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1. INTRODUCTION
Nonclassical properties of a radiation field play a

relevant role in modern information processing, since,
in general, they improve continuous variable (CV)
communication protocols based on light manipulation
[1, 2]. Indeed, quantum light finds application in sev-
eral fundamental tests of quantum mechanics [3], as
well as in high-precision measurements and high-
capacity communication channels [4, 5]. Among non-
classical features, entanglement plays a major role,
being the essential resource for quantum computing,
teleportation, and cryptographic protocols. Recently,
CV entanglement has also proven to be a valuable tool
for improving optical resolution, spectroscopy, interfer-
ometry, tomography, and discrimination of quantum
operations. Recent experimental realizations also
include dense coding [6] and a teleportation network
[7].

Entanglement in optical systems is usually gener-
ated through parametric downconversion in nonlinear
crystals. The resulting bipartite state, the so-called
twin-beam state of radiation (TWB), allows the realiza-
tion of several beautiful experiments and the demon-
stration of the above quantum protocols. However, the
resources available to generate CV entangled states are
unavoidably limited: nonlinearities are generally small,
and, in turn, the resulting states have a limited amount
of entanglement and energy. In this context, practical
applications require novel schemes to create more
entangled states or to increase the degree of entangle-
ment of a given signal.

In quantum mechanics, the reduction postulate pro-
vides an alternative mechanism to achieve 

 

effective

 

nonlinear dynamics. In fact, if a measurement is per-
formed on a portion of a composite system, the output
state strongly depends on the results of the measure-

ment. As a consequence, the 

 

conditional

 

 state of the
unmeasured part, i.e., the subensemble corresponding
to a given outcome, may be connected to the initial one
by a (strongly) nonlinear map. In this paper, we focus
our attention on a scheme of this kind and address a
conditional method based on subtraction of photons to
enhance nonclassical features. In particular, we analyze
how, and to what extent, photon subtraction may be
used to increase nonlocal correlations of twin beams.
As we will see, photon subtraction transforms the
Gaussian Wigner function of TWB into non-Gaussian
one, and therefore it is also referred to as a 

 

de-Caussifi-
cation

 

 process.

The photon subtraction process on TWBs was first
proposed in [8], where a well-defined number of pho-
tons is subtracted from both parties of a TWB by trans-
mitting each mode through a beam splitter and per-
forming a joint photon-number measurement on the
reflected beams. The degree of entanglement is then
increased, and the fidelity of the CV teleportation
assisted by a such photon-subtracted state is improved
[9]. However, this scheme is based on the possibility of
resolving the actual number of revealed photons. In
[10] we showed that the improvement of teleportation
fidelity is possible also when the number of detected
photon is not known. In our scheme, we use on/off ava-
lanche photodetectors able only to distinguish the pres-
ence from the absence of radiation. For this reason, we
referred to this method as inconclusive photon subtrac-
tion (IPS). The single-mode version of this process has
been recently implemented [11], and the nonclassical-
ity of the generated state starting from squeezed vac-
uum has been theoretically investigated [12, 13]. In
addition, nonlocal properties of the photon-subtracted
TWBs have been investigated by means of different
nonlocality tests [14–19], finding enhanced nonlocal
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properties depending on the particular test and on the
choice of the involved parameters.

This paper is devoted to a review the effects of the
IPS process on TWBs either in the ideal case, i.e., when
the detection is not affected by losses and no dissipation
or thermal noise occurs during the propagation of the
involved modes, or when nonunit quantum efficiency is
taken into account, as well as when the dynamics
through a noisy channel is considered.

The paper is structured as follows: in the next sec-
tion, we introduce photon subtraction as a method to
enhance nonclassicality of a radiation state and illus-
trate inconclusive photon subtraction on a single-mode
field. The de-Gaussification process on two-mode fields
is described in Section 3, where the map of the IPS pro-
cess is given both in the Fock representation and in the
phase space. In Section 4, we briefly review the dynam-
ics of a TWB in noisy channels and show that IPS can
also be profitably applied in the presence of noise. The
CV teleportation protocol is described in Section 5,
where we compare the teleportation fidelity when the
protocol is assisted and not assisted by the IPS process.
In the following sections, in order to characterize in
detail the nonlocal properties of the IPS states, we con-
sider different 

 

Bell

 

 tests, namely, the nonlocality test in
the phase space (Section 6), the homodyne detection
test (Section 7), the pseudospin test (Section 8), and a
nonlocality test based on on/off photodetection (Sec-
tion 9). Finally, Section 10 closes the paper with some
concluding remarks.

2. PHOTON SUBTRACTION

The idea of enhancing the nonclassical properties of
radiation by subtraction of photons was introduced in
the context of Schrodinger cat generation [20] and sub-
sequently applied to the improvement of CV teleporta-
tion fidelity [8]. In the schemes of [8, 20] the field mode
to undergo photon subtraction (PS) is impinged onto a
beam-splitter with high transmissivity and whose sec-
ond port is left unexcited. At the output of the beam
splitter, the reflected mode undergoes photon number
measurement, whereas the conditional state of the
transmitted mode represents the PS state. The proper-
ties of the PS state depend on the number of detected
photons, with single-photon-subtracted states playing a

major role in the enhancement of nonclassicality.
Unfortunately, the realization of photon-number-
resolving detectors is still experimentally challenging,
and therefore a question arises concerning the experi-
mental feasibility of subtraction schemes.

