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1. INTRODUCTION

The issue of quantifying the distance between two
quantum states is a relevant topic in the description of
quantum information processing. As a matter of fact,
the notion of distance is needed whenever one is faced
with the problems of describing the degradation of a
signals, the noise of a channel, or the amount of infor-
mation gained in a measurement. In addition, the com-
plementary notion of similarity between quantum states
is essential to assess purification [1] or teleportation [2]
protocols, as well as signal cloning [3], remote state
preparation [4], and state estimation [5].

If one restricts attention to signals encoded in pure
quantum states, then the similarity between two states
coincides with the scalar product in the Hilbert space,
i.e., with the overlap between the wave vectors describ-
ing the two signals. On the other hand, when one deals
with mixed quantum states, there is not a unique defini-
tion of similarity or distance, and different quantities
should be compared in order to find the more conve-
nient one for a given application.

In this paper, we focus our attention on qubit sys-
tems and compare a few relevant definitions of dis-
tance, that is, Hilbert [6], trace [7], and Bures distance
[8–11], in terms of their sensitivity with respect to per-
turbation that may occur to one of the qubits. As it is
well known, Bures and Hilbert distances are monotonic
with respect to each other. As we will see, this is no
longer true for the sensitivity, i.e., the rate of variation
occurring after a perturbation, which depends on the
degree of mixing of the involved qubits, as well as on
the kind of perturbation. The imbalance between the
sensitivity of several different figures of merit has been
analyzed [12] for the depolarizing channel. Here we
consider a restricted set of figures of merit, correspond-
ing to proper distances, and evaluate sensitivity in
revealing general perturbations occurring to one of the
qubit and the noise introduced by specific channels.

The paper is structured as follows. In the next sec-
tion, we establish notation and introduce the different

distances in terms of the Bloch vector and of the invari-
ants of the density matrix. In Section 3, we compare the
sensitivity of the distances with respect to a general per-
turbation occurring to one of the qubits and derive ine-
qualities in terms of the mixing of the other one. In Sec-
tion 4, we consider specific perturbations coming from
the evolution in relevant noisy quantum channels and
evaluate the sensitivity of the distances in revealing
small changes in the noise parameter. In particular, we
consider the depolarizing channel and the phase- and
amplitude-damping channels. Finally, Section 5 closes
the paper by summarizing results.
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is no unique definition, though the different distances
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qubits: the trace distance, the Hilbert–Schmidt dis-
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trace distance between  and 

 

τ

 

 corresponds to the max-
imum of D

 

K

 

 taken over all the POVMs, namely D

 

T

 

( ,
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) = D

 

K

 

({

 

p

 

m
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q
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}) [7]. The trace distance is
invariant under unitary transformations performed on
the two states, whereas general quantum operations are
contractive, namely, decrease the T-distance.

Let us now consider the Bloch representation of
qubits:
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, and Eq. (2) becomes
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i.e., half of the 

 

Euclidean
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3

 

.
The 

 

Hilbert–Schmidt distance

 

 (H-distance) is writ-
ten as follows:

(5)

where we introduced the 

 

purity

 

 and the state 

 

overlap

 

,
namely,

, (6)

. (7)
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 1. In the case of
qubits, using Eqs. (4), (6), and (7) one easily obtains
that

(8)

From now on we only refer to the H-distance. Notice
that the Eq. (8) no longer holds if the Hilbert space
dimension is larger than 2.

Finally, the 

 

Bures distance

 

 (B-distance), is obtained
from the so-called fidelity 

 

F

 

 between the two states,
namely [8, 10, 11],
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The Bures distance is defined as
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The properties of Bures distance follow from those of
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[11]. By means of this theorem we can deduce the fidel-
ity properties: it is a symmetric, nonnegative, continu-
ous, concave function of the states, and it is equal to
unity if and only if the states do coincide.

Focusing our attention on qubits and using the
Bloch representation, we have

(11)

which can be obtained by explicitly evaluating the
fidelity through the diagonalization of the operator A =

, by solving the characteristic equation A2 –
ATr[A] + 1 Det[A] = 0 using Bloch representation of
qubit states.

In general, H- and B-distances satisfy the relation

(12)

which implies

(13)

In particular, if  is a pure state we obtain

, (14)

(15)

3. SENSITIVITY TO PERTURBATIONS

In order to compare the effects of a perturbation on
the two distances, and in turn to assess their sensitivity
in revealing the perturbation itself, we now evaluate the
distance between a fixed qubit, say , and a slightly
perturbed one, τ. Up to first order, one has

(16)

where
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with  ≤ 1.

