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Cloning of Gaussian states by linear optics
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We analyze in details a scheme for cloning of Gaussian states based on linear optical components and
homodyne detection recently demonstrated by Andersen er al. [Phys. Rev. Lett. 94, 240503 (2005)]. The
input-output fidelity is evaluated for a generic (pure or mixed) Gaussian state taking into account the effect of
nonunit quantum efficiency and unbalanced mode mixing. In addition, since in most quantum information
protocols the covariance matrix of the set of input states is not perfectly known, we evaluate the average
cloning fidelity for classes of Gaussian states with the degree of squeezing and the number of thermal photons

being only partially known.
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I. INTRODUCTION

The generation of perfect copies of an unknown quantum
state is impossible according to the very nature of quantum
mechanics. This is succinctly formulated by the no-cloning
theorem [1-4]. It is, however, possible to make approximate
copies of a quantum state by using a quantum cloning ma-
chine [5-7]. Originally, such a machine was proposed for
cloning of qubits and was later demonstrated experimentally
[8]. Shortly after this development, a continuous variable
(CV) [9] analog of the qubit quantum cloner was proposed
[10,11], and recently it was shown that a CV optimal Gauss-
ian cloner of coherent states can be implemented using an
appropriate combination of beam splitters and a single
phase-insensitive parametric amplifier [12,13]. Although this
proposal sounds experimentally promising, the implementa-
tion of an efficient phase-insensitive amplifier operating at
the fundamental limit is a challenging task. This problem
was solved by Andersen et al. [14], who proposed and ex-
perimentally realized a much simpler configuration for opti-
mal cloning of coherent states. The realization relies on
simple linear optical components and a feed-forward loop.
As a consequence of the simplicity, as well as the high qual-
ity of the optical devices used in this experiment, perfor-
mances close to optimal ones were attained. In turn, the re-
sulting cloning machine represents a highly versatile tool for
further investigations on transformation of quantum informa-
tion from a single system to many systems.

A commonly used figure of merit to quantify the perfor-
mance of cloning machines is the fidelity, which is a measure
of the similarity between the hypothetically perfect clone,
i.e., the input state, and the actual clone. If the cloning fidel-
ity is independent of the initial state, the machine is referred
to as a universal cloner. On the other hand, if the efficiency
of the cloning action depends on the input state, then the
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proper measure in order to assess the performance of the
machine is the average fidelity, which weights the fidelities
associated to possible input states with the corresponding
occurrence probabilities. In other words, for nonuniversal
cloners, the alphabet of input states, and the distribution
thereof, must be taken into account while evaluating the fi-
delity. Such an average fidelity has been considered in
[15-17]. However, in all these references, it is assumed that
the input alphabet is only consisting of coherent states,
hereby keeping the covariance matrix of all the possible in-
put states constant. On the other hand, in some experimental
realizations, the covariance matrix is not perfectly known
due to uncontrollable fluctuations, and therefore it is impor-
tant to include this uncertainty into the analysis.

The aim of this paper is twofold. At first we present a
thorough theoretical description of the cloning machine de-
scribed in Ref. [14] using a suitable phase-space analysis. In
this way the full quantum dynamics of the machine can be
taken into account; in particular, we include the effect of
losses in the detection scheme, as well as variations in the
setups beam splitter (BS) ratios. The second topic of the
paper is to investigate the average fidelity of the cloning
machine for different ensembles of input states such as sets
made of displaced squeezed or displaced thermal states with
the squeezing parameter, or the number of thermal photons,
distributed according to predefined distributions.

The paper is structured as follows: In Sec. II we review
the main components of the cloning machine based on linear
optics, and in Sec. III we calculate the input-output fidelities
for the case of generic Gaussian states, and for specific
classes including coherent, displaced squeezed, and dis-
placed thermal states. Finally, Sec. IV closes the paper with
some concluding remarks.