Photodetectors that are usually available in quantum
optics, such as avalanche photodiodes (APDs), operate
in the Geiger mode [21, 22]. They can be used to recon-
struct the photon statistics [23, 24] but cannot be used
as photon counters. APDs show high quantum effi-
ciency, but their breakdown current is independent of
the number of detected photons, which in turn cannot
be determined. The output of these APDs is either “off”
(no photons detected) or “on,” i.e., a click, indicating
the detection of one or more photons. Actually, such an
output can be provided by any photodetector (photo-
multiplier, hybrid photodetector, cryogenic thermal
detector) for which the charge contained in dark pulses
is definitely below that of the output current pulses cor-
responding to the detection of at least one photon. Note
that, for most high-gain photomultipliers, the anodic
pulses corresponding to no photons detected can be
easily discriminated by a threshold from those corre-
sponding to the detection of one or more photons.

It appears therefore of interest to investigate the
properties of photon-subtracted states when the number
of detected photons is not discriminated. Such a pro-
cess will be referred to as inconclusive photon subtrac-
tion (IPS) throughout the paper. The scheme of the IPS
process is sketched in Fig. 1. Mode 

 

a

 

 excited in state 

 

s

 

is mixed with the vacuum 

 

0

 

 = 

 

|

 

0

 

〉〈

 

0

 

|

 

 (mode 

 

b

 

) at an
unbalanced beam splitter (BS) with transmissivity 

 

T

 

 =
cos

 

2

 

φ

 

, and then on/off avalanche photodetection with
quantum efficiency 

 

ε

 

 is performed on the reflected
beam. APDs can only discriminate the presence of radi-
ation from the vacuum. The positive operator-valued
measure (POVM) {

 

Π

 

0

 

(

 

ε

 

), 

 

Π

 

1

 

(

 

ε

 

)} of the detector is
given by

(1)

The whole process can be characterized by 

 

T

 

 and 

 

ε

 

,
which will be referred to as the IPS transmissivity and
the IPS quantum efficiency. The conditional state of the
transmitted mode after the observation of a click is
given by

(2)

where 

 

U

 

ab

 

(

 

φ

 

) = exp{–

 

φ

 

(

 

a

 

†

 

b

 

 – 

 

ab

 

†

 

)} is the evolution
operator of the beam splitter and 

 

p

 

1

 

(

 

φ

 

, 

 

ε

 

) is the proba-
bility of a click. In general, the transformation (2) real-
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Fig. 1.

 

 Scheme of the IPS process: the input state 

 

s

 

 is
mixed with the vacuum state 
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 = 
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0
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 at a beam splitter
(BS) with transmissivity 

 

T

 

; then, on/off photodetection with
quantum efficiency 

 

ε

 

 is performed on the reflected beam.
When the detector clicks, we obtain the IPS state 
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izes a nonunitary quantum operation 

 

1

 

 = 

 

�

 

(

 

s

 

) with
operator-sum decomposition given by

(3)

where

(4)

(5)

which is found by explicit evaluation of the partial trace
in (2). The IPS state obtained by applying the map (3)
to a Gaussian state is no longer Gaussian, and therefore
IPS represents an effective source of non-Gaussian
states, which should be otherwise generated by highly
nonlinear, and thus inherently low-rate, optical pro-
cesses.

In general, the IPS process can produce an output
state whose energy is larger than that of the input state
and whose nonclassical properties can be enhanced. As
an example, we address photon subtraction onto a
Gaussian state described by the following Wigner func-
tion (using the Wigner function formalism makes ana-
lytical calculations more straightforward):

(6)

whose energy is given by

(7)

When state (6) undergoes the IPS process described
above, the Wigner function associated with the output
state 

 

1

 

 reads [13]

(8)

with 

 

�

 

1

 

(

 

φ

 

, 

 

ε

 

) = 1, 

 

�

 

2

 

(

 

φ

 

, 

 

ε

 

) = –( )

 

–1

 

,
where

(9)

where 1

 

2

 

 is the 2 

 

×

 

 2 identity matrix and 

 

s

 

 is the cova-
riance associated with state (6):

(10)
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where [s]hk = 〈{Rh, Rk}〉 – 〈Rh〉〈Rk〉, {A, B} = AB + BA

denotes the anticommutator, and

(11)

(…)T being the transposition operation. Notice that
W1(z) is no longer Gaussian. In Eq. (8), we defined

(12)

where

(13)

(14)

with

(15)

(16)

Because of analytical expression (8), the energy of the
photon-subtracted state is simply given by

(17)

with �k ≡ �k(T, ε) and where we put T = cos2φ.
Let us now focus our attention on the IPS process

applied to the squeezed vacuum |0, r〉 = S(r)|0〉, where

S(r) = exp  is the squeezing operator,
which has recently been realized experimentally [11].
The Wigner function associated with |0, r〉 is given by
Eq. (6) with F = 2cosh2r and G = –sinh2r. In Fig. 2, we
plot the energies Es and E1 of the input and output
states, respectively, for different values of the involved
parameters as functions of tanh r. We can see that there
is a threshold on r, depending on T and ε, under which
the IPS state has a larger energy than the input state.
Furthermore, when ε = 1, T  1 and r  0, we can
see that E1  1: in these limits, the output state
approaches the squeezed Fock state S(r)|1〉 [12, 13].
Finally, in Fig. 3, E1 is plotted for two values of T and
different values of ε as a function of tanhr: we find that,
as r increases, the IPS efficiency is not so relevant in the
process.

