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Abstract
Weaddress the estimation of themagneticfieldB acting on an ensemble of atomswith total spin J
subjected to collective transverse noise. By preparing an initial spin coherent state, for any
measurement performed after the evolution, themean-square error of the estimate is known to scale
as J1 , i.e. no quantum enhancement is obtained.Here, we consider the possibility of continuously
monitoring the atomic environment, and conclusively show that strategies based on time-continuous
non-demolitionmeasurements followed by afinal strongmeasurementmay achieveHeisenberg-
limited scaling J1 2 and also amonitoring-enhanced scaling in terms of the interrogation time.We
alsofind that time-continuous schemes are robust against detection losses, as we prove that the
quantumenhancement can be recovered also for finitemeasurement efficiency. Finally, we
analytically prove the optimality of our strategy.

1. Introduction

Recent developments in the field of quantummetrology have shownhowquantumprobes and quantum
measurements allow one to achieve parameter estimationwith precision beyond that obtainable by any classical
scheme [1, 2]. The estimation of the strength of amagnetic field is a paradigmatic example in this respect, as it
can bemapped to the problemof estimating the Larmor frequency for an atomic spin ensemble [3–9].

As amatter of fact, if the system is initially prepared in a spin coherent state, themean-squared error of the
field estimate scales, in terms of the total spin number J, as J1 , which is usually referred to as the standard
quantum limit (SQL) to precision. If quantum resources, such as spin squeezing or entanglement between the
atoms of the spin ensemble, are exploited, one observes a quadratic enhancement and achieves the so-called
Heisenberg scaling, i.e. J1 2 [10, 11]. On the other hand, it has been proved that such ultimate quantum limitmay
be easily lost in the presence of noise [12] and that typically a SQL-like scaling is observed, with the quantum
enhancement reduced to a constant factor. These observations have been rigorously translated into a set of no-
go theorems [13, 14], which fostered several attempts to circumvent them. In particular, it has been shownhow
one can restore a super-classical scaling in the context of frequency estimation, for specific noisy evolution and/
or by optimizing the strategy over the interrogation time [15–19], or by exploiting techniques borrowed from
the field of quantum error-correction [20–22].

In thismanuscript, we put forward an alternative approach: we assume to start the dynamics with a classical
state that ismonitored continuously in time via the interacting environment [23, 24]. The goal is to recover the
information on the parameter leaking into the environment and simultaneously to exploit the back action of the
measurement to drive the system intomore sensitive conditional states [25–34]. This approach has received
much attention recently [35–42] also in the context of quantummagnetometry [43–48].

Here we rigorously address the performance of these protocols, depicted infigure 1, taking into account the
information obtained via the time-continuous non-demolitionmeasurements on the environment, as well as
the information obtainable via a strong (destructive)measurement on the conditional state of the system. In
particular, in the limit of large spin, we derive an analytical formula for the ultimate bound on themean-squared
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error of any unbiased estimator, and conclusively show that, for experimentally relevant values of the dynamical
parameters, one can observe aHeisenberg-like scaling.

Remarkably, at variance withmost of the protocols proposed for quantummagnetometry, and in general for
frequency estimation, one does not need to prepare an initial spin-squeezed state. TheHeisenberg scaling is in
fact obtained also for an initial classical spin coherent state, thanks to the spin squeezing generated by time-
continuousmeasurements’ back-action. Finally, we analytically prove that the ultimate quantum limit for noisy
magnetometry in the presence of collective transverse noise [36] is in fact saturated by our strategy, i.e. one does
not need to implementmore involved strategies, e.g. jointlymeasuring the conditional state of the system and
the outputmodes of the environment at different times.

The paper is organized as follows. In section 2, we present the quantumCramér–Rao bounds that hold for
noisymetrology, with emphasis on estimation strategies based on time-continuous, non-demolition
measurements and afinal strongmeasurement on the corresponding conditional quantum states. In section 3,
we introduce the physical setting for the estimation of amagneticfield via a continuouslymonitored atomic
ensemble. In particular, we focus on the case of large total spin, where aGaussian picture is able to describe the
whole dynamics. In section 4, we present themain results: we first calculate the classical Fisher information (FI)
corresponding to the photoccurent obtained via the time-continuousmonitoring of the environment, andwe
discuss how to attain the corresponding bound via Bayesian estimation.We then address the possibility of
performing also a strongmeasurement on the conditional state of the atomic ensemble, and derive the ultimate
limit on this kind of estimation strategy, quantified by an effective quantumFisher information (QFI). Upon
studying this quantity, we observe how, in the relevant parameters’ regime, theHeisenberg limit can be
effectively restored, also discussing the effects of non-unitmonitoring efficiency, corresponding to the loss of
photons before the detection. Finally, we also prove the optimality of ourmeasurement strategy in the case of
ideal detectors. Section 5 closes the paper with some concluding remarks.

2.QuantumCramér–Rao bounds for time-continuous homodynemonitoring

A classical estimation problem consists in inferring the value of a parameter θ from anumberM ofmeasurement
outcomes D � y{ }x x x, , , M1 2 and their conditional distribution R( ∣ )p x .We define an estimator R Dˆ ( ) a
function from themeasurement outcomes to the possible values of θ andwe dub it asymptotically unbiased
when, in the limit of large number of repetitions of the experimentM, its average is equal to the true value, i.e.

