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Abstract

We address the distribution of quantum information among many parties in
the presence of noise. In particular, we consider how to optimally send to m
receivers the information encoded into an unknown coherent state. On one
hand, a local strategy is considered, consisting in a local cloning process
followed by direct transmission. On the other hand, a telecloning protocol
based on nonlocal quantum correlations is analysed. Both the strategies are
optimized to minimize the detrimental effects due to losses and thermal noise
during the propagation. The comparison between the local and the nonlocal
protocol shows that telecloning is more effective than local cloning for a
wide range of noise parameters. Our results indicate that nonlocal strategies

can be more robust against noise than local ones, thus being suitable
candidates for playing a major role in quantum information networks.

Keywords: cloning, telecloning, quantum communication, entanglement,

continuous variables

1. Introduction

One of the aims in the burgeoning field of quantum information
with continuous variables (CV) [1, 2] is to replace, for
some particularly crucial purposes, the communications
technology currently in use. Major developments in this field
are, for instance, the experimental realizations of quantum
teleportation and cryptography [3]. They involve, in general,
only two parties, a sender and a receiver, and are based either
on nonlocal quantum correlations, or on protocols involving
local manipulation and direct transmission of quantum states.
For example, the issue of sending an unknown state to a single
receiver has been addressed, comparing the performances of
teleportation and direct transmission [4-6]. Of particular
interest is the case in which the channel supporting the transfer
of quantum states is affected by thermal noise and losses, as
in real experiments. As regards the transfer of nonclassical
features, it has been shown that entanglement is necessary in
a teleportation scenario [4] and that teleportation is preferable
to direct transmission in certain regimes [5]. Furthermore, a
communication protocol in which information is encoded into
the field amplitude (amplitude-modulated communication) of a
set of Gaussian pure states has been analysed [6]; the indication
is that teleportation can be more effective also in this case.

A further natural step is to consider more complex
communication scenarios, where more than two parties are
involved in what is called a quantum information network.

The recent experimental realizations of CV dense coding [7]
and quantum teleportation networks [8] involve in fact three
distinct parties. In this work, we consider the problem of
distributing the information encoded in an unknown coherent
state of a CV system to m parties, in a multipartite amplitude-
modulated communication scenario. As for the single-receiver
case, one may ask whether it is better to perform the distribution
using a local or a nonlocal strategy. On one hand, one may in
fact consider cloning the original state somewhere along the
noisy transmission line by means of an optimal local cloning
machine. In this case both the signal and the clones are directly
coupled with the environment and, then, the fidelity is affected
by the unavoidable degradation of the signal and the clones
themselves. On the other hand, a pre-shared multipartite
entangled state may be used to support a telecloning protocol.
In this case, the performance of the protocol is affected by
the degradation of the nonlocal correlations of the support.
The fact that optimal telecloning, as opposed to teleportation,
does not need an infinite amount of entanglement leads to
the hypothesis that the degradation of entanglement is not too
dramatic in affecting the fidelity of the clones.

In order to face the effects of decoherence, both the local
and the nonlocal strategy have to be optimized. In particular,
we will outline the role of the location of the cloning machine
and of the multimode state source, in the local and nonlocal
protocols respectively.
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The paper is organized as follows. In section 2 we will
introduce the multimode states that will be used as support for
the optimized telecloning protocol described in section 3. The
optimization of the local strategy will be outlined in section 4.
Section 5 will be devoted to the comparison between the two
strategies, whereas the main results will be summarized in
section 6.