3. PHOTON SUBTRACTION
ON BIPARTITE STATES

In this section, we address de-Gaussification of
bipartite states by IPS. The de-Gaussification can be
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achieved by subtracting photons from both modes
through on/off detection [9, 10]. The IPS scheme for
two modes is sketched in Fig. 4. The modes a and b of
the shared bipartite state s are mixed with vacuum
modes at two unbalanced beam splitters (BS) with
equal transmissivity T = cos2φ; the reflected modes c
and d are then revealed by avalanche photodetectors
(APD) with equal efficiency ε. The conditional mea-
surement on modes c and d is described by the POVM
(assuming equal quantum efficiency for the photode-
tectors)

(18)

(19)

(20)

(21)

When the two photodetectors jointly click, the condi-
tioned output state of modes a and b is given by [10, 14]

(22)

where Uac(φ) = exp{–φ(a†c – ac†)} and Ubd(φ) are the
evolution operators of the beam splitters, |0〉cd ≡ |0〉c ⊗
|0〉d, and p11(r, φ, ε) is the probability of a click in both
detectors. The partial trace on modes c and d can be
explicitly evaluated, thus arriving at the following
decomposition of the IPS map:

(23)

where

(24)

Equation (23) is indeed an operator-sum representation
of the IPS map: {p, q} ≡ θ should be intended as a poly-
index, so that expression (23) reads �( s) =

s  with Aθ = [p11(r, φ, ε)]–1/2mp(φ, ε)Mpq(φ).

From now on, we focus our attention on the case in
which the shared state is the twin-beam state of radia-
tion (TWB) s = |Λ〉〉〈〈Λ|, where |Λ〉〉 =

 ⊗ |k〉 with λ = tanhr, r being the
TWB squeezing parameter. The TWB is obtained by
parametric downconversion of the vacuum, |Λ〉〉 =
exp{r(a†b† – ab)}|0〉, a and b being field operators, and
it is described by the Gaussian Wigner function

(25)

with

(26)
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Fig. 2. Logarithmic plots of the energies Es (dashed line)
and E1 (solid lines) in the case of a squeezed vacuum |0, r〉
as input state and as functions of tanh r for ε = 1 and differ-
ent values of T. From top to bottom (solid lines): T = 1.0,
0.9, 0.75, and 0.5.
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Fig. 3. Plots of the energy E1 of the IPS state in the case of
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ferent values of ε. From top to bottom: ε = 1.0, 0.75, 0.5, and
0.25.
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where A0 ≡ A0(r) = cosh(2r), B0 ≡ B0(r) = sinh(2r) and
s0 is the covariance matrix

(27)

where 12 is the 2 × 2 identity matrix and s3 = Diag(1,

−1); s0 is defined as [s0]hk = 〈{Rh, Rk}〉 – 〈Rh〉〈Rk〉,

with

(28)

(29)

Now we explicitly calculate the Wigner function of the
corresponding IPS state, which, as one may expect, is
no longer Gaussian and positive definite. The state
entering the two beam splitters is described by the
Wigner function

(30)

where the second factor on the right-hand side repre-
sents the two vacuum states of modes c and d. The

action of the beam splitters on  can be summa-
rized by the following change of variables [2]:

(31)

(32)

and the output state, after the beam splitters, is then
given by

(33)

where
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and
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At this stage, on/off detection is performed on modes c
and d (see Fig. 4). We are interested in the situation
when both the detectors click. The Wigner function of
the double-click element Π11(ε) of the POVM [see
Eq. (21)] is given by [10, 28]

(39)

(40)

with

(41)

Using Eq. (22) and the phase-space expression of the
trace for each mode, i.e.,

(42)

we find that the Wigner function of the output state,
conditioned to the double-click event, is
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w w r φ,( )≡ 2 φ φ 1 Ã0–( )β* B̃0α+[ ].sincos=

Wε ζ ξ,( ) W Π11 ε( )[ ] ζ ξ,( )≡

=  
1

π2
----- 1 Qε ζ( )– Qε ξ( )– Qε ζ( )Qε ξ( )+{ },

Qε z( ) 2
2 ε–
----------- 2ε

2 ε–
----------- z

2
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp=

Tr O1O2[ ] π d
2
zW O1[ ] z( )W O2[ ] z( ),

�

∫=

Wr φ ε, , α β,( ) f α β,( )
p11 r φ ε, ,( )
--------------------------,=

f α β,( ) π2
d

2ζd
2ξ 4

π2
-----Wr φ, α β,( )

�
2

∫=

×
Ck

π2
-----Gr φ ε, ,

k( ) α β ζ ξ, , ,( ),
k 1=

4

∑

a

s

T

T

|0〉d

b

|0〉c

ε

ε
IPS process

Fig. 4. Scheme of the IPS process. The two modes, a and b,
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tion with quantum efficiency ε is performed on the reflected
beam: when both the detectors click, one obtains the IPS
state.
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where Ck ≡ Ck(ε) and C1 = 1, C2 = C3 = –2(2 – ε)–1, C4 =
4(2 – ε)–2. The double-click probability p11(r, φ, ε) can
be written as a function of f(α, β) as follows:

(45)