¨ D D M R D R�( ∣ ) ˆ ( )pd , where D M R� 1 �( ∣ ) ( ∣ )p p xj
M

j1 . TheCramér–Rao theorem states that the variance of any
unbiased estimator is lower bounded as �R R�R

�( ) ( [ ( ∣ )])ˆ M p xVar 1, where

� ¨R M M� sR[ ( ∣ )] ( ∣ )( ( ∣ )) ( )p x x p x p xd log 12

denotes the classical FI.
In the quantum realm, the conditional probability distribution reads �R � 1R( ∣ ) [ ]p x Tr x , where �R is the

quantum state of the system labeled by the parameter θ, and1x is a POVMoperator describing the quantum
measurement. One can prove that the FI corresponding to any POVM is upper bounded �� )-R R[ ( ∣ )] [ ]p x ,
where � �) �R R R[ ] [ ]LTr 2 is theQFI, and Lθ is the so-called symmetric logarithmic derivative, which can be
obtained by solving the equation � � �s � �R R R R R RL L2 [49–51]. TheQFI depends on the quantum state �R

Figure 1.Atomicmagnetometry via time-continuousmeasurements—an atomic ensemble, prepared in a spin-coherent state aligned
to the x-direction and placed in a constantmagneticfieldB pointing in the y-direction, is coupled to train of probing fields that are
continuouslymonitored after the interactionwith the sample.
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only, and thus poses the ultimate bound on the precision of the estimation of θ.Moreover, in the single
parameter case the bound is always achievable, that is, there exists a (projective)POVMsuch that the
corresponding classical FI equals theQFI.

In thismanuscript we consider a quantum system evolving according to a givenHamiltonian RĤ
characterized by the parameter wewant to estimate, and coupled to a bosonic environment at zero temperature
described by a train of input operators ˆ ( )a tin , satisfying the commutation relation Ea � � a[ ˆ ( ) ˆ ( )] ( )†a t a t t t,in in ,
via an interactionHamiltonian � �ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( )† †H t ca t c a tint in in (ĉ being a generic operator in the systemHilbert
space) [23]. By tracing out the environment, the unconditional dynamics of the system is described by the
Lindbladmaster equation

� � � �$ �� � � �R[ ˆ ] [ˆ] ( )
t

H c
d

d
i , , 2

where � � � �� � � �[ ] ˆ ˆ (ˆ ˆ ˆ ˆ)† † †c c c c c c c 2.
If one performs a homodyne detection of a quadrature � �ˆ ( ) ˆ ( ) ˆ ( )†x t a t a tout out out on the output operators,

i.e. on the environment just after the interactionwith the system, one obtains that the dynamics of the system
quantum state � ( )c conditioned on themeasurement results (wewill omit the dependence of themeasured
photocurrent yt), is described by the stochasticmaster equation [23]

� � � ��  I� � � �R[ ˆ ] [ˆ] [ˆ] ( )( ) ( ) ( ) ( )H t c t c wd i , d d d . 3c c c c
t

Here η denotes the efficiency of the detection, dwt is a stochasticWiener increment (s.t. �w td dt
2 ), and

� � � � � � � � �[ ] ˆ ˆ [ (ˆ ˆ )]( ) ( ) ( ) † ( ) † ( )c c c c cTrc c c c c (notice that in principle one could consider othermeasure-
ment strategies different fromhomodyne, yielding a different superoperator). The correspondingmeasurement
record during a time step l �t t td is given by the infinitesimal current

�I� � �[ (ˆ ˆ )] ( )( ) †y c c t wd Tr d d . 4t
c

t

With the help of suchmeasurement strategies, one can estimate the value of the parameter θ both from the

measured photocurrent ¨� yy dT

T

t0
, and from afinal strong (destructive)measurement on the conditional

state � ( )c . In this case, as we explicitly show in appendix A (in general both for the classical and quantum case),
the proper quantumCramér–Rao bound reads

�� )
. �R

�R( )
( [ ( )] [ [ ]])

( )ˆ
( ) ( )M p y

Var
1

, 5
T p

c
yT

where thefirst term at the denominator �[ ( )]p yT is the FI corresponding to the classical photocurrent yT , while
the second term is the average of theQFI for the conditional state �)[ ]( )c over all the possible trajectories, i.e. on
all the possiblemeasurement outcomes for the photocurrent.

The classical FI �[ ( )]p yT can be calculated as described in [35] by evaluating

� � U�[ ( )] [ [ ] ] ( )( )p y Tr , 6T p y
2

T

where the operator τ evolves according to the stochasticmaster equation

� �U U U U U� � � s � � �R R R[ ˆ ] [( ˆ ) ] [ˆ] (ˆ ˆ ) ( )†H t H t c t c c wd i , d i , d d d . 7t

The conditional states � ( )c at timeT can be obtained by integrating(3), for a certain streamof outcomes y ;T then
one can first calculate the correspondingQFI �)[ ]( )c , and, numerically or when possible analytically, its average
over all the possible trajectories explored by the quantum systemdue to the homodynemonitoring.

Amore fundamental quantumCramér–Rao bound that applies in this physical setting has been derived in
[36], by considering theQFI obtained from the unitary dynamics of the global pure state of system and
environment. ThisQFI is obtained by optimizing over all possible POVMs, i.e. one also considers the possibility
of performing non-separable (entangled)measurements over the system and all the outputmodes ˆ ( )a tout at
different times. On the other hand, in the previous setting the estimation strategies were restricted to themore
experimentally friendly case of sequential/separablemeasurements on the outputmodes and on the final
conditional state of the system.

TheQFI expressing this ultimateQCRB is by definition

)$ R Z R Z R� s s � §R R R R R� �( ) (∣ ( ) ∣ ( ) ∣) ∣ ( )4 log , 81 21 2 1 2

where Z R Z R� §( )∣ ( )1 2 is the fidelity between the global state of system and environment for two different values of
the parameter, andwherewe have highlighted its dependence on the superoperator $ that defines the
unconditionalmaster equation (2). The key insight is that this fidelity can be determined by using operators
acting on the systemonly [36, 52] and it can be expressed as the trace of an operator S Z R Z R� � §[ ¯] ( )∣ ( )Tr 1 2 ,
which obeys the following generalizedmaster equation
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�
S

S S S� � � �R R
¯ ( ˆ ¯ ¯ ˆ ) [ˆ] ¯ ( )
t

H H c
d

d
i . 91 2

As before, we already assumed that the dependence on the parameter lies only in the systemHamiltonian RĤ and
thatwe have a single jumpoperator ĉ .We remark that the operator S̄ is not a proper density operator
representing a quantum state, except in the limit case R Rl1 2, wherewe recover the standardmaster
equation (2).