2. Multimode entangled states

Let us begin by introducing the multimode entangled
states that will provide the support for the telecloning
protocol. Multimode entanglement of Gaussian states, that
is states with Gaussian Wigner functions, has attracted much
attention recently, both from theoretical and experimental
viewpoints [2]. A particularly interesting class of multimode
Gaussian states are the coherent states of the group
SU(m, 1) [9, 10]. Indeed, these states can be experimentally
generated by multimode parametric processes in second-order
nonlinear crystals, with Hamiltonians that are at most bilinear
in the fields [8, 11]. In particular, these processes involve m + 1
modes of the field ay, ai, ..., a,, with mode a, that interacts
through a parametric amplifier-like Hamiltonian with the other
modes, whereas the rest interact with one another only, via a
beam splitter-like Hamiltonian. The Hamiltonian of the system
is thus given by

m m
1 2
H, = E yk(, )aka; + E yk( )akao +h.c., (1)
I<k=1 k=1

where [ay,a;] = 0, [ak,af] = &y kI = 0,...
are independent bosonic modes, whereas yk(,') and yk(z) are
coupling constants. The states generated by H,, from the

vacuum are the coherent states of the group SU (m, 1), namely

. m)

Cnlcnz,..cglm\/(nl+n2+...+nn)!
|\I’m> =V Zy Z - 1
{n}

nilny!---ny,!

> {n}>, 2
k=1

where {n} = {n, ny, ..., n,}. The sums over n are extended
over natural numbers and, upon introducing the mean values
of the number operators Ny = (a, ax), we have defined

o Ny 1/2 P 1
k 1+ Ny ’ " 1+ Ny

k=1,...,m). A3)

X

The relevant constant of motion, in this context, is the
difference between the mean photon number of mode ay and
the total mean photon number of the other modes. Since we
start from the vacuum, we have

No = Z Ny %)
k=1

We notice from equation (2) that for m = 1 the twin-beam
state is recovered. Having evolved from the vacuum with a
quadratic Hamiltonian, the states |¥,,) are Gaussian. They are

completely characterized by the covariance matrix o, whose
entries are defined as

lolk = $({Re, Ri}) — (R)(Ry), S

where {A, B} = AB + BA denotes the anticommutator,
R = (g0, o, ---+Gm, pm)" and the position and momentum
operator are defined as g, = (ax + a,j ) /«/5 and py = (ax —
a,i') /i\/i. The covariance matrix for the states |¥,,) reads as
follows:

No Al AQ Am
A] ./\[1 B] 2 BI Jm
on=\|A B N : , (6
N N . Bm—l,m
Am Bl,m Bmfl.m Nm

where the entries are given by the following 2 x 2 matrices
k=0,....mh=1,....0m,j=2,....mand 0 <i < j):
Ni= N+ DI Ay = VNy(No + )P

N
B;j =/N;N;I,
with I = Diag(1, 1) and P = Diag(1, —1). The basic property
of the states |W¥,,) is that they are fully inseparable, i.e., they
are inseparable for any grouping of the modes [12]. By virtue
of this property, the states |¥,,) can provide the support for a
telecloning protocol, as we will see in the next section.

3. Telecloning in a noisy environment

As already mentioned, one of the main results in CV quantum
communication is the realization of the teleportation protocol.
The natural generalization of standard teleportation to many
parties corresponds to the so-called telecloning protocol [13],
i.e. a protocol that provides at a distance many imperfect
copies of the original input state. Teleportation is based on
the coherent states of SU(1, 1), which provide the shared
entangled states supporting the protocol. Thus, in order
to implement a multipartite version of this protocol, one
is naturally led to consider as shared entangled state the
coherent states of SU (m, 1) introduced in the previous section.
Actually, it has already been shown in [12] that these states
permit one to achieve optimal symmetric and asymmetric
telecloning of pure Gaussian states. The telecloning protocol
is depicted schematically in figure 1. After being prepared,
the state |¥,,) propagates thorough m + 1 noisy channels. In
particular, we can consider that modes ay, ..., a, propagate
in noisy channels characterized by the same losses I'c. We
may then define an effective propagation time 1. = I'.# equal
for all the modes ay, ..., a,, while the effective propagation
time 1ty = ot for mode ay is left different from z.. Consider
in fact a scenario in which one has two distant locations (see
figure 1). The distance between the two stations can be viewed
as a total effective propagation time tp which can be written
as tr = 19 + .. Then, the choice made above corresponds
to the possibility of choosing at will, for a given tp, which
modes (ay, ..., a, or ap) will be affected by the unavoidable
noise that separates the sending and the receiving station and
to what extent. With a slight abuse of language, we may say
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that one can choose whether to put the source of the entangled
state |¥,,) close to the sending station (7 = 7.), close to
the receiving one (tr = 7p) or somewhere in between. A
similar strategy has been pursued in [14] for optimizing the CV
teleportation protocol in a noisy environment. Inthe following,
the optimal location and the optimal | ¥,, ) for a given amount of
noise will be given. For simplicity, all the noisy channels will
be characterized by the same effective temperature, that is the
mean thermal photons u will be taken equal for all the channels.
As a consequence, the covariance matrix of the evolved state
is given by (see, e.g., [2])