The quantities (α, β, ζ, ξ) in Eq. (44) are given by

(46)

where xk ≡ xk(r, φ, ε), and yk ≡ yk(r, φ, ε) are

After the integrations, we have
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and fk ≡ fk(r, T), gk = gk(r, T), and hk ≡ hk(r, T) given by

(50)

(51)

(52)

(53)

In this way, the Wigner function of the IPS state can be
rewritten as

(54)

with

(55)

Finally, the density matrix corresponding to WIPS(α, β)
reads as follows [10]:

(56)

where λ = tanhr and

(57)

In Fig. 5, we plot the energies Es and EIPS of the bipar-
tite input and output states, respectively, for different
values of the involved parameters as functions of tanhr.
We recall that, for a given Wigner function W(v, w) of
a bipartite state, the corresponding energy is

(58)

If the bipartite state has a Wigner function of the form

(59)
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Fig. 5. Logarithmic plots of the energies Es (dashed line)
and EIPS (solid lines) in the case of a TWB as input state as
functions of tanh r for ε = 1 and different values of T. From
top to bottom (solid lines): T = 1.0, 0.9, 0.75, and 0.5.
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then its energy is

(60)

Thereby, in the case of a TWB as input state, F, G, and
H are obtained from Eq. (25) and the energy of the state
emerging from the IPS process can be written as

(61)

with Fk = b – fh, Gk = b – gh, and Hk = 2 T + hk, and
all the involved quantities are the same as in Eq. (54).
As in the single-mode case, we can see that there is a
threshold on r, depending on T and ε, under which the
IPS state has a larger energy than the input state. In
Fig. 6, EIPS is plotted for two values of T and different
values of ε as a function of tanh r: we find that, as r
decreases, the IPS efficiency is not so relevant.

The state given in Eq. (54) is no longer a Gaussian
state, and its use in the improvement of continuous vari-
able teleportation [10], as well as in the enhancement of
the nonlocality [14, 16, 17], will be investigated in the
following sections.

4. DYNAMICS OF TWB IN NOISY CHANNELS

Before addressing the properties of the IPS bipartite
state described in the previous section, we review the
evolution of the twin-beam state of radiation (TWB) in
a noisy environment, namely, an environment where
dissipation and thermal noise take place [15]. As we
will see, we can include in our analysis the effect due to
the propagation through this kind of channel by a sim-
ple change of the involved quantities. Using a more
compact form, Eq. (25) can also be rewritten as

(62)

with X = (x1, y1, x2, y2)T, α = (x1 + iy1) and β =

(x2 + iy2), and (…)T denoting the transposition oper-

ation.
When the two modes of the TWB interact with a

noisy environment, namely, in the presence of dissipa-
tion and thermal noise, the evolution of Wigner func-
tion (25) is described by the following Fokker-Planck
equation [25–27]:

(63)
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where 0 is the 2 × 2 null matrix and

(65)

Here, Γk and Nk denote the damping rate and the aver-
age number of thermal photons of the channel k,
respectively, and s∞ represents the covariance matrix of
the environment and, in turn, the asymptotic covariance
matrix of the evolved TWB. Since the environment is
itself excited in a Gaussian state, the evolution induced
by expression (63) preserves the Gaussian form (62).
The covariance matrix at time t reads as follows [2, 27]:

(66)

where Gt = . The covariance matrix st

can be also written as

(67)

with

(68)

Finally, if we assume Γ1 = Γ2 = Γ and N1 = N2 = N,
then the covariance matrix (67) becomes formally iden-
tical to (27), and the corresponding Wigner function
reads
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with

(70)

If the IPS process is performed on a TWB evolved
in a noisy environment with both the channels having
the same damping rate and thermal noise, then the
Wigner function of the state arriving at the beam split-
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Ãt
At Γ N,( )

4 Det st[ ]
--------------------------, B̃t

Bt Γ( )
4 Det st[ ]
--------------------------.= =



1540

LASER PHYSICS      Vol. 16      No. 11      2006

OLIVARES, PARIS

described by Eq. (54) but with the following substitu-
tions:

(71)

5. CONTINUOUS VARIABLE TELEPORTATION

The scheme of continuous variable (CV) teleporta-
tion is sketched in Fig. 7. A bipartite state Ws is shared
between two parties: one mode of the state is mixed at
a balanced beam splitter (BS) with the state to be tele-
ported, Win, then double-homodyne measurement is
performed on the two emerging modes. The complex
outcome ξ of the measurement is used in order to dis-
place the remaining mode of Ws, and the teleported
state Wout is obtained by averaging over all the possible
outcomes. Here we address the teleportation of the
coherent state |α〉, whose Wigner function reads

(72)

If we consider the generic shared state

(73)

and since the POVM describing the double homodyne
detection is

(74)

δ(2)(ζ) being the complex Dirac’s delta function, then
the output state Wout is given by [2]
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where

(77)

In turn, the average fidelity of teleportation of coherent
states reads as follows:

(78)

(79)

When the shared state is the TWB of Eq. (25), the aver-

age fidelity is obtained from Eq. (78) with F = G = 2

and H = 2 , i.e.,

(80)

whereas, in the presence of noise, one should use sub-
stitutions (71).  is plotted in Fig. 8. When the tele-
portation is assisted by IPS, then the fidelity reads as
follows:

(81)

with Fk = b – fh, Gk = b – gh, and Hk = 2 T + hk, and
all the involved quantities are the same as in Eq. (54).
The results are presented in Fig. 9 for ε = 1 and Γt = N =
0. The IPS state improves the average fidelity of quan-
tum teleportation when λ is below a certain threshold,
which depends on T (and ε). Notice that, for T < 0.5,

(λ) is always below (λ), at least for ε = 1. The
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effect of dissipation and thermal noise is shown in
Fig. 10.