II. THE LINEAR CLONING MACHINE

Optimal Gaussian cloning can be realized using a phase-
insensitive amplifier and a beam splitter [12,13]. However, it
has been recently shown, theoretically and experimentally,
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FIG. 1. Cloning of Gaussian states by linear optics: the input
state @;, is mixed with the vacuum @, at a beam splitter (BS) of
transmissivity 7. The reflected beam is measured by double-
homodyne detection and the outcome of the measurement x+iy is
forwarded to a modulator, which imposes a displacement g(x+iy)
on the transmitted beam, g being a suitable amplification factor.
Finally, the displaced state is impinged onto a second beam splitter
of transmissivity 7. The two outputs, ¢, and @,, from the beam
splitter represent the two clones.

that the parametric amplifier can be replaced by a simpler
scheme involving only linear optical components, homodyne
detection, and a feed-forward loop [14]. This scheme, which
is schematically depicted in Fig. 1, will be referred to as the
linear cloning machine throughout the paper.

The input state, denoted by the density operator Q;,, is
mixed with the vacuum at a beam splitter with transmittivity
71- On the reflected part, double-homodyne detection is per-
formed using two detectors with equal quantum efficiencies
7. this measurement is executed by splitting the state at a
balanced beam splitter, and then by measuring the two con-
jugate quadratures fzé(&ﬂi*) and ﬁz%(&—d"’), with 4 and
4" being the field annihilation and creation operators, respec-
tively. The outcome of the double-homodyne detector gives
the complex number a=x+1iy. According to these outcomes,
the transmitted part of the input state undergoes a displace-
ment by an amount ga, where g is a suitable electronic am-
plification factor, and, finally, the two output states, denoted
by the density operators 0, and @,, are obtained by dividing
the displaced state using another beam splitter with transmit-
tivity 7. When 7,=7,=1/2, g=1, and n=1, the scheme re-
duces to that of Ref. [14], which was shown to be optimal for
Gaussian cloning of coherent states on the basis of a descrip-
tion in the Heisenberg picture. Here we apply a different
approach, which captures all the essential features of the ma-
chine. Towards this aim, in the following we carry out a
thorough description of the machine using the characteristic
function approach.

The characteristic function y;,(A;)=x[0;,J(A;) associ-
ated with a generic Gaussian input state @;, of mode 1 reads

Xin(A1) =exp{— 3AT oA —iATX, ), (1)

where A;=(x;,y;)7,(--)7 denotes the transposition opera-
tion, and
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O'in = ( ) N (2)
Y21 Y22

with v;,=",,, is the covariance matrix. X;,=Tr[0;,(£,5)7] is
the vector of mean values, X and y being the quadrature
operators defined above. The vacuum state @,=|0)(0| of
mode 2 is described by the (Gaussian) characteristic function

Xo(A2) = x[0o](Ay) = exp{- 2 AJoAs ), (3)

where o= %]12, 1, being the 2 X 2 identity matrix. In turn, the
initial two-mode state 9=0;,® Q. is Gaussian and its two-
mode characteristic function reads

MEI(A) = expl- LATGA - iATR], (4)
with
ag; 0 ~
o= ( )’ X= (XinvO)Tv (5)
0 | oy

and A=(A;,A,)". Under the action of the first BS, the state
x[@](A) preserves its Gaussian form, namely

X[e1(A) ~ x[e'I(A) =exp{- sAToA - iATX},  (6)

where @'=Ugg0;,® QOU]ESJ, while its covariance matrix
and mean values transform as [18]:

_ o A|C
0~ 0= 85 08g5 | = 7B ) (7)

X~ X=8L X=(X,.X,)", (8)

where A, B, and C are 2 X 2 matrices, and
\“"711[2 \'/’l -nl,
SBS,I = ( | 5 (9)

-V1I-7l | \":112

is the symplectic transformation associated with the evolu-
tion operator Ugg ; of the BS with transmission 7. Note that
0’ is an entangled state if the set of states to be cloned
consists of nonclassical states; i.e., states with singular
Glauber P-function or negative Wigner function [19,20].