In the following, we calculate the gradient ∇D for
H- and B-distance and compare the quadratic norm of
the two vectors, taken as a measure of the ability in
revealing the occurrence of a perturbation, i.e., as a
measure of sensitivity. We have
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and

(19)

with

(20)

In turn, the quadratic norms of (18) and (19) read as fol-
lows:

(21)

(22)

In order to establish which distance is more sensitive,
we compare the quadratic norms of distance gradients.
The inequality
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If  is a pure state, inequality (24) reduces to
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whereas, if  is a completely mixed state, we have
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This inequality is saturated for µτ = , whereas it has

no solution when  < µτ ≤ 1.

In the general case, using the rotational symmetry of
the Bloch sphere and without loss of generality, we may
assume the state  having components only along the
third axis of the sphere, i.e.,

(27)

where |0〉 and |1〉 are eigenstates of σ3. Using invariance
of inequality (24) under rotations we may set t2 = 0 and
express its solution in a simple way. In Fig. 1 we plot
the region delimited by Eq. (24) with  = (0, 0, 2a2 – 1)
and  = (t1, 0, t3) for different values of the parameter a:
the gray region corresponds to |∇DB |2 ≤ |∇DH |2, i.e., to
the regime in which the H-distance is more sensitive
than the B-distance.

4. PERTURBATIONS IN A NOISY CHANNEL
The evolution of a given signal, as the propagation

of a qubit in a real channel, is generally affected by the
presence of other systems, globally referred to as the
environment. The propagation of the system of interest
becomes nonunitary, a sign of the noisy effects of the
environment. The most general form of the resulting
quantum operation involves a set of operators Ek (oper-
ation elements) and is given by

Trace-preserving operations require  = σ0 and

turn quantum states  into quantum states �( ). As a
matter of fact, different physical processes can give rise
to the same system dynamics, i.e., the same operations.
In turn, the set of operations elements is not uniquely

ζρ ζρ ζρ ζρζρ2 µ 1–( ) 2κ τ 1 ω τ–( ) ω τ
1
2
--- ω τ 3–( )+ + +

+ 2 1 µ–( ) 1 µτ–( ) 0.≤ζρ

ζρ

κ τ
3
4
---,<ζρ

ζρ

1
1 µτ–
-------------- 4 2 1 µτ–( ) 6.≤+

1
2
---

1
2
---

ζρ

a
2

0| 〉 0〈 | 1 a
2

–( ) 1| 〉 1〈 |+=

=  
1
2
--- σ0 2a

2
1–( )σ3+[ ],

ζρ

r
t

�( ) Ek Ek
†
.

k

∑=ζρ ζρ

Ek
†
Ekk∑

ζρ ζρ

t 3
1.0

0.5

0

–0.5

–1.0

–0.5 0 0.5 1.0

1.0

0.5

0

–0.5

–1.0 –1.0 –0.5 0 0.5 1.0
t1

Fig. 1. Plot of the region defined by the inequality (24), with
 = (0, 0, 2a2 – 1) and  = (t1, 0, t3), for different values of

the parameter a: (a) a = 0.99, (b) a = 0.9, (c) a = 0.85, and
(d) a = 0.8. The gray region corresponds to |∇DB |2 ≤ | DH |2,
i.e., to regimes where the H-distance is more sensitive than
B-distance to perturbations.

r t



LASER PHYSICS      Vol. 17      No. 4      2007

DISTANCES BETWEEN QUBITS AND SENSITIVITY TO PERTURBATIONS 555

determined. Using this degree of freedom, we will
describe noisy channels for qubit systems in terms of
Pauli operators.

In the following, the perturbations introduced by
relevant quantum operations on a qubit, which act by
deforming or rotating the Bloch sphere, will be
addressed with the aim of assessing the performances
of H- and B-distances in revealing small changes in the
perturbation parameter. In particular, among the possi-
ble noisy channels [13], we consider the depolarizing,
the amplitude-damping, and the phase-damping chan-
nels.

4.1. Depolarizing Channel 

The depolarizing channel reduces a qubit state  to
a completely mixed state σ0/2 with a certain probability
p. The operation element for the depolarizing channel

are given by E0 =  and Ek = , corre-

sponding to the evolution

(28)

Under the action of operation (28), the Bloch vector 
associated with  is contracted by a factor of 1 – p, i.e.,

(29)

The H- and B-distance between a given state  and its
perturbed version are given by

(30)

(31)

where

(32)

The two distances, in addition to the depolarizing
parameter p, depend only on the initial purity µ . Their
derivatives with respect to p quantify the sensitivity in
revealing small changes in the strength of the operation
�p. We have
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Let us now introduce the positive quantity (recall that
DB(p, µ ) ≥ DH(p, µ )):

(35)

Regions where ∆D(p, µ ) increases correspond to
∂pDB(p, µ ) ≥ ∂pDH(p, µ ) i.e., to regions where B-dis-
tance is more sensitive in revealing small changes in
the perturbations parameter p. In Fig. 2 we plot
∆D(p, µ ) as a function of p and for different values of
the initial purity µ . As is apparent from the plot, there

always exists a threshold value  above which the
H-distance becomes more sensitive. The threshold
value depends on the initial purity, slightly increasing
for decreasing µ .