3.Quantummagnetometry: the physical setting

Weaddress the estimation of the intensity of a static and constantmagnetic fieldB acting on a ensemble ofN
two-level atoms that are continuouslymonitored [43–46], as depicted infigure 1. The atomic ensemble can be
described as a systemwith total spin �J N 2 with collective spin operators defined as T� �B B�Ĵ i

N
i

1

2 0 , where
B � x y z, , and TBi denotes the Paulimatrices acting on the ith spin. The collective operators obey the same
angularmomentum commutation rules F�[ ˆ ˆ] ˆJ J J, ij ijk ki , where Fijk is the Levi-Civita symbol.We remark that in
the presentmanuscript we choose units such that � � 1.

We assume that the atomic sample is coupled to a electromagneticmode ain(t) corresponding either to a
cavitymode in a strongly driven and heavily damped cavity [26], or analogously to a far-detuned travelingmode
passing through the ensemble [46]. By considering an interactionHamiltonian L� �ˆ ˆ ( ˆ ( ) ˆ ( ))†H J a t a tzint in in
and if these environmental lightmodes are left unmeasured, the evolution of the system is expressed by (2), which
in this case corresponds to a collective transverse noise on the atomic sample,

� � � �$ �H L� � � �[ ˆ ] [ ˆ ] ( )
t

B J J
d

d
i , , 10tn y z

where the constantsκ and γ represent respectively the strength of the couplingwith the noise andwith the
magnetic field, that is directed on the y-axis and thus perpendicular to the noise generator. At t=0we consider
the systemprepared in a spin coherent state, i.e. a tensor product of single spin states (qubits) directed in the
positive x direction,

Z § � �§ � §
�

∣ ( ) ⨂∣ ∣ ( )J J0 , , 11
k

N

k x
0

where �§∣ is the eigenstate of Tx with eigenvalue+1.We thus have that the spin component on the x direction
attains themacroscopic value � § �ˆ ( )J J0x . The unconditional dynamics of � §Ĵx is obtained by applying the
operator Ĵx to both sides of equation (10) and then taking the trace. The result is the following equation
describing damped oscillations

H
L� §

� � § � � §
ˆ ( ) ˆ ( ) ˆ ( ) ( )J t

t
B J t J t

d

d 2
, 12x

z x

wherewe observe how the the dissipative and unitary parts of the dynamics are respectively shrinking the spin

vector � §
G
Ĵ and causing its Larmor precession around the y-axis. In the followingwewill assume tomeasure small

magnetic fields, such that H �Bt 1andwe can approximate the solution of the previous equation as

� § x � § �L L� �ˆ ( ) ˆ ( ) ( )J t J J0 e e . 13x x
t t2 2

If the lightmodes are continuouslymonitored via homodynemeasurements at the appropriate phase, one allows
a continuous ‘weak’measurement of Ĵ ;z the corresponding stochasticmaster equation (3) forfinitemonitoring
efficiency η reads

� � � ��  H L IL� � � �[ ˆ ] [ ˆ ] [ ˆ ] ( )( ) ( ) ( ) ( )B J t J t J wd i , d d d , 14c
y

c
z

c
z

c
t

while themeasurement result at time t corresponds to an infinitesimal photocurrent
�IL� �[ ˆ ]( )y J t wd 2 Tr d dt

c
z t . It is important to remark how the collective noise characterizing themaster

equation (10) describes the dynamics also in experimental situations where no additional coupling to the atomic
ensemble, with the purpose of performing continuousmonitoring, is engineered [53–55]. In this respect,
assuming a non-unit efficiency η corresponds to considering both homodyne detectors that are not able to
capture all the photons that have interactedwith the spin, and environmental degrees of freedom, causing the
same kind of noisy dynamics, that cannot bemeasured during the experiment.

Let us now consider the limit of large spin �J 1. In this case, the dynamicsmay be effectively describedwith
theGaussian formalism as long as � § xˆ ( )J t Jx , i.e. for times t small enough to guarantee that 1Lt 1.We define
the effective quadrature operators of the atomic sample, satisfying the canonical commutation relation

�[ ˆ ˆ]X P i, , as [46, 47]
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� �ˆ ˆ ¯ ˆ ˆ ¯ ( )X J J P J J , 15y t z t

where w � §¯ ∣ ˆ ( ) ∣J J tt x (notice that in the limit of large spin Jwe can safely consider the unconditional average
value � §ˆ ( )J tx , as the stochastic correction obtained via(14)would be negligible). In theGaussian description the
initial state Z §∣ ( )0 corresponds to the vacuum state � § � §( ˆ ˆ)∣ ∣X Pi 0 0 , which is Gaussian. As the stochastic
master equation (14) becomes quadratic in the canonical operators (and thus preserves theGaussian character of
states)

� � � ��  H L IL� � � �¯ [ ˆ ] ¯ [ ˆ] ¯ [ ˆ] ( )( ) ( ) ( ) ( )B J X t J P t J P wd i , d d d , 16c
t

c
t

c
t

c
t

thewhole dynamics can be equivalently rewritten in terms offirst and secondmoments only [56, 57] (see
appendix B for the equations describing thewhole dynamics in theGaussian picture). As it will be clear in the
following, due to the nature of the coupling, in order to address the estimation ofB, we only need the behavior of
themean and the variance of the atomicmomentumquadrature P̂ calculated on the conditional state � ( )c ,
which follows the equations

H IL� § � � �� �L Lˆ ( ) [ ˆ ( )] ( )P t B J t P t J wd e d 2Var e d , 17c c t
t t

2 2

IL� � �L[ ˆ ( )] ( [ ˆ ( )]) ( )P t

t
J P t

dVar

d
4 e Var . 18c

c
2t

2

The differential equation for the conditional secondmoment is deterministic and can be solved analytically. For
an initial vacuum state, i.e. with �[ ˆ ( )]PVar 0 1

2
, we obtain the following solution

I
�

� ��L[ ˆ ( )]
( )

( )P t
J

Var
1

8 1 e 2
, 19c t

2

that shows how the conditional state of the atomic sample is deterministically driven by the dynamics into a
spin-squeezed state.