In order to quantify the improvement and to study its
dependence on T and ε, we define the following “rela-
tive improvement”:

(82)

which is plotted in Fig. 11 we can see that �F and, in

turn,  are mainly affected by T when Γt and N are
fixed. In Fig. 12, we plot �F as a function λ = tanhr and

the quantity  defined as follows:

(83)

�F r T ε Γ N, , , ,( )

=  
FIPS r T ε Γ N, , , ,( ) FTWB r Γ N, ,( )–
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-----------------------------------------------------------------------------------,
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FIPS r T ε Γ N, , , ,( ) FTWB r 0 0, ,( )–

FTWB r 0 0, ,( )
---------------------------------------------------------------------------------,

i.e., the relative improvement of the fidelity using IPS
in the presence of losses and thermal noise with respect
to the fidelity using the TWB in ideal conditions (Γt =
N = 0). We can see that, for the particular choice of the
parameters, not only is the fidelity improved with
respect to the TWB-based teleportation in the presence
of the same dissipation and thermal noise (solid line in
Fig. 12), but the results can also be better than the ideal
case (dot–dashed line). We can conclude that IPS onto
TWB degraded by dissipation and noisy environment
can improve the fidelity of teleportation up to and
beyond the value achievable using the TWB in ideal
conditions.

Finally, in Fig. 13, we plot the teleportation fidelity
as a function of the average number of photons N of the
shared state in the case of TWB and a photon-sub-
tracted TWB: we can see that, for a fixed energy of the
shared quantum channel, the best fidelity is achieved by
the TWB state. The same result holds in the presence of
dissipation and thermal noise.
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Fig. 8. Plots of the teleportation fidelity  assisted by
TWB in the ideal case (Γt = N = 0, dot–dashed line) as a
function of λ = tanhr. The solid lines are  with Γt =
0.2 and, from top to bottom, N = 0, 0.1, 0.2, and 0.5.
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Fig. 9. Plots of the teleportation fidelity  assisted by
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In the next sections, we will analyze the nonlocality
of the IPS state in the presence of noise by means of
Bell’s inequalities [15].

6. NONLOCALITY IN THE PHASE SPACE

Parity is a dichotomic variable and can thus be used
to establish Bell-like inequalities [29]. The displaced
parity operator on two modes is defined as [30]

(84)

where α, β ∈ �, a and b are mode operators and
Da(α) = exp{αa† – α*a} and Db(β) are single-mode

Π̂ α β,( )

=  Da α( ) 1–( )a†a
Da

† α( ) Db β( ) 1–( )b†b
Db

† β( ),⊗

displacement operators. Since the two-mode Wigner
function W(α, β) can be expressed as [2]

(85)

Π(α, β) being the expectation value of (α, β), the
violation of these inequalities is also known as nonlo-
cality in the phase space. The quantity involved in such
inequalities can be written as follows:

(86)

which, for local theories, satisfies |�DP | ≤ 2.

Following [30], one can choose a particular set of
displaced parity operators, arriving at the following
combination [31]:

(87)

which, for the TWB, gives a maximum �DP = 2.32 (for
	 = 1.6 × 10–3) greater than the value 2.19 obtained in
[30]. Notice that, even in the infinite squeezing limit,

the violation is never maximal, i.e., |�DP | <  [32].

In [31] we studied Eq. (87) for both the TWB and
the IPS state in an ideal scenario, namely, in the
absence of dissipation and noise; we showed that, using
IPS, the maximum violation is achieved for T, ε  1
and for values of r smaller than for the TWB.

Now, by means of Eq. (54) and substitutions (71),
we can study how noise affects �DP. The results are
shown in Fig. 14 for ε = 1: as one may expect, the over-
all effect of noise is to reduce the violation of Bell’s ine-
quality. When dissipation alone is present (N = 0), the
maximum of violation is achieved using the IPS for val-
ues of r smaller than for the TWB, as in the ideal case.
On the other hand, one can see that the presence of ther-
mal noise mainly affects the IPS results. In fact, for Γt =

0.01 and N = 0.2, one has  > 2 for a range of r

values, whereas  falls below the threshold for
violation. Note that the maximum of violation, both for
the TWB and the IPS state, depends on the squeezing
parameter r.

In Fig. 15, we plot  as a function of T and ε.
We can see that the main contribution to the Bell
parameter is due to the transmissivity T. Moreover, as
T  1, the Bell parameter is actually independent of
ε. Note that the values of 	 and r, which maximize the
violation, depend on Γt and N, as one can see from
Fig. 14. In Fig. 15, we have chosen to fix the environ-
mental parameters in order to compare the two plots,
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Fig. 12. Plot of the relative enhancement �F as a function
of λ = tanhr with T = 0.9, ε = 1, and Γt = N = 0.1 (solid line).

