
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 37 (2004) S187–S194 PII: S0953-4075(04)71330-9

Entanglement in a Bose–Einstein condensate by
collective atomic recoil

Mary M Cola1,2, Matteo G A Paris1,3, Nicola Piovella1,2

and Rodolfo Bonifacio1,2

1 Dipartimento di Fisica, Università di Milano, Italy
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Abstract
We address the interaction between a Bose–Einstein condensate and a single-
mode quantized radiation field in the presence of a strong far off-resonant
pump laser. The generation of atom–atom and atom–field entanglement is
demonstrated in the linear regime. The effects of cavity losses are taken into
account and an analytic solution of the corresponding master equation is given
in terms of the Wigner function of the system.

1. Introduction

The experimental realization of Bose–Einstein condensation opened the possibility of
generating macroscopic atomic fields whose quantum statistical properties can in principle be
manipulated and controlled, very much like those of quantum-optical fields [1]. The system
usually considered for this purpose is a Bose–Einstein condensate (BEC) driven by a far
off-resonant pump laser of frequency ω and wave vector �k and coupled to a single mode in an
optical ring cavity. This results in an exponential gain of the cavity mode and in the spontaneous
formation of a density grating (bunching) in the BEC, as described in the collective atomic
recoil lasing (CARL), first proposed by Bonifacio and co-workers [2] and recently extended
to describe the quantum mechanical motion of atoms in a BEC [3–5]. In CARL the scattered
radiation mode and the atomic momentum side modes become macroscopically populated via
a collective instability. The weak probe field initiated by noise combines with the pump field
to form a weak standing wave which acts as a periodic potential. The centre-of-mass motion of
the atoms in this potential results in a density modulation (bunching). This bunching process
is then seen by the pump laser as a polarization grating in the atomic medium which results in
a stimulated backscattering into the probe field. The resulting increase in the probe intensity
further increases the strength of the standing wave potential, resulting in more bunching and
backscattering. This mechanism gives rise to an exponential growth of both the probe intensity
and the atomic bunching.
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Till now, experiments in a good-cavity regime have been performed only at high
temperatures of the atomic sample [6]. However, experiments at MIT [7] and at LENS
[8] with BECs have demonstrated that the CARL instability can also play an important role
in the case in which laser light is scattered into the vacuum modes of the electromagnetic
field in the absence of the cavity. The experiments have demonstrated the formation of atomic
matter waves in a cigar-shaped BEC, together with highly directional scattering of light along
the major axis of the condensate. This emission has been interpreted in reference [7] as
superradiant Rayleigh scattering.

From an experimental point of view the possibility of having BECs inside an optical
cavity would allow a verification of the quantum regime of CARL and an exploration of
his entanglement properties. As a matter of fact the realization of the quantum CARL in
the good-cavity regime offers the possibility of parametrically amplifying atomic and optical
waves, as well as of optically manipulating matter-wave coherence properties and generating
entanglement between atomic and optical fields.

In the experiments on CARL, the condensate is lightened by the laser after the trap has
been switched off, so that the atoms can be assumed unbound by any magnetic or optical
confining potential. Furthermore, the atom–atom interaction may be neglected since the
experiments are usually performed during the expansion of the condensate. In the limit
of undepleted atomic ground state (linear regime) and unsaturated probe field, the quantum
CARL Hamiltonian reduces to that of three coupled bosonic modes [5, 9]. The first two modes
correspond to atoms having lost or gained a quantum recoil momentum 2h̄k in the two-photon
Bragg scattering between the pump and the probe, whereas the third mode corresponds to
the photons of the probe field. The quantum statistical properties of the side modes of the
condensate can be manipulated and, in particular, a strong quantum mechanical entanglement
can develop between the optical and matter-wave fields, as well as between matter-wave
side modes [5, 10]. In this paper we analyse in detail the resulting three-mode dynamics,
showing the appearance of three-mode and two-mode entanglement, either for an ideal cavity
as well as taking into account the losses. Our results have an all-optical analogue in the
field of nonlinear quantum optics, where the appearance of three-mode entanglement has
been predicted for systems of five optical modes interacting parametrically in a nonlinear
crystal [11].