4. Results

Herewewill present ourmain results, that is the derivation of ultimate quantum limits on noisymagnetometry
via time-continuousmeasurements of the atomic sample.Wewillfirst evaluate the classical FI �[ ]yt
corresponding to the information obtainable from the photocurrent, andwewill also showhow the
corresponding bound can be achieved via Bayesian estimation.Wewill then evaluate the second term appearing
in the bound, corresponding to the information obtainable via a strongmeasurement on the conditional state of
the atomic sample. This will allow us to discuss the ultimate limit on the estimation strategy via the effectiveQFI:
wewill focus on the scaling with the relevant parameters of the experiment, i.e. with the total spin number J and
themonitoring time characterizing each experimental run t, andwewill address the role of the detector
efficiency η.

4.1. Analytical FI corresponding to the time-continuous photocurrent
As discussed before, themeasured photocurrent yt obtained via continuous homodyne detection can be used to
extract information about the system and to estimate parameters which appear in the dynamics. The ultimate
limit on the precision of this estimate is quantified by the FI �[ ( )]p yt . Given theGaussian nature and the simple
dynamics of the problemwe can compute it analytically in closed form, by applying the results of [58]. Aswe
describe inmore detail in appendix B, one obtains the formula

� �IL� s � §L�[ ( )] [( ˆ ( ) ) ] ( )( )p J P ty 2 e . 20t
t

p B cy
2 2

t

By considering (17) and remembering that IL� � � §�L ˆ ( )w y J P t td d 2 e dt t c
t

2 , one obtains that the time
evolution of the derivative of the conditional firstmoment � §ˆ ( )P t c w.r.t. to the parameterB, can bewritten as

H IL
s � §

� � � s � §L L� �( ˆ ( ) ) [ ˆ ( )] ( ˆ ( ) ) ( )P t

t
J P t J P t

d

d
e 4Var e , 21B c t

c
t

B c
2 2

where [ ˆ ( )]P tVarc is obtained from equation (19).We thus observe that the evolution is deterministic and one
can easily derive its analytical solution. By applying equation (20), as the average over the trajectories is not
needed, we readily obtain the following analytical formula for the FI

�
H I

L I I
I I I I�

�
� �

� � � � � �
L� L

L

L L L[ ( )] ( )
[( ) ]

· [ ( ) ( ) ] ( )p
J

J J
J J J Jy

64 e e 1

9 4 1 e 4
4 12 e 3 4 3 e 4 3 e . 22t

t2 2 3

2

t

t

t t t4

2

4 2
3

4

As intuitively expected, this is amonotonically increasing function of t, since the partial derivative is always
positive. To get some insight into this expressionwe first report the leading term for lt 0
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� H Lx[ ( )] ( )p J ty
4

3
, 23t

2 2 3

wherewe explicitly see bothHeisenberg scaling J2 and amonitoring-enhanced time scaling t3.We can get further
intuition about this expression by expanding it around � dJ , the limit inwhich theGaussian approximation
becomes exact. The leading order in this other expansion is quadratic in J, thus showing againHeisenberg
scaling, irregardless of t:

�
H I

L
x

� � �
�

L� L L L

L[ ( )] ( ) ( )
( )

( )p
J

y
64 e e 1 4e e 1

9 e 1
; 24t

t2 2 3

2

t t t

t

4 4 2

4

this last approximations actually reproduces the behavior of the function quite well in the range of parameters
wewill consider in the following.

We nowwant to show that one can achieve this classical Cramér–Rao bound from the time-continuous
measurement outcomes obtained via an appropriate estimator. Infigure 2we indeed show the posterior
distribution as a function of time for a single experimental run, obtained after a Bayesian analysis (see
appendix C for details).We observe how the distribution gets narrower in time around the true value andwe also
explicitly show that its standard deviation Test converges to the one predicted by theCramér–Rao bound

�T � �( ) [ ( )]t p ytCR
1 2. In the initial part of the dynamics the values of Test are smaller than the corresponding

TCR: this is due to the choice of the prior distribution, being narrower than the likelihood and thus implying
some initial knowledge on the parameter which is larger than the one obtainable for smallmonitoring time.

4.2.QuantumCramér–Rao bound for noisymagnetometry via time-continuousmeasurements
In order to evaluate the quantumCramér–Rao bound in equation (5)wenowneed to consider the second term

�)� [ [ ]]( ) ( )
p

c
yT

, corresponding to the information obtainable via strong quantummeasurement on the
conditional state of the system. The conditional state � ( )c is Gaussian and has a dependence on the parameterB
only in thefirstmoments. Therefore the correspondingQFI can be evaluated as prescribed in [59] (see
appendix B formore details) obtaining,

�) �
s � §[ ] ( ˆ ( ) )

[ ˆ ( )]
( )( ) P t

P tVar
. 25c B c

c

2

Since, as we proved before, the evolution of both s � §ˆ ( )P tB c and [ ˆ ( )]P tVarc is deterministic, the average over all
possible trajectories is also in this case trivial andwe have � �) )� �[ [ ]] [ ]( ) ( ) ( )

p
c c

yT
. By exploiting the analytical

solution for both quantities, theQFI reads

�) H I I I
L I I

�
� � � �

� �

�L L

L[ ] ( ( ) )
[( ) ]