The subsequent step is to describe double-homodyne de-
tection with quantum efficiency 7 on the reflected beam.
This action can be described by the following positive
operator-valued measure:

o ot
C 770'7’

where o,=(1-7)/7 and |é) is a coherent state. Equation
(10) describes a Gaussian measurement, the characteristic
function associated with II,(a) has the form

2
_la-gf }% (10)

7

1
X (@](Ay) = —expi-5A303As — iAXy}, (1)

with Xy;=(Re[a],Im[«])” and
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1 2-7n
oy =A%1,, A2=5+0',]=2—7]. (12)
The probability of obtaining the outcome « is given by
pyla)=Tryle'l @ I1,(a)] (13)
1
= zf d*Ax[e IAXT ® TT(@)](= A) (14)
2m) Jps

1
exp{— E(XM - X)X Xy - Xz)}
= — , (15)
\Det[X]
where xI®IT,(a) [(A) = x{II(ADXIT (@) [(Az), x1](A)
=278%(A,) and 8?(¢) is the complex Dirac’s delta func-
tion. We also introduced the 2 X 2 matrix X =B+ 0oy,.
The conditional state @, of the transmitted beam, obtained
when the outcome of the measurement is «, i.e.,

Try[0'I1(a)]
C = ’ (16)
p,(@)
has the following characteristic function (for the sake of clar-
ity we explicitly write the dependence on A and A,)
X2 1AL AYMIL () ](= Ay)
MedA)=| @A, e -
R? piy(@)

(17)

=exp{- SAIA - CZ7'CTIA, - 3X237'X,
+ ZA{[CE_IXZ - X]]}exp{— %X&E_lXM
+iXO[ET X, +37ICTA T} (18)

Now, the conditional state @, is displaced by the amount ga
resulting from the measurement amplified by a factor g. By
averaging over all possible outcomes of the double-
homodyne detection, we obtain the following output state:

Q4= f dap,(a@)D(ga)e.D'(ga), (19)
C

with D(z) being the displacement operator. In turn, the char-
acteristic function reads as follows:

xed(A) =exp{- tATo A —iA]X},  (20)

with o3=A+g(Z+2CT) and X;=X,+gX,. The conditioned
state (19) is then sent to a second beam splitter with trans-
mission 7, (see Fig. 1), where it is mixed with the vacuum
Q0. and finally the two clones are generated. Note that, in
practice, the average over all the possible outcomes « in Eq.
(19) should be performed at this stage; that is, after the sec-
ond beam splitter. On the other hand, because of the linearity
of the integration, the results are identical, but performing
the averaging just before the beam splitter simplifies the cal-
culations. Since @, is still Gaussian, the two-mode state Qg
=04® Q¢ is a Gaussian with covariance matrix and mean
given by
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( g4 0
o=

), X;=(X4,0)", (21)
0 (o))

respectively, which, as in the case of Egs. (7) and (8), under
the action of the BS transform as follows:

~ =S = ( : ) (22)
(g Ty o . ,
f out BS.2 fSBS 2 CT -Az

Xf Xoul SBS,ZXf = (XI’X2) s (23)

where 4, and C are 2 X 2 matrices, and Sgg , is the symplec-
tic matrix given by Eq. (9) with 7, replaced by 7,. Finally,
the (Gaussian) characteristic function of the clone @, k
=1,2, is obtained by integrating over A,, h#k, the two-
mode characteristic function x[Q,,J(A;,A;), where Q.4

=Ups20¢® QOUESQ, ie.,
1
Med(A) = j AAXCuIALA) (24
R

=exp{- SATAA, —iATX}. (25)

Let us now focus our attention on X, the explicit expres-
sions of X} and X, are

— f
X =\Vn(V1 + gVl = 7)Xy, (26)
!’_ ”_
X, = \r’l—Tz(\"T1+g\*'1—7'l)Xin' (27)

As a matter of fact, in order to have two output Gaussian
states with the same means X’;=AX),, one should set 7,=1/2;
furthermore, if one also sets

2 T
=g = - s 28
§=8s \/1—71 T (28)

then & =4&,=X;,, corresponding to unity gain cloning. On
the other hand, A, can be written in a compact form as
follows:

A =11 = )1+ nl (o), (29a)
Ay =11+ (1= ) (0oy), (29b)
where
Flyi) G(yp) )
F , =
(@) (g(721) Flyn) )’ (30)
with

