients λ0 and λ2 is such that we
have a scaling law for negentropy, which depends only on the
ratio a/σX. This is illustrated in figure 1, where we report the
negentropy as a function of a/σX for different values of σX.

In conclusion, we have shown that the determination of the
probability distribution of a variable for which we know the
first two moments and its range of variation may be effectively
pursued using the mKE. Furthermore, the negentropy of the
distribution may be used to quantify how much the mKE
solution differs from the MaxEnt one, i.e. to assess how the
knowledge of the range of variation influences the assignment
of a probability distribution. Our analysis quantitatively
supports the conclusions of [4] and rigorously justifies the
use of the GUM-S1 recommendation also in the presence of
further information on the range of variation of a quantity,
namely, provided that its standard uncertainty is sufficiently
small compared with the range.
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