( )( ) J J J J

J J

32 12 4 e 8 3 e 3

9 4 1 e 4
. 26c

2 2

2

t t

t

2 4

2

As expected, for nomonitoring of the environment (I � 0), one obtains that �) _[ ]( ) Jc , i.e. corresponding to
the SQL scaling. This function is alsomonotonically increasingwith t andwe can expand it around � dJ to
study the leading term,which shows again a quadratic scaling in J

�) H I
L

x
� � �

�

L� L L

L[ ] ( )
( )

( )( ) J128 e 3e 2e 1

9 e 1
. 27c

t2 2 2

2

t t

t

2
3

4

2

Figure 2.Bayesian estimation ofB from a single simulated experiment—the data shown in the plots are obtained as a function of Lt ,
for H L � �1 G 1, �J 104 and I � 1; the prior distribution of the parameterB is uniform in the interval �[ ]0.01, 0.01 G, and the
true value is �B 0 Gtrue . In the top panel we show the ratio between the standard deviation of the posterior distribution and the
standard deviation predicted by theCramér–Rao bound. In the bottompanel we show the posterior distribution as a function of time,
the constant white dashed linemarks the value Btrue.
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Wealso remark that theQFI is equal to the classical FI for ameasurement of the quadrature P̂ , thus showing that
a strongmeasurement of the operator Ĵz on the conditional state of the atomic sample is the optimal
measurement saturating the corresponding quantumCramér–Rao bound.

By combining equations (22) and(26), we can nowdefine the effectiveQFI

� �) � ) � )�� � � �
_ [ ( )] [ [ ]] [ ( )] [ ] ( )( ) ( ) ( )p py y , 28t p

c
t

c
yT

which represent the inverse of the best achievable variance according to the quantumCramér–Rao bound(5).
The resulting expression can be simplified to get the following simple analytical formula

) I� �˜ ( )K J K J , 291 2
2

where

H
L

� � L�( ) ( )K 32 1 e , 30t
1

2

2
4 2

H
L

� � � �L L L� � �⎜ ⎟⎛
⎝

⎞
⎠ ( )K 64 1

8

3
e 2e

1

3
e . 31t t t

2

2

2
4 2

We start by studying how this quantity scales with the total spin: infigure 3we plot)
_
as a function of J in the

appropriate regions of parameters.We remark that the plots will be presented by using L1 as a time unit so that
the strength of the interaction becomes H L and is alwaysfixed to �1 G 1 in the following.We observe that,
within the validity of our approximation ( 1Lt 1), it is possible to obtain theHeisenberg-like scaling J2 for the
effectiveQFI. There is a transition between SQL-like scaling andHeisenberg scaling depending on the
relationship between J and Lt showing how the quantum enhancement is observed for L�J t1 .

The same conclusions are drawn if we look at the behavior of)
_
as a function of the interrogation time t,

plotted infigure 4: a transition from a t2-scaling to amonitoring-enhanced t3-scaling is observed for L�J t1 .
We remark here that the typical scaling obtained in quantummetrology for unitary parameters is of order t2. The
observed t3-scaling is due to the continuosmonitoring of the system. A similar scaling of the FIwould be in fact
obtained for an equivalent classical estimation problem,where a continuouslymonitored classical system is
estimated via a theKalmanfilter [58]. Notice that there are also few recent examples in the literature where a
t4-scaling can be observed. This is obtained in noiseless quantummetrology problemswith time-dependent
Hamiltonian and by exploiting open-loop control [60–63]. In particular in [63], it was also shown that a

Figure 3. J scaling—effectiveQFI)
_
as a function of J for different vales of Lt , for unit efficiency η and effective coupling strength

H L � �1 G ;1 axes are in logarithmic scale. The solid curves are for increasing values of Lt (shown in the legend) from top to bottom.
The two regimes appearing in the plots are∼J2 (steeper slope) for higher values of Lt and higher values of J and_J (gentler slope) for
the opposite parameters’ regions. For visual comparisonwe show a dashed line at the top∝J2 and a dotted line at the bottom rJ .

Figure 4.Time scaling—effectiveQFI)
_
as a function of Lt for different values of J, for unit efficiency η and effective coupling

strength H L � �1 G ;1 axes are in logarithmic scale. The solid curves are for increasing values of J (shown in the legend) from top to
bottom. The two regimes appearing in the plots are L_( )t 3 (steeper slope) for higher values of Lt and higher values of J and L_( )t 2

(gentler slope) for the opposite parameters’ regions. For visual comparisonwe show a dashed line at the top Lr( )t 3 and a dotted line at
the bottom Lr( )t 2.
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t3-scaling can be achievedwithout additional control, but by performing repeated (stroboscopic)measurement
on the system, analogously to our strategy.

The previous results were both shownby considering perfectmonitoring of the environment, i.e. for
detectors with unit efficiency η. Infigure 5we plot the behaviors of)

_
as a function of J and t, varying the detector

efficiency η; we observe how the quantum enhancements can be obtained for all non-zero values of η. The effect
of having a non-unitmonitoring efficiency is simply to imply larger values of J towitness the transition between
SQL toHeisenberg-scaling, as one can also understand by looking at the role played by η and J in equation (29).

We remind that if we consider only the classical FI �[ ( )]p yt , theHeisenberg scaling in terms of J and
t3-scaling are always obtained for 1Lt 1and for every η, as shownby the expansion(23). However, if the
contribution of this term, as well as the contribution of conditioning to theQFI, are too small then theQFI of the
unconditional state, i.e. (26)with I � 0, dominates (the term IK J2

2 in (29) is negligible) andwe observe SQL
scaling for )̃.We finallymention that the in the regimeswherewe observeHeisenberg scaling of )̃, the classical
FI �[ ( )]p yt amounts to a relevant part of the total, namely around 25% .