Fly)=1-=m+gln -2V —7'1)7'1+A2]+g(7), (31)

Gy)=[n+g(l-—m+2V(1 = 71)7)]y. (32)

Now, if 7,=1/2 and g=g,, one has A=A, and X=X, as
we have seen above; i.e., the cloning becomes symmetric.
Furthermore, when also 7;=1/2, thanks to Egs. (25) and (29)
we have that the cloning map for the scheme in Fig. 1 is
given by the following Gaussian map:
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d’y [l -[-
WU'ZGN exp{_ O%;N}D(Y)QinD (),
(33)

g(rGN(Qin) = f
C

where oéN=%+A2. Finally, although C does not appear in
Eq. (25), for the sake of completeness, we give its analytic
expression:

C=\(1 - m)r[ 31 -T(oy)]. (34)

In the following we will analyze the input-output fidelities
for a generic (pure or mixed) Gaussian state. In particular,
we will consider three classes of Gaussian states; i.e., coher-
ent, displaced squeezed, and displaced thermal states.

III. CLONING OF GAUSSIAN STATES
A. Fidelity

Usually, the performance of cloning machines are quanti-
fied by the fidelity, which is a measure of the similarity be-
tween the hypothetically perfect clone and the actual clone.
In its most general form, the fidelity is given by Uhlmann’s
transition probability [21]

F(@in,01) = (Tr[\" \"inan\“ﬂQin])z’ (35)

and satisfies the natural axioms

(1) F(Qins Qk) =1 and F(Qins Qk):] if and On]y if Qin:Qk;

(ll) F(Qin?Qk):F(Qk’ Qin);

(iii) if @i, is a pure state Qin=|tin) (¥
F(Qin 01) ={thin| 01| )

(iv) F(0;y,0;) is invariant under unitary transformations
on the state space.

Furthermore, when @;, and @, are Gaussian states of the
form (1) and (25), the fidelity (35) becomes [22,23]

1
\/Det[ﬂ'in + Ak] + 65— \3”_5
XCXP{— %(Xin - X) (o + A) (X, - Xk)},
(36)
where S=4(Det[ o, ]- i)(Det[Ak] - :—1) Note that for pure
Gaussian states Det[(rin]=i, and in turn 8=0.

For symmetric cloning, i.e., for ,=1/2 and g=g, in Eq.
(28), then Eq. (36) reduces to

1
F7]= Y —-
\Det[ oy, + A ] + 65—V

, then we have

FnE F(Qinaek) =

(37)

Notice that for CV systems, the lowest cloning fidelity, cor-
responding to clones containing the minimum information
about the original state, is equal to F'=0. This is the CV
analog of the F=1/d lower bound for the cloning of a
d-dimensional quantum system [7].

In general, the cloning fidelity in (36) is state dependent,
and therefore the figure of merit to be considered is the mean
cloning fidelity, averaged over the ensemble of possible input
states. In order to evaluate this quantity, we parametrize the
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input ensemble (class) {@;,(N\)} of different Gaussian states,
by N € () and consider each of them occurring with the a
priori probability p(N). The average fidelity then reads

F,= f dAp(N)F,(N). (38)
Q

Within the set of possible states, both the mean values as
well as the covariance matrices may vary. Assuming that the
probability distribution p(N) is factorizable into a distribu-
tion for the mean values p(«) and a distribution for the co-
variance matrix, p(o,), we may write p(N\)=p(a)p(0o,), and
the average fidelity reads

[_7772 J da'in dzap(a)p(o'in)Fn(ain’a)~ (39)
Q

In the extreme case where both o, and « are fixed, the input
state is completely known, and perfect cloning with unit fi-
delity is, of course, possible. A more interesting scenario is
when the covariance matrix is fixed, as, for example, the case
in which the set is made up by coherent states, while the
displacement (that is, the mean value) is random. In this case
the average fidelity reduces to

IT",,= f[ dzap(a)F,?(a). (40)

If 7,=1/2 and g=g,, the map (33) is covariant with respect
to displacements, meaning that if two input states are identi-
cal up to a displacement, their respective clones should be
identical up to the same displacement [24]. Indeed, if the
input state is of the form @;,(a)=D(a)eD'(a), 0, being a
seed state, then the fidelity F,(a) actually does not depend

on complex parameter a, and, as a consequence, F =Fo
Therefore, in this case the noise added by the cloning process
(33) is the minimum amount of noise allowed by quantum
mechanics for a joint measurement of conjugated quadra-
tures [25]. Notice also that this is the same noise added in the
cloning of coherent states; i.e., the cloning is optimal. The

corresponding optimal fidelity F, however, is not necessarily
equal to 2/3 [see Eq. (37)].