The dot–dashed line is , namely, the relative enhance-

ment of the fidelity using the de-Gaussified TWB in a noisy
environment with respect to the fidelity using TWB in the
ideal case (see text for details): for a suitable choice of the
parameters, the teleportation assisted by IPS in the presence
of dissipation and thermal noise can have a fidelity larger
than that of TWB-assisted teleportation when this is imple-
mented under ideal conditions (i.e., Γt = N = 0).
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Fig. 13. Plot of the teleportation fidelity as a function of the
average number of photons N of the shared state in the case
of TWB (dashed line) and a photon-subtracted TWB (solid
line) for T = 0.999, ε = 1, and under ideal conditions (i.e.,
Γt = N = 0). The inset is a magnification of the region
0 < N < 2.
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even if the best results can be obtained by maximizing

 with respect 	 and T.

We conclude that, considering the displaced parity
test in the presence of noise, the IPS is quite robust if
the thermal noise is below a threshold value (depending
on the environmental parameters) and for small values
of the TWB parameter r.

7. NONLOCALITY AND HOMODYNE 
DETECTION

In principle, there are two approaches to testing the
Bell inequalities for a bipartite state: either one can
employ some test for continuous variable systems, such
as that described in Section 6, or one can convert the
problem to Bell inequality tests on two qubits by map-
ping the two modes into two-qubit systems. In this and
the following section, we will consider the latter case.

The Wigner function WIPS(α, β) given in Eq. (54) is
no longer positive definite and thus it can be used to test
the violation of Bell’s inequalities by means of homo-
dyne detection, i.e., by measuring the quadratures xϑ
and xϕ of the two IPS modes a and b, respectively, as
proposed in [16, 17]. In this case, one can dichotomize
the measured quadratures assuming as the outcome +1
when x ≥ 0 and –1 otherwise. The nonlocality of
WIPS(α, β) in ideal conditions has been studied in [31],
where we also discussed the effect of the homodyne
detection efficiency ηH.

Let us now focus our attention on WIPS(α, β) when
the IPS process is applied to the TWB evolved through
the noisy channel, namely, using substitutions (71).
After the dichotomization of the homodyne outputs,
one obtains the following Bell parameter:

(88)

where ϑk and ϕk are the phases of the two homodyne
measurements at modes a and b, respectively, and

(89)

P( , ) being the joint probability of obtaining the

two outcomes  and  [17]. As usual, violation of

Bell’s inequality is achieved when |�HD | > 2.

In Fig. 16, we plot �HD for ϑ1 = 0, ϑ2 = π/2, ϕ1 =
−π/4, and ϕ2 = π/4: as for the ideal case [17, 31], Bell’s
inequality is violated for a suitable choice of the
squeezing parameter r. Obviously, the presence of noise
reduces the violation, but we can see that the effect of
thermal noise is not so large as in the case of the dis-
placed parity test addressed in Section 6 (see Fig. 14).
In Fig. 17, we plot �HD as a function of T and ε: as for
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the displaced parity test (see Fig. 15), we can see that
the main contribution to the Bell parameter is due to the
transmissivity T.

Notice that the high efficiencies of this kind of
detectors allow a loophole-free test of hidden variable
theories [33], though the violations obtained are quite
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Fig. 14. Plots of the Bell parameters �DP for the TWB (top)

and IPS (bottom); we set 	 = 1.6 × 10–3, which maximizes

, and put T = 0.9999 and ε = 1 for the IPS. The

dashed lines refer to the absence of noise (Γt = N = 0),
whereas, for both plots, the solid lines are �DP with Γt =
0.01 and, from top to bottom, N = 0, 0.05, 0.1, and 0.2. In

the ideal case, the maxima are  = 2.32 and
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small. This is due to the intrinsic information loss of the
binning process, which is used to convert the continu-
ous homodyne data in dichotomic results [34].

8. NONLOCALITY AND PSEUDOSPIN TEST

Another way to map two-mode continuous variable
system into a two-qubit system is by means of the pseu-

dospin test: this consists in measuring three single-
mode Hermitian operators Sk satisfying the Pauli matrix

algebra [Sh, Sk] = 2iεhklSl ,  = �, h, k, l = 1, 2, 3, and
εhkl is the totally antisymmetric tensor with ε123 = +1
[35, 36]. For the sake of clarity, we will refer to S1, S2,
and S3 as Sx , Sy , and Sz, respectively. In this way, one
can write the following correlation function:

(90)

where a and b are unit vectors such that

(91)

(92)

with S± = (Sx ± iSy). In the following, without loss of

generality, we set ϕk = 0. Finally, the Bell parameter
reads

(93)

corresponding to the CHSH Bell’s inequality |�PS | ≤ 2.
In order to study Eq. (93), we should choose a specific
representation of the pseudospin operators; note that, as
pointed out in [37, 38], the violation of Bell’s inequali-
ties for continuous variable systems depends, in addi-
tion to the orientational parameters, on the chosen rep-
resentation, since different Sk leads to different expec-
tation values of �PS. Here we consider the pseudospin
operators corresponding to the Wigner functions [37]

(94)

(95)

where 
 denotes the Cauchy principal value. Using
(94), one obtains

(96)

for the TWB and

(97)

for the IPS, where �k = (b – fk)(b – gk) – (2B0T + hk)2,
and all the other quantities have been denned in Sec-
tion 3.
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Fig. 16. Plots of the Bell parameter �HD for the IPS states
for two different values of the homodyne detection effi-
ciency: ηH = 1 (top), and ηH = 0.9 (bottom). We set ε = 1
and T = 0.99. The dashed lines refer to the absence of noise
(Γt = N = 0), whereas, for both the plots, the solid lines are
�HD with Γt = 0.05 and, from top to bottom, N = 0, 0.05,
0.1, and 0.2.
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In Fig. 18, we plot �PS for the TWB and IPS in the
ideal case, namely, in the absence of dissipation and
thermal noise. For all the figures, we set  = 0,  =