The paper is structured as follows. In section 2 the Hamiltonian model for the system
under consideration is briefly reviewed, and the solution of the Heisenberg equations in the
linear regime is presented. In section 3 the dynamics of the system is analysed for an ideal
cavity, and the entanglement properties of the evolved state are studied. The appearance of
a fully inseparable three-mode entangled state is demonstrated, as well as the generation of
maximally entangled atom–atom and atom–field two-mode states. In section 4 the effects
of losses in the optical cavity are considered solving the master equation in terms of the
Wigner function of the three modes. Section 5 closes the paper with some concluding
remarks.

2. The Hamiltonian model

We consider a 1D (one-dimensional) geometry in which the off-resonant laser pulse is directed
along the symmetry z-axis of an elongated BEC (see figure 1). We define all adimensional
variables. The scattered and the incident wave vectors are �ks ≈ −�k. The dimensionless
position and velocity of the j th atom along the axis ẑ directed along �k are θj = 2�k · �zj = 2kzj

and pj = mvzj/2h̄k. The interaction time in units of the collective recoil bandwidth, ρωr , is
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Figure 1. Schematic of the system under investigation.

τ = ρωrt , where ωr = 2h̄k2/M is the recoil frequency, M is the atomic mass and

ρ =
(

�0

2�20

)2/3 (
ωµ2ns

h̄ε0ω2
r

)1/3

(1)

is the collective CARL parameter. �0 = µE0/h̄ is the Rabi frequency of the pump, ns = N/V

is the average atomic density of the sample (containing N atoms in a volume V ), µ is the
dipole matrix element and ε0 is the permittivity of the free space. In the second quantized
model for CARL [4, 5, 9] the atomic field operator �̂(θ) obeys the bosonic equal-time
commutation relations [�̂(θ), �̂†(θ ′)] = δ(θ − θ ′), [�̂(θ), �̂(θ ′)] = [�̂†(θ), �̂†(θ ′)] = 0
and the normalization condition

∫ 2π

0 dθ�̂(θ)†�̂(θ) = N̂ . We assume that the atoms are
delocalized inside the condensate and that, at zero temperature, the momentum uncertainty
σpz

≈ h̄/σz can be neglected with respect to 2h̄k. When σz ≈ L, where L is the size of the
condensate, this approximation is valid for L � λ, where λ is the wavelength of the incident
radiation. So we can introduce creation and annihilation operators for the atoms of a definite
momentum p, i.e. �̂(θ) = ∑

m cm〈θ |m〉, where p|m〉 = m|m〉 (with m = −∞, . . . ,∞),
〈θ |m〉 = (2π)−1/2 exp(imθ) and cm are bosonic operators obeying the commutation relations[
cm, c

†
m′

] = δmm′ and [cm, cm′ ] = 0. The Hamiltonian in this case is [3, 12]

Ĥ =
∞∑

n=−∞

{
n2

ρ
c†ncn + i

√
ρ/2N

(
a†c†ncn+1 − h.c.

)} − �a†a (2)

where � = (ω − ωs)/ρωr is the pump-probe detuning and ωs = cks is the frequency of the
cavity mode. The Heisenberg equations for cn and a are

dcn

dτ
= −i[cn, Ĥ ] = −i

n2

ρ
cn +

√
ρ/2N(a†cn+1 − acn−1) (3)

da

dτ
= −i[a, Ĥ ] = i�a +

√
ρ/2N

∞∑
n=−∞

c†ncn+1. (4)

The source of the field equation (4) is the bunching operator, defined by B̂ =
(1/N)

∫ 2π

0 dθ�̂(θ)† e−iθ �̂(θ) = (1/N)
∑

n c
†
ncn+1. We note that equations (3) and (4)

conserve the number of atoms, i.e.
∑

n c
†
ncn = N̂ , and the total momentum, Q̂ = a†a +∑

n nc
†
ncn.