B. Coherent states

Before addressing the general case, let us reconsider clon-
ing of (pure) coherent states. For this set of states, our linear
machine provides universal cloning, i.e., state independent
fidelity. In Fig. 2 we plot the fidelity as given by Eq. (37), as
a function of 7, for different values of » and for 7,=1/2,
g=g,. In this case, corresponding to symmetric cloning, the
machine yields the optimal fidelity F=2/3 predicted for uni-
versal Gaussian cloning of coherent states. Notice that the
optimal fidelity is achieved with 7y=1/2 and »=1; by ex-
panding the fidelity up to the second order around 7;=1/2,
we obtain
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FIG. 2. Linear cloning fidelity F, for a coherent state as a func-
tion of the BS transmittivity 7; for different values of the quantum
efficiency #: from top to bottom 7=1.0, 0.75, and 0.5. We set 7,
=1/2 and g=g, (symmetric cloning). The dashed line is the value
2/3. The fidelity does not depend on the coherent state amplitude.
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From this expression we clearly see that the cloning machine
proposed in [14] is robust against fluctuations of the BS ra-
tio. This conclusion can be also directly drawn from Fig. 2.

Let us, however, note that the fidelity value F=2/3 is the
optimal one only if the input distribution of coherent states is
flat; that is, if we have no a priori information about the
amplitudes. If the set of coherent states is restricted such that
the distribution of amplitudes is the Gaussian

|af®

1
Pa(a)=w—0§e><p{—?}, (41)

a

the average fidelity can be increased by choosing a different
gain [15]. However, in this scenario the cloning action be-
comes state dependent, and the integration in (40) should be
explicitly performed. By optimizing the gain, we find [15]

_ 2(1+0?) -
F=—"—% ifo*=1+12, 42
1+30_§ a \! ( )
_ 2 ) -
F= if 02 <1+12. (43)

2+(3-2\2)0

We have now seen that by fixing the covariance matrix of
the input states to coherent states, the fidelity is a function of
the distribution (being delta, flat, or Gaussian) of these states.
This aspect has been investigated in the literature [15]. In
contrast, the case where the covariance matrix may fluctuate
has not received much attention heretofore. In the following
sections we therefore discuss the average cloning fidelity for
classes of states with covariance matrix randomly distributed
according to a predetermined distribution. We assume that
the displacement of the input state is completely unknown
and that the cloner is set to unity gain (that is, invariant with
respect to the displacement corresponding to g=g,). In this
case the average over the mean value is trivial and the aver-
age fidelity can be written as
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Fn:f dop(o,)F,(0y,). (44)
s

C. Squeezed states

When the input Gaussian state is the squeezed state
|, &=D(a)S(£)|0), where D(a)=exp{aa’~a’a} and S(&)
=exp{%(§a%2—§*a2)} are the displacement and squeezing op-
erator, respectively, the entries of the input covariance matrix
(2) are

11 = 5(cosh 2|&] + sinh 2|[cos ), (452)
Y22 = 3(cosh 2|&] - sinh 2|[cos o), (45b)
Y12 = Y21 = 3 sinh 2|¢[sin ¢, (45¢)

where we put £=|€|e’?; obviously, when ¢=0 the squeezed
state |a, &) reduces to the coherent state |@) and o7, =31,. In
this section we are addressing the case of an unknown
squeezing parameter ¢ (randomly distributed according to a
given probability density). If the squeezing parameter is
known, the optimal strategy (in the Gaussian regime) is to
perform the unsqueezing operation S~'(£) just before the
cloning machine, proceed as in the case of coherent states,
and, at the output stage, apply the squeezing operation S(&)
to both the clones which yields a fidelity of 2/3 (independent
on the amount of fixed squeezing) as in the coherent state
case [12].