Omn = (Gl/zo'm(Gl/2 + (1 - G)owom, (®)

where o, is the initial covariance matrix of equation (6) and
we have defined

G=e"IPe ™l oxn=@+Phn O
j=1

Performing the calculation explicitly, upon defining k = p+ % ,

we obtain
A C
Omn = ct B/

where A = e " ANy+k(1—e ™), C = Ve T (A,,...
and

10)
£ AH'L)

e "N +i(l—e ™)1 e "B,

e B, e_ZCNz +x(1 —e ™)1
B = . .
e_ZcBl,m
e_.[cBl,m
(1)
e Bmfl.m
e’ m—1,m e7%'/\/}11 + K(l - eirc)]l

As in the case of standard teleportation, the telecloning
protocol now proceeds by performing a joint measurement on
modes ay and b, which is excited in the unknown coherent
state |«) that we want to teleport and clone. The measurement
corresponds to an ideal double-homodyne detection of the
complex photocurrent Z = b + ag, described by the following
Gaussian characteristic function:

x[M, X1(A) = exp{—IATMA —iATX}.  (12)

In equation (12) the covariance matrix M and the vector of
first moments X are given by

M = Po;,P, X =PX + Z, (13)

where Z = {Re[z], Im[z]} is the measurement result, oy, =
%I[ and X = {Re[«], Im[«]} are the covariance matrix and the
vector of first moments of the input coherent state |). Then,
the state o., conditioned to the result Z, is a Gaussian state
with covariance matrix [15]

oc.=B-C'A+M)"'C (14)
and vector of first moments H = CT(A + M)~'X. The
probability P(Z) of the outcome Z is given by

P(Z) = —%XT(A+M)‘1X}. (15)

i
JI A+ M) eXp{
5534

After the measurement, the conditional state should be
transformed by a further unitary operation, depending on the
outcome of the measurement. In our case, this is an m-mode
product displacement U, = @), D, (z). This is a local
transformation, which generalizes to m modes the procedure
already used in the original CV teleportation protocol. The
characteristic function of the modes a, ..., a, is now given
by

x[U-0:UI1(A) = x[ocl(A) expliAT] Z*},  (16)

where A is the usual 2m-component column vector spanning
the reciprocal phase space of modes ay, ..., a,, whereas *
indicates complex conjugation and J is given by the 2 x 2m
matrix J = (II,..., ). The characteristic function of the
overall output state o, is obtained by averaging over all the
possible outcomes:

Xout(A) = / d*"ZP(Z)xlo.)(A) expliAT]T Z*} (17)
= exp{—3AT[B +J"P(A + M)PJ
— JTPC — C™PJIA —iATITX), (18)

which, in turn, gives the following covariance matrix for the
hth clone g, = Tri;[0oul:

1 1
op=\——-=< )L
F, 2
In the equation above, Fj, represents the fidelity Fj, = («|op|o)

between the Ath clone and the original coherent state, i.e.,
Fy = {det[oy, + 1 1]}7'/2

19)

- {2 +2u+ [e’TO(NO — ) + e (N, — )

— 2/ N, (No + 1)]}_1, (20)

where we have reintroduced the mean thermal photons p.
Notice that the fidelity does not depend on the amplitude o
of the input state. Remarkably, from equation (20) it follows
that the present telecloning scheme is able to perform both
symmetric and asymmetric distributions of information [12].
However, being interested in the comparison between the
performances of telecloning and of the local strategy that will
be outlined in the next section, from now on we will consider
only the symmetric instance. That is, we set N; = --- =
N,, = N and Ny = mN, from which it follows that all the
clones are equal to one another (F; = --- = F,, = F).