Let us now consider the equilibrium state with no probe field and all the atoms in the
same initial momentum state n0, i.e. cn ≈ √

N e−in2τ/ρδn,n0 . This is equivalent to assuming the
temperature of the system equal to zero and all the atoms moving with the same momentum
n0(2h̄�k), without spread. This approximation neglects both the depletion that occurs as atoms
are transferred into the side modes and the cross-phase modulation between the condensate
and the scattered field. This is the matter-wave-optics analogue of the familiar classical
undepleted pump approximation of nonlinear optics. Hence we treat all strongly populated
modes classically and all weakly populated modes quantum mechanically. The system is
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unstable for certain values of the detuning �. In fact, by linearizing equations (3) and (4)
around the equilibrium state, the only equations depending linearly on the radiation field are
those for cn0−1 and cn0+1. Hence, in the linear regime, the only transitions involved are those
from the state n0 towards the levels n0 − 1 and n0 + 1. Introducing the operators

a1 = cn0−1 exp
(
i
(
n2

0τ
/
ρ + �τ

))
a2 = cn0+1 exp

(
i
(
n2

0τ
/
ρ − �τ

))
(5)

a3 = a exp(−i�τ),

the atomic field operator reduces to

�̂(θ) ≈ 1√
2π

{
√

N + a1(τ ) exp(−i(θ + �τ)) + a2(τ ) exp(i(θ + �τ))} exp
(
i
(
n0θ − n2

0τ
/
ρ
))
(6)

and equations (3) and (4) reduce to the linear equations for three coupled harmonic oscillator
operators [10],

da
†
1

dτ
= −iδ−a

†
1 +

√
ρ/2a3

da2

dτ
= −iδ+a2 −

√
ρ/2a3

da3

dτ
=

√
ρ/2

(
a
†
1 + a2

)
, (7)

with Hamiltonian

Ĥ = δ+a
†
2a2 − δ−a

†
1a1 + i

√
ρ/2

[(
a
†
1 + a2

)
a
†
3 − (

a1 + a
†
2

)
a3

]
, (8)

where δ± = δ ± 1/ρ and δ = � + 2n0/ρ = (ω − ωs + 2n0ωr)/ρωr . Hence, the dynamics
of the system is that of three parametrically coupled harmonic oscillators a1, a2 and a3 [13],
which obey the commutation rules [ai, aj ] = 0 and

[
ai, a

†
j

] = δij for i, j = 1, 2, 3. Note that
the Hamiltonian (8) commutes with the constant of motion

Q̂ = a
†
2a2 − a

†
1a1 + a

†
3a3. (9)

The exact solution of equations (7) can be obtained using Laplace transform [5, 13]. After
some algebra we have

a
†
1 = e−iδτ

[
g1a

†
1(0) + g2a2(0) + g3a3(0)

]
(10)

a2 = e−iδτ
[
h1a

†
1(0) + h2a2(0) + h3a3(0)

]
(11)

a3 = e−iδτ
[
f1a

†
1(0) + f2a2(0) + f3a3(0)

]
(12)

where the explicit expressions of fi, gi and hi are given in the appendix, while the initial
values verify the initial conditions for ai . The functions fi, gi and hi are the sum of three
terms proportional to eiλj τ , where λj are the complex roots of the cubic equations:

(λ − δ)(λ2 − 1/ρ2) + 1 = 0. (13)

The characteristic equation (13) has either three real solutions, or one real and a pair of complex
conjugate solutions. In the first case, the system is stable and exhibits only small oscillations
around its initial state. In the second case, the system is unstable and grows exponentially,
even from noise.

3. Three-mode entanglement

The evolution operator U(τ) = exp(−iHτ), where H is given by equation (8), can be
disentangled into those of individual operators [5]. This allows us to calculate how the state
|ψτ 〉 evolves from the vacuum state |0, 0, 0〉. The calculation yields

|ψτ 〉 = 1√
1 + 〈n1〉

∞∑
n,m=0

αm
1 αn

2

√
(m + n)!

m!n!
|m + n, n,m〉, (14)
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where

α1 = f1g
∗
1

1 + 〈n1〉 α2 = h1g
∗
1

1 + 〈n1〉 |α1,2|2 = 〈n3,2〉/(1 + 〈n1〉). (15)

The state in equation (14) is a fully inseparable three-mode Gaussian state. This property
can be easily demonstrated by evaluating the characteristic function

χid(ξ1, ξ2, ξ3) = Tr[|ψτ 〉〈ψτ |D1(ξ1)D2(ξ2)D3(ξ3)] = exp


−1

2

3∑
j=1

|�j |2

 , (16)

where ξj are complex numbers, Dj(ξj ) = exp
(
ξja

†
j − ξ ∗

j aj

)
is a displacement operator for

the j th mode, and the �j are given by

�1 = g1ξ1 − h1ξ
∗
2 − f1ξ

∗
3 �2 = −g∗

2ξ
∗
1 + h∗

2ξ2 + f ∗
2 ξ3 �3 = −g∗

3ξ
∗
1 + h∗

3ξ2 + f ∗
3 ξ3.