However, in the case of an unknown squeezing parameter,
the squeezing action S(§) is not known. Therefore in the
following, we investigate the cloning of unknown squeezed
states using the cloning machine outlined in this paper. First
we note that since the linear elements involved in the cloning
machine do not affect the phase of the input state, the fidelity
F,(é) depends only on |& and, without loss of generality, we
may take ¢ as real. The fidelity for Gaussian squeezed input
states, using the coherent state cloning machine, is given by

4

= . (46
V(5 + 2002+ 16(1 + 2A%)sinh? ¢ (46)

F,()

This fidelity is plotted in Fig. 3 as a function of the squeezing
parameter for different values of 7. We clearly see that for
coherent states (corresponding to £=0), the fidelity is 2/3
while decreasing with the degree of squeezing, eventually
reaching zero for highly squeezed input states.

In order to calculate the average fidelity, we assume that
the squeezed state |a, &) is drawn from an ensemble of states
with a priori probability p(«, &)=p(a)p(£€). Above, we men-
tioned that the cloning action with unity gain is independent
on the distribution p(a), which can then be left undefined.
The distribution of the squeezing factor is, however, quite
important: it is clear that for completely unknown input
squeezing (corresponding to a flat distribution) the average
fidelity goes to zero. We therefore must restrict the set of
input squeezed states to, say, a Gaussian distribution given
by
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FIG. 3. Plot of the fidelity F,(£) of the squeezed state |a, &) as a

function of |& for different values of #: from top to bottom 7

=1.0, 0.75, and 0.5. We set 7,=7,=1/2 and g=g, (symmetric clon-

ing). The dashed line is the value 2/3. The fidelity does not depend
on the displacement amplitude «.

1 2
ps(d) = w_af CXP{— %} (47)

S

As evident from this expression, we assume the distribution
to be centered at £=0, which corresponds to a coherent state.
This means that the coherent state is the most likely member
in the set of input states, and we therefore conjecture that our
machine is optimal in the Gaussian scenario. If, however, the
distribution is centered at a known squeezing amplitude, say
&=§&,, we then believe that the optimal machine is the one
mentioned above where the input states are unsqueezed
[S71(&))] before the cloning machine and squeezed [S(&)]
again after the cloning action.

Using the polar coordinates, d*é=pdp d¢, £=pe'®, and
F(§)=F ,](|§ ), the average fidelity now reads

Fy= f[ EPOF (&) (48)

+ 2
=2 fo dp% exp{— zp—o%}Fn(m (49)

This function is depicted in Fig. 4 as a function of oy for

0.7
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FIG. 4. Plot of the average fidelity F » of a set of squeezed states
as a function of o (see text for details) and different values of the
efficiency 7: from top to bottom 7=1.0, 0.75, and 0.5. The dashed
line corresponds to 2/3; i.e., the optimal cloning fidelity of coherent
states. We put 1y=7,=1/2 and g=g,.
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different values of 7. If the standard deviation o,=0, the
distribution in (47) is a delta function and the input alphabet
contains only coherent states. In this case it reduces to the
case discussed in the previous section and the expected fi-
delity is 2/3 (for ideal detection efficiency) as seen in the
figure. We also see that the fidelity degrades as the width of
the distribution of the squeezing parameter increases, and
eventually reaches zero when the a priori information is
poor. At this point we should note that if one allows for
non-Gaussian output clones the fidelity can be improved. For
example, it is known that the optimal cloner of coherent
states and the optimal universal cloner employ non-Gaussian
operations and they yield fidelities of 68.3% [27] and 50%
[26], respectively.