4.3.Optimality of time-continuousmeasurement strategy for noisy quantummagnetometry
As explained before, the ultimate limit for quantummagnetometry, in the presence ofMarkovian transversal
noise as the one described by themaster equation (10), is given by theQFI)$ in equation (8). The generalized
master equation (9) in this case (considering the large-spin approximation) reads

� � � ��H L� � � �¯ ¯ ( ˆ ¯ ¯ ˆ ) ¯ [ ˆ] ¯ ( )
t

J B X B X J P
d

d
i . 32t t1 2

In appendixDwe showhow this equation can be solved in a phase space picture, since the equation contains at
most quadratic terms in X̂ and P̂ and thus preserves theGaussian character of the operator �̄ .

Thefinal result is

) )$ I� � � �˜ ( ) ( )K J K J1 , 331 2
2

tn

i.e., we exactly obtain the effectiveQFI)̃ defined in equation (28) in the limit of unit efficiency I � 1. This
result remarkably proves that our strategy, not only allows to obtain theHeisenberg limit, but also corresponds
to the optimal one, given a collective transversal noisemaster equation (10) and in the presence of perfectly
efficient detectors. Indeed, any othermore experimentally complicated strategy, based on entangled and non-
local in timemeasurements of the outputmodes and the system,would not give better results in the estimation
of themagnetic fieldB.

Figure 5.Effect of non-unit efficiency—effectiveQFI)
_
as a function of J (top panel) and Lt (bottompanel) for different values of η

and effective coupling strength H L � �1 G 1. The two regimes appearing in the plots are∼J2 (top panel) and L_( )t 3 (bottompanel)
for higher values of Lt and higher values of Jwhile∼J2 (top panel) and L_( )t 2 (bottompanel) for the opposite parameters’ regions.
For visual comparisonwe show a dashed line at the top∝J2 (top panel) and Lr( )t 3 (bottompanel) and also a dotted line at the bottom
rJ (top panel) and Lr( )t 2 (bottompanel).

8

New J. Phys. 19 (2017) 123011 FAlbarelli et al



5. Conclusion anddiscussion

Wehave addressed in detail estimation strategies for a static and constantmagnetic field acting on an atomic
ensemble of two-level atoms also subject to transverse noise. In particular, we have evaluated the ultimate
quantum limits to precision for strategies based on time-continuousmonitoring of the light coupled the atomic
ensemble.

After deriving the appropriate quantumCramér–Rao bound, we have calculated the corresponding effective
QFI in the limit of large spin, posing the ultimate limit on themean-square error of any unbiased estimator. Our
results conclusively show that bothHeisenberg J2-scaling in terms of spin, and amonitoring-enhanced t3-scaling
in terms of the interrogation time, are obtained for L�J t1 , confirmingwhatwas discussed in [43, 46].We
have remarkably demonstrated that these quantum enhancements are also obtained for not unitmonitoring
efficiency, i.e. even if one cannotmeasure all the environmentalmodes or for not perfectly efficient detectors.
Finally we have analytically proven the optimality of our strategy, i.e. that given themaster equation describing
the unconditional dynamics of the system and ideal detectors, no othermeasurement strategywould give better
results in estimating themagnetic field.

We remark thatHeisenberg scaling, or at least a super-classical scaling, can be obtained in the presence of
collective or individual (independent) transversal noise, by preparing a highly entangled or spin-squeezed state
at the beginning of the dynamics and, for individual noise, by optimizing on the interrogation time t [17–19]. In
this respect, the advantage of our protocol lies in the fact that it achieves theHeisenberg scaling even for an initial
classical spin-coherent state, exploiting the dynamical spin squeezing that is generated by theweak
measurement.

In conclusion, we have shown that time-continuousmeasurements represent a resource for noisy quantum
magnetometry [43, 46, 47]. Indeed, the information leaking into the environment, here represented by light
modes coupled to the atomic sample, obtained via homodyne detection, and the correspondingmeasurement
back-action on the atomic sample,may be efficiently (and optimally) exploited in order to obtain the promised
quantum enhanced estimation precision.
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AppendixA. Classical and quantumCramér–Rao bounds for sequential non-demolition
measurements

Herewewill showhow to derive the quantumCramér–Rao bound for time-continuous homodynemonitoring
reported in equation (5).

We start by considering a (classical) estimation problemof a parameter θ described by a conditional
probability R( ∣ )p z y, T , where the vector T� y( )y y yy , , ,T T1 2 contains the outcomes of sequential
measurements performed up to timeT, while z corresponds to a finalmeasurement performed on the state of
the system that has been conditioned on the previousmeasurement results yT . The corresponding classical FI
can be evaluated as

� ¨
¨

R R R

R R R

R R

R

� s

� s

� s s

� s

R

R

R R

R

[ ( ∣ )] ( ∣ )( ( ∣ ))

( ∣ ) ( ∣ )[( ( ∣ ))
( ( ∣ ))( ( ∣ ))

( ( ∣ )) ] ( )

p z z p z p z

z p z p p z

p z p

p

y y y y

y y y y

y y

y

, d d , log ,

d d , log ,

2 log , log

log , A.1

T T T

T T T

T T

T

2

2

2

where the second expression has been obtained bymeans of the Bayes rule

R R R�( ∣ ) ( ∣ ) ( ∣ )p z p z py y y, , .T T T

In the following, wewill omit the dependence on the parameter θ andwewill denote by � [·]( )p x the average
over a probability distribution p(x). By considering each term inside the integral separately one obtains

�� �s �R[( ( ∣ )) ] [ [ ( ∣ )]] ( )( ) ( )p z p zy ylog , A.2p z T p Ty y,
2

T T
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� ¨ ¨s s � s s �R R R R[ ( ∣ ) ( )] ( ( )) ( ( ∣ )) ( )( ) p z p p z p zy y y y y2 log log 2 d d 0, A.3p z T T T Ty, T

�� s �R[( ( )) ] [ ( )] ( )( ) p py ylog , A.4p z T Ty,
2

T

wherewe have used the property ¨ ¨s � s � s �R R R( ( ∣ )) ( ∣ ) ( )z p z z p zy yd d 1 0T T . As a consequence, any

unbiased estimator R̂ based onM experiments, i.e. obtained collectingM series ofmeasurement outcomes
( )zy ,T , satisfies the generalizedCramér–Rao bound