(17)

Following [14], the characteristic function can be rewritten as

χid(ξ1, ξ2, ξ3) = exp
[− 1

4 xT Cx
]
, (18)

where xT = (x1, x2, x3, p1, p2, p3), (· · ·)T denotes transposition, ξj = 2−1/2(pj − ixj ), j =
1, 2, 3, and C denotes the 6 × 6 covariance matrix of the Gaussian state, whose explicit
expression can be easily reconstructed from equation (17). The covariance matrix determines
the entanglement properties of |ψτ 〉, in fact, since |ψτ 〉 is Gaussian the positivity of
the partial transpose is a necessary and sufficient condition for separability [14], which,
in turn, is determined by the positivity of the matrices �jC�j − iJ where �1 =
Diag(1, 1, 1,−1, 1, 1),�2 = Diag(1, 1, 1, 1,−1, 1),�3 = Diag(1, 1, 1, 1, 1,−1) and J is
the symplectic block matrix(

0 −I
I 0

)
,

I being the 3 × 3 identity matrix. Characteristic equations of the above three matrices can be
analytically solved, showing that a negative eigenvalue always appears. Correspondingly, the
state (14) is fully inseparable, i.e. not separable for any grouping of the modes.

Two-mode entangled states between the modes 1 and 2 or the modes 1 and 3 can be
obtained for interaction times leading to 〈n3〉 
 〈n1〉 ≈ 〈n2〉 or 〈n2〉 
 〈n1〉 ≈ 〈n3〉
respectively. In these cases one has

|ψ1,2〉 = 1√
1 + 〈n1〉

∞∑
n=0

αn
2 |n, n, 0〉 (19)

|ψ1,3〉 = 1√
1 + 〈n1〉

∞∑
n=0

αn
1 |n, 0, n〉. (20)

The pure states (19) and (20) are maximally entangled bipartite states, as it can be shown by
evaluating the reduced density operators ρi = Tr1[ρ1i], where ρ1i = |ψ1i〉〈ψ1i | and i = 2, 3.
In fact, in both cases we obtain a thermal state

ρi = 1

1 + 〈ni〉
∑
m

( 〈ni〉
1 + 〈ni〉

)m

|m〉〈m|, (21)

for which the von Neumann entropy Si = Tr[ρi ln ρi] is maximum [15]. In general, the
presence of the third mode reduces the entanglement between the other two modes [16]. We
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also observe that no two-mode entanglement is possible between the states 2 and 3. In practice,
there exist two different regimes of CARL dynamics in which the initial vacuum state evolves
into a two-mode entangled state [5]. In particular, atom–atom entanglement can be obtained
in the limit ρ � 1 and in a detuned, not fully exponential regime. In contrast, in the limit
ρ < 1, atom–photon entanglement can be obtained when the average occupation number 〈n2〉
remains smaller than 1. Recently, the atom–field entanglement of the state (20) has been
exploited to suggest an interspecies teleportation protocol between a radiation beam and a
condensate side beam [17].

4. Dissipative master equation

We have considered so far an ideal optical cavity with no losses. In order to have a more
realistic description of the entanglement generation we now take into account losses from the
cavity. The dynamics of the system is described by the master equation

ρ̇ = −i[Ĥ , ρ] + 2κL[a3]ρ, (22)

where 2κ is the damping rate and L[a3] is the Lindblad superoperator L[a3]ρ = a3ρa
†
3 −

1
2a

†
3a3ρ − 1

2ρa
†
3a3. The master equation can be transformed into a Fokker–Planck equation

for the Wigner function

W(α1, α2, α3, τ ) =
∫ 3∏

i=1

d2ξi

π2
exp(ξ ∗

i αi − α∗
i ξi)χ(ξ1, ξ2, ξ3, τ ). (23)

Using the differential representation of the Lindblad superoperator the Fokker–Planck equation
is given by