π/2, and  = –  = π/4. As usual, the IPS leads to
better results for small values of r, whereas

   as r  ∞,  has a maximum
and then falls below the threshold 2 as r increases. It is
interesting to note that there is a region of small values

of r for which  ≤ 2 < ; i.e., the IPS process
can increase the nonlocal properties of a TWB which
does not violates Bell’s inequality for the pseudospin
test in such a way that the resulting state violates it. This

ϑa1
ϑa2

ϑb1
ϑb2

�PS
TWB( )

2 2 �PS
IPS( )

�PS
TWB( )

�PS
IPS( )

fact is also present in the case of the displaced parity
test described in Section 6, but by using the pseudospin
test the effect is enhanced. Notice that the maximum
violations for the IPS occur for a range of values r
which are experimentally achievable.

In Fig. 19, we consider the presence of the dissipa-
tion alone and vary T. We can see that IPS is effective
also when the effective transmissivity T is not very
high. We take into account the effect of dissipation and
thermal noise in Figs. 20 and 21: we can conclude that
IPS is quite robust with respect to this source of noise
and, moreover, one can think of employing IPS as a
useful resource in order to reduce the effect of noise. In

Fig. 22, we plot  as a function of T and ε: the
main effect on the Bell parameter is due to the transmis-
sivity T, as in the previous cases.

9. NONLOCALITY AND ON/OFF 
PHOTODETECTION

The nonlocality test we are going to analyze is sche-
matically depicted in Fig. 23. Two modes of the de-
Gaussified TWB radiation field, a and b, described by
the density matrix , are locally displaced by an
amount α and β, respectively, and are finally revealed
by on/off photodetectors, i.e., detectors which have no
output when no photon is detected and a fixed output
when one or more photons are detected. The action of
an on/off detector is described by the following
two-value positive operator-valued measure (POVM)
{Π0, η, D, Π1, η, D} [2]:

(98a)

(98b)

�PS
IPS( )

ζρ

Π0 η D, ,
1

1 D+
------------- 1 η

1 D+
-------------–⎝ ⎠

⎛ ⎞ k

k| 〉 k〈 |,
k 0=
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Fig. 18. Plots of the Bell parameter �PS, in the ideal case
(Γt = N = 0): the dashed line refers to the TWB, whereas the
solid lines refer to the IPS with ε = 1 and, from top to bot-
tom, T = 0.9999, 0.99, 0.9, and 0.8. There is a threshold
value for r below which IPS gives a higher violation than
TWB. Note that there is also a region of small values of r
for which the IPS state violates Bell’s inequality while the
TWB does not. The dot–dashed line is the maximal viola-

tion value .2 2
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Fig. 19. Plots of the Bell parameter �PS for Γt = 0.01: the
dashed line refers to the TWB, whereas the solid lines refer
to the IPS with ε = 1 and, from top to bottom, T = 0.9999,
0.99, 0.9, and 0.8. The same comments as in Fig. 18 still
hold.
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where η is the quantum efficiency and D is the mean
number of dark counts, i.e., of clicks with vacuum
input. In writing Eq. (98), we have considered the ther-
mal background as the origin of dark counts. An analo-
gous expression may be written for a Poissonian back-
ground [19]. For small values of the mean number D
of dark counts (as generally happens at optical fre-
quencies), the two kinds of background are indistin-
guishable.

Overall, taking into account the displacement, the
measurement on both modes a and b is described by the
POVM (we are assuming the same quantum efficiency
and dark counts for both the photodetectors)

(99)

where h, k = 0, 1 and (z) ≡ D(z)Πh, η, DD†(z),
D(z) = exp{za† – z*a} is the displacement operator and
z ∈ � is a complex parameter.

In order to analyze the nonlocality of the state , we
introduce the following correlation function:

(100)

where

(101)

(102)

(103)

and 〈A〉 ≡ Tr[ A] denotes the ensemble average on both
the modes. The so-called Bell parameter is defined by
considering four different values of the complex dis-
placement parameters as follows:

(104)

(105)

Any local theory implies that |�η, D | satisfies the CHSH
version of the Bell inequality, i.e., |�η, D | ≤ 2 ∀α, α', β,
β' [29], while a quantum mechanical description of the
same kind of experiments does not impose this bound.

Notice that, using Eqs. (98) and (101)–(103), we
obtain the following scaling properties for the functions
η, D(α, β), �η, D(α), and �η, D(β):

(106)

Πhk
η D,( ) α β,( ) Πh
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Fig. 21. Plots of the Bell parameter �PS for Γt = 0.01 and
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(107)

(108)

where η = η, 0, �η = �η, 0, and �η = �η, 0. Therefore,
it will be enough to study the Bell parameter for D = 0,
namely, �η = �η, 0, and then we can use Eqs. (106)–
(108) to take into account the effects of nonnegligible
dark counts. From now on, we will assume D = 0 and
suppress the explicit dependence on D. Notice that,
using expression (105) for the Bell parameter, we can
rewrite the CHSH inequality |�η, D | ≤ 2 as

(109)

which represents the CH version of the Bell inequality
for our system [39].