� �
. �R

�R( )
( [ ( )] [ [ ( ∣ )]])

( )ˆ
( )M p p zy y

Var
1

, A.5
T p TyT

where thefirst term �[ ( )]p yT is the FI corresponding to the sequentialmeasurements with outcomes yT , while
the second term is the average of the FI �[ ( ∣ )]p z yT , corresponding to the finalmeasurement over all the possible
trajectories conditioned on the previousmeasurement results yT . The bound in equation (A.5) bears some
formal similarity to theVanTree’s inequality [64], which however applies in a quite different situation, i.e. the
case where the parameter to be estimated θ is a randomvariable distributed according to a given probability
distribution R( )p .

The estimation strategy here described is of particular interest whenwe deal with quantum systems, given
the back-action of quantummeasurement on the state of the system itself.We can in fact associate each
measurement outcome yk to aKraus operator Myk

such that the conditional quantum state, for the system
initially prepared in a state ñ0 and after obtaining the streamof outcomes yT , reads

�
�

�
�

˜ ˜

[ ˜ ˜ ]
( )( )

†

†
M M

M MTr
, A.6c

y
y y

y y

0

0
T

T T

T T

where �M̃ M M M...y y yyT T 2 1
and the probability of obtaining the outcomes yT reads

�R �( ∣ ) [ ˜ ˜ ]†p M My TrT y y0T T

3. One can then also perform a strong (destructive)measurement described by POVM
operators 1{ }z on the conditional state, and thewholemeasurement strategy is described by the conditional
probabilities

�

�

R

R R R

� 1

�

� 1

( ∣ ) [ ]
( ∣ ) ( ∣ ) ( ∣ )

[ ˜ ˜ ] ( )

( )

†
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y y y

, Tr ,
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Tr . A.7

T
c

z

T T T

z

y

y y0

T

T T

Typically the parameter to be estimated θ enters in the the dynamics described by theKraus operators Myk
. For

this reasonwewill start by considering these operators fixed, while we supposewe can optimize over the final
measurement 1{ }z .We can then apply the quantumCramér–Rao bound for the conditional states � ( )c

yT
, stating

that �� )-[ ( ∣ )] [ ]( )p z yT
c

yT
. One then obtains amore fundamental quantumCramér–Rao bound for our

estimation strategy

�� )
.

�
R

�
R( )

( [ ( )] [ [ ]])
( )ˆ

( )
( )M p y

Var
1

. A.8
T p

c
y yT T

Clearly this bound can be readily applied to the time-continuous case discussed in themain text, where the
vector of outcomes yT corresponds to ameasured homodyne photocurrent, andwhere the conditional state � ( )c

yT

can be obtained via a stochasticmaster equation as the one in equation (3).
We should also remark that a bound of this kind has already been considered in [39], in a similar physical

situationwhere n probes, thatmay be prepared in a quantum correlated initial state, are coupled ton
independent environments and one performs sequentially nmeasurement on the respective environments and a
finalmeasurement on the conditional state of the probes.

Appendix B.Gaussian dynamics andGaussian FI

Herewewill provide the formulas for the dynamics of the atomic ensemble described by the stochasticmaster
equation (14). Aswementioned in the text, thewhole dynamics preserves theGaussian character of the
quantum state and thus can be fully described in terms of the firstmoments vector � §r̂ c and of the covariance
matrix T of the quantum state � ( )c . These are defined in components as �� § �ˆ [ˆ ]( )r rTrj c j

c and
�T � � � § � � §[{ˆ ˆ ˆ ˆ } ]( )r r r rTr ,jk j j c k k c

c for the operator vector T�ˆ ( ˆ ˆ)X Pr , . In formulae one obtains [56, 57]:

3
In our treatmentwewill consider the sequential non-demolitionmeasurement fixed, and thus described by afixed set of Kraus operators

{ }Myk
. However one can generalize the results by considering adaptive schemeswhere one can decide tomodify themeasurement performed

at each time tk.
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T
� § � �ˆ ( )t

M
r u

w
d d

d

2
, B.1c

TT T T� � ( )
t

D MM
d

d
, B.2

where

L�
L�⎛

⎝⎜
⎞
⎠⎟ ( )D J2 e 0

0 0
, B.3

t 2

IL
� L�

⎛
⎝⎜

⎞
⎠⎟ ( )M

J

0 0

2 e 0
, B.4t 2

TH� � L�( ) ( )B Ju 0, e , B.5t 2

and wd is a vector ofWiener increments such that E�w w td d dj k jk , related to the photocurrent via the
equation

T� � � § �ˆ ( )M ty r
w

d d
d

2
. B.6t c

The equations (17), (18) and (21) can be obtained from the ones above, remembering that for our
definitions T � [ ˆ ( )]P t2Varc22 .

Themethod to calculate the FI corresponding to the time-continuousmeasurement in the case of linear
Gaussian systemhas been described in [58]. One has to evaluate the formula

T T� �� s � § s � §[ ( )] [ ( ˆ ) ( ˆ )] ( )( )p MMy r r2 , B.7t p B c B cyt

that, by plugging in thematrices describing our problem, is easily simplified to equation (20).
As the conditional state is Gaussian, also the calculation of the correspondingQFI can be easily obtained, in

this case by applying the results presented in [59].Moreover, as only the firstmoments of the state depend on the
parameterB, the calculation is further simplified and one has

T�) T� s � § s � §�[ ] ( ˆ ) ( ˆ ) ( )( ) r r2 . B.8c
B c B c

1

By noticing that the only non-zero entry of the vector s � §r̂B c is the one corresponding to � §ˆ ( )P t c, one easily
obtain equation (25).