D. Thermal states

Another interesting class of Gaussian states is the set of
displaced thermal states @y, ,=D(a)vyD(a), which arise,
for example, from the propagation of coherent states in a
noisy environment [28]. The thermal state vy, is given by

1 < m
W= Ty NE (—1 fN> lmy(ml, (50)
m=0

where N is the average number of thermal photons. Its cova-
riance matrix is given by a'm=(N+ %)12. Since vy, and, in
turn, D(a)vyD'(a) are not pure states, the cloning fidelity
F,(N) should be calculated using the full expression of Eq.
(36), and the result is plotted in Fig. 5 as a function of N and
different values of #. For the unity gain cloner and assuming
the detection efficiency to be ideal (=1), we derive the
expression

-1
F,(N)= (% +N(3+2N) - VNN +1)(2N* + 5N + 3)) .

(51)

We see that the fidelity increases with the average number of
thermal photons, that is, using the fidelity as a measure, the

0.9

F,
T 08

0.7

0.6 {

0 02 04 06 08 1
N

FIG. 5. Plot of the input-output fidelity F,(N) of the displaced
thermal state @y, , as a function of the average number of thermal
photons N and different values of the efficiency #: from top to
bottom 7=1.0, 0.75, and 0.5. The dashed line corresponds to 2/3;
i.e., the optimal cloning of coherent states. We put 71=7,=1/2 and

8=8s-
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FIG. 6. Plot of the average fidelity F 5 of the set of thermal states
distributed according to the top-hat distribution (53) as a function of
the threshold value N and different values of the efficiency 7: from
top to bottom 7=1.0, 0.75, and 0.5. The dashed line corresponds to
2/3. We put 1j=7,=1/2 and g=g,.

quality of the cloning action increases with the mixedness of
the input states.

Let us now consider a different ensemble of displaced
thermal states, with random displacement and average num-
ber of thermal photons N distributed around zero either as a
bounded flat, top-hat, distribution or as a ‘“half-Gaussian”
distribution. The average fidelity is

400
F,= f de(N)F,,(N), (52)
0
where
N ifN e [0,N]
p(N) = . (53)
0, otherwise

for a top-hat distribution, and

W) = —— { Nz} N=0)  (54)
p =—F—exp\— "5 (> =
V2muy 2py

for a (renormalized) “half-Gaussian” distribution. In Figs. 6
and 7 we show the corresponding average fidelities, as func-
tions of A/ and wuy, respectively, for different values of #. For
the top-hat distribution the average fidelity monotonically
increases as the threshold value N increases, whereas for the
half-Gaussian one the average fidelity shows a maximum
value depending on the value of 7, as far as 7=0.7.

IV. CONCLUSIONS

We have analyzed in details a recently demonstrated
scheme for cloning of Gaussian states [14]. Using a suitable

PHYSICAL REVIEW A 73, 062330 (2006)
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FIG. 7. Plot of the average fidelity F 5 Of the set of thermal states
distributed according to a “half-Gaussian” distribution (54) as a
function of uy and different values of the efficiency #: from top to
bottom 7=1.0, 0.75, and 0.5. The dashed line corresponds to 2/3.
We put 71=7,=1/2 and g=g,.

phase-space analysis, the input-output fidelity has been
evaluated for a generic (pure or mixed) Gaussian state taking
into account the effect of nonunit quantum efficiency of ho-
modyne detection and fluctuations in the beam splitters
transmittivity. Our results indicate that the linear cloning ma-
chine suggested in [14] is robust against fluctuations of trans-
missivity and nonunit quantum efficiency.

We have explicitly evaluated the cloning fidelity for spe-
cific classes of noncoherent displaced states. We found that a
fixed (unknown) squeezing of the input states degrades the
fidelity with respect to the coherent level, as one may expect
for cloning of highly nonclassical states, while, on the con-
trary, cloning of displaced thermal states may be achieved
with larger fidelity. Using the above results we have evalu-
ated the average cloning fidelity for classes of Gaussian
states with fluctuating covariance matrix, as, for example,
displaced squeezed or displaced thermal states with the de-
gree of squeezing or the number of thermal photons ran-
domly distributed according to a Gaussian or a uniform dis-
tribution. Results indicate that the average fidelity
monotonically decreases as the squeezing dispersion in-
creases, whereas the behavior with respect to dispersion of
thermal photons is not monotone.
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