In order to simplify the calculations, throughout this
section we will use the Wigner formalism. The Wigner
functions associated with the elements of the POVM
(98) for D = 0 are given by [19]

(110)

(111)

with ∆η = 2η/(2 – η) and W[�](z) = π–1. Then, noticing
that for any operator O one has

(112)

one can get W[D(α)Π0, ηD†(α)](z) given by

(113)

and therefore

(114)

(115)

(116)

Finally, thanks to the trace rule expressed in the phase
space of two modes, i.e.,

(117)

one can evaluate the functions η(α, β), �η(α), and
�η(β), and in turn the Bell parameter �η in Eq. (105),
as a sum of Gaussian integrals in the complex plane.
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Let us now consider the TWB (25). Since the
Wigner functions of the TWB and of the POVM (99)
are Gaussian, it is quite simple to evaluate η(α, β),
�η(α), and �η(β) of correlation function (100) and then
�η; we have

(118)

(119)

with

(120)

(121)

(122)

In order to study Eq. (105), we consider the parametri-

zation α = –β = 	 and α' = –β' = – 	 (more details
are given in [19]). The parametrization was chosen after
a semi-analytical analysis and maximizes the violation
of Bell’s inequality (for η = 1). In Fig. 24, we plot �η
for η = 1: as one can see that the inequality |�η| ≤ 2 is
violated for a wide range of parameters and that the
maximum violation (�η = 2.45) is achieved when 	 =
0.16 and r = 0.74. The effect of nonunit efficiency in the
detection stage is to reduce the violation; this is shown
in Fig. 25, where we plot �η as a function of 	 with r =
0.74 for different values of the quantum efficiency.
Note that, although the violation in the ideal case, i.e.,
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–( ) 4 Ã0∆η ∆η
2

+ +
-------------------------------------------------------------.=

11

2.6

2.4

2.2

2.0
2.0 1.5

1.0
0.5 0

0.1
0.2

0.3

r

�η

	

Fig. 24. Plot of �η for a TWB as a function of 	 and the
TWB squeezing parameter r in the case of ideal (i.e., η = 1)
on/off photodetection. The maximum violation is �η =
2.45, which is obtained when 	 = 0.16 and r = 0.74.
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η = 1, is smaller than for the Bell states, the TWBs are
more robust when one takes into account nonunit quan-
tum efficiency.

In the case of state (54), correlation function (100)
reads (for the sake of simplicity, we do not write explic-
itly the dependence on r, T, and ε)

(123)

where

(124)

(125)

(126)

with  ≡ (r, T, ε),  ≡ (r, T, ε), and  ≡

(r, T, ε) given by

(127)

(128)

(129)

(130)

where Fk = b – fh, Gk = b – gh, and Hk = 2 T – hk, and
all the involved quantities are the same as in Eq. (54).

In order to study Eq. (105), we consider the param-

etrization α = –β = 	 and α' = –β' = – 	. This
parametrization was chosen after a semi-analytical
analysis and maximizes the violation of Bell’s inequal-
ity (for η = 1) [19]. The results are showed in Figs. 26
and 27 for η = 1 and ε = 1: we can see that the IPS
enhances the violation of the inequality |�η| ≤ 2 for
small values of r (see also [10, 15, 31]). Moreover, as
one may expect, the maximum of violation is achieved
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Fig. 25. Plot of �η for a TWB as a function of 	 with r =
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Fig. 26. Plot of �η for the IPS state with T = 0.9999 and ε =
1 as a function of 	 and the TWB squeezing parameter r in
the case of ideal (i.e., η = 1) on/off photodetection. The
maximum violation is �η = 2.53, which is obtained when
	 = 0.16 and r = 0.39.
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as T  1, whereas, decreasing the effective transmis-
sion of the IPS process, one finds that the inequality
becomes satisfied for all values of r, as we can see in
Fig. 27 for T = 0.6.

In Fig. 28, we plot �η for the IPS with T = 0.9999,
ε = 1, and different η. As for the TWB, we can also have
violation of Bell’s inequality for detection efficiencies
near 80%. As for the Bell states and the TWB, a η- and
r-dependent choice of the parameters in Eq. (105) can
improve this result. The effect on a nonunit ε is studied
in Fig. 29, where we plot �η as a function of T and ε
and fixed values of the other involved parameters. We
can see that the main effect on the Bell parameter is due
to the transmissivity T.

Finally, the effect of dissipation and thermal noise
affecting the propagation of the TWB before the IPS
process is shown in Fig. 30.

10. CONCLUSIONS

We have analyzed in detail a photon-subtraction
scheme to de-Gaussify states of radiation and, in partic-
ular, to enhance nonlocal properties of twin-beams. The
scheme is based on conditional inconclusive subtrac-
tion of photons (IPS), which may be achieved by means
of linear optical components and avalanche on/off pho-
todetectors. The IPS process can be implemented with
current technology and, indeed, application to a single-
mode state has been recently realized with high condi-
tional probability [11].

We found that the IPS process improves the fidelity
of coherent state teleportation and showed, by using
several different nonlocality tests, that it also enhances
nonlocal correlations. IPS may be profitably used also
on nonmaximally mixed entangled states, such as the
ones coming from the evolution of TWB in a noisy
channel. In addition, the effectiveness of the process is
not dramatically influenced either by the transmissivity
of the beam splitter used to subtract photons or by the
quantum efficiency of the detectors used to reveal them.

We conclude that IPS on TWB is a robust and real-
istic scheme to improve quantum information process-
ing with CV radiation states.
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