AppendixC. Bayesian analysis for continuouslymonitored quantum systems

Bayesian analysis has proven to be an efficient tool for estimation in continuouslymonitored quantum systems
[35, 38, 42, 48]. The goal is to reconstruct the posterior distribution ofB given the observed current yt , by Bayes
rule:

�( ∣ ) ( ∣ ) ( )
( )

( )p B
L B p B

p
y

y

y
, C.1t

t

t

where ( )p B is the prior distribution, w( ∣ ) ( ∣ )L B p By yt t is the likelihood and ( )p yt serves as a normalization
factor. The Bayesian estimator is themean of the posterior distribution ��ˆ ( ) [ ]( ∣ )B Byt p B yt

and it is proven that
the corresponding variance � �� �( ) [ ] ( [ ])ˆ ( ∣ ) ( ∣ )B B BVarB p B p By y

2 2
t t

is asymptotically optimal, i.e. tends to
saturate theCramér–Rao boundwhen the length of the vector yT is large.

The simulated experimental run is obtained by numerically integrating the stochastic differential
equation (17)with the Euler–Maruyamamethod for the ‘true’ value of the parameter Btrue. Time is discretized
with steps of length%t , i.e. to get from time 0 to timeTwe perform � %n T tT steps. Experimental data is
represented by the observedmeasurement current T� % y %( )y yy , ,T t tnT1

, which corresponds to an

nT-dimensional vector. The outcome at every time step%yti
is sampled from aGaussian distributionwith

variance%t andmean IL% � � § %�L( ) ˆ ( )y B J P t t2 et i ci

t
2 . Notice that% ( )y Bti

depends explicitly on the

parameterB via the quantum expectation value � §ˆ ( )P ti c on the conditional state.
Sincewe are estimating only one parameter the posterior can be obtained on a grid on the parameter space,

while formore complicated problemsMarkov chainMonte Carlomethodsmight be needed to sample from the
posterior [35]. In practical termswe need to solve equations (17) and (18) for every value of the parameterB on
the grid, assuming to perfectly know all the other parameters; thenwe need to calculate the likelihood for each
value via
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�r �
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ∣ )

( ( ))
( )L B

y y B

t
y exp

2
, C.2T

i

n
t t

0

2T
i i

by considering the outcomes as independent random variables, i.e.multiplying the corresponding probabilities.
We then apply Bayes rule, equation (C.1), assuming a flat prior distribution p(B) on afinite interval. The same
analysis is trivially applied tomore than one experiment by simplymultiplying the likelihood obtained for every
different observedmeasurement current.

AppendixD.UltimateQFI via generalizedmaster equation in phase space

Herewe explicitly showhow to solve equation (32). The characteristic function for a generic operator Ô is
defined as

D � �[ ˆ ]( ) [ ˆ ˆ ] ( )O D Os Tr , D.1s

where the displacement operator is defined as

F� 8�̂ ( ˆ) ( )D s rexp i . D.2s

In particular wewill work in the phase space of a singlemode system, so that F �ˆ ( ˆ ˆ)X Pr , is the vector of
quadrature operators and F � ( )x ps , is the vector of phase space coordinates.

The action of operators in theHilbert space corresponds to differential operators acting on the characteristic
function via the followingmapping [56, 65]

S Dj � s �⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( )X

x
si

2
, D.3p

S Dj � s �⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( )X

x
si

2
, D.4p

S Dj s �⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( )P

p
si

2
, D.5x

S Dj s �⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( )P

p
si

2
. D.6x

If we nowdefine the characteristic function associated to the operator �̄ introduced in equation (9)

�D Dw¯ ( ) [ ¯ ]( ) ( )ts s, , D.7

the quantity of interest in order to compute theQFI is then � D�¯ ¯ ( )tTr 0, , as evident from the definition (D.1).
By applying the phase spacemapping, from the generalizedmaster equation (32)we get to the following

partial differential equation for the characteristic function

D
H

L
H D�

�
� � � s

⎡
⎣⎢

⎤
⎦⎥

¯ ( ) ¯ ¯ ¯ ( ) ¯ ( ) ( )t

t
J

B B
x

J
p J B B t

s
s

d ,

d
i

2 2
, . D.8t

t
t p

1 2 2
1 2

This equation can be solved by performing aGaussian ansatz, similarly to [66], i.e. assuming that at every time
the characteristic function can bewritten in the following form

F F F FTD � � 8 8 � 8
⎡
⎣⎢

⎤
⎦⎥¯ ( ) ( ) ( ) ( ) ( )t C t t ts s s s s, exp

1

4
i . D.9m

The dependence on time and on the parameters B1 2 is completely contained in the covariancematrix T ( )t , in
thefirstmoment vector F �( ) ( ( ) ( ))t x t p ts ,m m m and in the function D�( ) ¯ ( )C t t0, , which is the final result we
are seeking.

By plugging (D.9) into (D.8) and equating the coefficients for different powers of x and p, one obtains a
systemof differential equations; the relevant ones are the equations coming from the coefficients of order one,
andmultiplying p and p2:

T L� �L˙ ( ) ( )t J2 e , D.101,1
t

2

TH
� � ��L˙ ( ) ( ) ( ) ( )x t J B B ti

2
e , D.11m 1 2 1,1

t
2

H� � ��L˙ ( ) ( ) ( ) ( ) ( )C t J B B x t C ti e . D.12m1 2
t

2

These equations are solved analytically with the initial conditions T �( )0 11,1 , �( )x 0 0m and �( )C 0 1 (since
for t = 0 the operator �̄ corresponds to the initial state of the system §�∣ ∣0 0 ), yielding
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L
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⎦⎥( ) ( ) ( ) · ( ( ) ) ( )C t J B B J J Jexp

4

3
e e 1 4 e 6 3 e 2 . D.13t
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2 1 2
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4 4 2

By plugging this term into equation (8), wefinally obtain the ultimateQFI)$tn reported in equation (33).
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