∂W

∂τ
= −{u′T Au + u′∗T A†u∗}W + u′T Du′∗ (24)

where

uT = (α∗
1 , α2, α3) u′T =

(
∂

∂α∗
1

,
∂

∂α2
,

∂

∂α3

)
(25)

A =

 iδ− 0 −√

ρ/2
0 iδ+

√
ρ/2

−√
ρ/2 −√

ρ/2 κ


 D =


0 0 0

0 0 0
0 0 κ


 . (26)

The solution of the Fokker–Planck is given by the following convolution,

W(u, τ ) =
∫

d2u0 W(u0, 0)G(u, τ ; u0, 0) (27)

where W(u0, 0) is the Wigner function for the initial state (the vacuum) and the Green function
G(u, t; u0, 0) is given by

G(u, τ ; u0, 0) = 1

π3 det Q
exp{−(u − eAτ u0)

†Q−1(u − eAτ u0)} (28)

where

Q =
∫ τ

0
dτ ′ eAτ ′

D(eAτ ′
)† eAτ = e−iδτ


g1 g2 g3

h1 h2 h3

f1 f2 f3


 , (29)



Entanglement in a Bose–Einstein condensate by collective atomic recoil S193

and the covariance matrix is given by C = Q + (1/2) exp(Aτ) exp(A†τ). In equation (29)
the complex functions gi, hi and fi have the same expression reported in the appendix where
however δ is replaced by δ + iκ and the characteristic equation is now

(λ − δ − iκ)(λ2 − 1/ρ2) + 1 = 0. (30)

Since the evolution for a lossy cavity maintains the Gaussian character of the Wigner function
we may study the entanglement properties at any time. A numerical evaluation of the
eigenvalues of �jC�j − iJ shows that they are nonpositive matrices ∀j , i.e. the state is
fully inseparable at any time and for any value of the cavity loss. Therefore, we conclude that
the generation of three-mode entanglement in the linear regime is robust against decoherence
induced by losses [18]4.

5. Conclusions

In this paper, we analysed the interaction between a Bose–Einstein condensate and a single-
mode quantized radiation field in the presence of a strong far off-resonant pump laser. In the
so-called linear regime, i.e. for situations where atomic ground state depletion and saturation of
the radiation mode can be neglected, we have demonstrated the generation of atom–atom and
atom–field entanglement. We have also taken into account the effects of cavity imperfections
and shown that the state remains fully inseparable for any values of cavity loss κ . A systematic
study of the effect of losses, including atomic losses, on the entanglement production is in
progress and results will be published elsewhere.

Acknowledgments

This work has been sponsored by MIUR through the PRIN project ‘Coherent interaction
between radiation fields and Bose–Einstein condensates’ and by EC through programme
ATESIT (contract no IST-2000-29681). MGAP is a research fellow at Collegio Alessandro
Volta.

Appendix

The expressions of the quantities fi, gi and hi (i = 1, 2, 3) which appear in the general solution
of the linear problem (10)–(12) are given by

f1(τ ) = −i

√
ρ

2

3∑
j=1

(λj + 1/ρ)
eiλj τ

�j

= g3(τ ) (A.1)

f2(τ ) = −i

√
ρ

2

3∑
j=1

(λj − 1/ρ)
eiλj τ

�j

= −h3(τ ) (A.2)

f3(τ ) =
3∑

j=1

(
λ2

j − 1/ρ2
)eiλj τ

�j

(A.3)

4 Note that in order to model cavity losses, we are considering a zero temperature purely dissipative environment,
which is appropriate at optical frequencies. In these conditions (no thermal fluctuations), the robustness of
entanglement is already known for the two-mode case [18].
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g1(τ ) =
3∑

j=1

[(λj − δ)(λj + 1/ρ) − ρ/2]
eiλj τ

�j

(A.4)

g2(τ ) = −ρ

2

3∑
j=1

eiλj τ

�j

= −h1(τ ) (A.5)

h2(τ ) =
3∑

j=1

[(λj − δ)(λj − 1/ρ) + ρ/2]
eiλj τ

�j

(A.6)

where �j = λj (3λj − 2δ) − 1/ρ2 and λ1, λ2 and λ3 are the roots of the cubic equation (13).
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