4.2. Amplitude Damping

The process of energy dissipation is described by
the following quantum operation:

(36)

which is usually referred to as the amplitude-damping
channel. The operation elements are given by E0 =

(1 + )σ0 + (1 – )σ3, and E1 = (σ1 –

iσ2), γ being probability of losing an energy quantum.
Notice that only the state |0〉 is left unchanged by the
evolution (36). The effect of �γ corresponds to the fol-
lowing Bloch vector transformation:
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Fig. 2. Plot of ∆D(p, µ ) = DB(p, µ ) – DH(p, µ ) as a func-
tion of p and different values of the purity: from top to bot-
tom µ  = 0.95, 0.90, and 0.80. The dashed vertical lines

refer to the values  where the maximum of ∆D(p, µ )

occurs: when p ≥  the H-distance is more sensitive than
the B-distance.
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The H-distance between a given qubit  and its per-
turbed version is now given by DH( , �γ( )) ≡ DH(γ,
µ , r3) where

(38)

whereas the B-distance reads as follows:

(39)

with

(40)

Notice that the two distances depend explicitly on a
third component r3 of the initial Bloch vector. The cor-
responding derivatives are given by

(41)
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By introducing the positive quantity
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we may compare the sensitivity of the two distances as
a function of the involved parameters. For a given value
of r3 (see Fig. 3), one finds an interval of γ values in
which the H-distance is more sensitive than the B one
if the initial purity µ  is above a threshold value, which
itself depends on r3. As the initial purity falls, below the
threshold the B-distance is always more sensitive, inde-
pendent of the value of the noise parameter γ. The
behavior of ∆A(γ, µ , r3) as a function of both r3 and γ is
shown in Fig. 4, where the quantity is plotted for two
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Fig. 3. Plot of ∆A(γ, µ , r3) = DB(γ, µ , r3) – DH(γ, µ , r3)
as a function of γ with r3 = 0.4 and different values of the
purity: µ  = 0.95 (solid line), 0.9 (dot-dashed line), and 0.8

(dashed line). The dashed vertical lines refer to the values 
for which the maximum of ∆A(γ, µ , r3) occurs. See the text
for details.
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different values of the purity: we can see that, as r3
increases, the region of γ values in which the H-dis-
tance is more sensitive than the B one is reduced and,
finally, disappears.

4.3. Phase Damping

This channel describes the loss of the relative phase
between the energy eigenstates without amplitude
damping. The quantum operation is given by

(44)

with the operation elements given by E0 = (1 +

)σ0 + (1 – )σ3 and E1 = (σ0 – σ3).

ζ denotes the probability of the transition. As in the pre-
vious case, only the eigenstate |0〉 is left unchanged.
Because of operation (44), the Bloch vector transforms
as
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and, therefore, the H-distance is given by
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In Fig. 5, we plot the difference

(51)

as a function of the parameter ζ with r3 = 0.4 and differ-
ent values of the purity. As in the case of the depolariz-
ing channel (see Fig. 2), for each couple of r3 and µ  we
can identify two different regions divided by a thresh-

old value : if ζ ≥ , then the H-distance is more sen-
sitive than the B-distance.

5. CONCLUSIONS

In this paper, we have addressed two issues: (i) the
detection of generic (small) perturbation of the Bloch
vector occurring to a qubit through the change of the
distance to a fixed qubit and (ii) the detection of small
changes in the noise parameter of a channel by evaluat-
ing the distance of the perturbed state to the initial one.
In both cases, we compared the Bures and Hilbert dis-
tance in terms of their sensitivity to perturbations. A
general relation is derived, as well as specific bounds
for perturbations induced by relevant noisy quantum
channels. We found that, for the depolarizing channel
and the phase-damping channel, H-distance becomes
more sensitive for high noise and high degree of mix-
ing, whereas for the amplitude-damping channel the B-
distance is always more sensitive, as far as the mixing
exceeds a threshold depending on the third component
of the initial Bloch vector.
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