The next step is now to optimize, for a fixed amount of
noise, the shared state |¥,,) and the location of its source
between the sending and the receiving station. That is, relying
upon the fidelity as the relevant figure of merit, one has to find
the optimal N and 7y which maximize F for 7t and p fixed.
The results of the optimization are summarized in table 1 [12],
where we have defined the following quantities:

m

Fa_ , 2D
m2+u(l —e )] —1

Fr=[2+p—(+pe ™|, (22)

FC¢ = {2+2M _ /e—TT/m[] +/J,(] +m)]}71. (23)

The most interesting feature which emerges from an
inspection of table 1 is that telecloning saturates the bounds
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Figure 1. Schematic diagram of the telecloning scheme. After the preparation of the state |¥,,), a conditional measurement is made on the
mode ay, which corresponds to the joint measurement of the sum and difference quadratures on two modes: mode a itself and another
reference mode b, which is excited in a coherent state |« ), to be teleported and cloned. The result z of the measurement is classically sent to

the parties who want to prepare approximate clones, where suitable displacement operations (see the text) on modes a, .

.., a, are

performed. We indicated with  the mean thermal photons in the propagation channels. The effective propagation times 7y and 7. (see the

text) are related to the losses during propagation.

Table 1. Values of the optimized N°? and 7,"

choices is given in the last column.

for fixed values of 7r and p. The value reached by the fidelity F™* for these optimal

m T .L,é)Pt NPt Fmax
A/ 0 1 ! F¢
<t <Inm T S
" ' ! m(me="T — 1)
(1+p)? | .
nw<l/m—1) Inm<r7t <In 2 s(Tr+lnm) N — o0 F
muy
1 1+ p)? e T
n< r > In M Tr _— F’
m—1 mu? 1 —me-
1 S b
> tr > Inm T P —— F
" m—1 T T 1 —me=™

for optimal cloning [16] even in the presence of losses, for
propagation times tp < Inm, i.e. propagation times which
diverge as the number of modes increases. More specifically,
consider the first row in table 1 and set © = 0. Then, one
has that for t7 < Inm the maximum fidelity is given by
F™ = m/(2m — 1). That is, the optimal fidelity for a
symmetric cloning can still be attained, carefully choosing N
and 7. This is due to the fact that multimode entanglement is
robust against this type of noise and, even if decreased along
the transmission line, it is still sufficient to provide optimal
cloning. Actually, as we already mentioned, there is no need
for an infinite amount of entanglement to perform an optimal
telecloning process [10]. Notice that when F™* = F in
table 1, telecloning ceases to be interesting, because F is
lower than the so-called classical limit F' = % [17]. Itisin fact
immediate that F}, > % only when

1
rT<ln<1+—).
1%

Howev&zer, from the third row of table 1 one has that Tt >
In B4 and p < +|’ which implies that inequality (24)
mu ! m . 4

cannot be satisfied. The same conclusion holds also if one
considers the fourth row of table 1. The comparison of the
results in table 1 with the performances of a local distribution

of information will be given in section 5.

(24)

4. Local cloning plus direct transmission (LCDT)

Let us now consider the situation in which the distribution
of quantum information does not rely upon sharing any

entanglement between the parties involved. We refer to
such protocols as local cloning + direct transmission (LCDT)
schemes. In the notation introduced in section 3, one has
that the sending and the receiving stations are separated by an
effective time 7r. The input coherent state, characterized by the
covariance matrix oy, = %I[ and the amplitude X, propagates
through a noisy channel for time 7, after which it is cloned by
a suitably chosen local optimal symmetric cloning machine.
Then, the clones are sent to the receiving station, via m noisy
channels for a propagation time .. Before calculating the
fidelity of such an LCDT strategy, it is necessary to identify
the proper cloning machine to use. The natural requirement for
a coherent state cloning machine is its covariance with respect
to displacements in the phase space [18]. This implies that the
cloning map is a Gaussian noise map of the form

_ L [ gegeeem i
o= o= [ €5 TDBIGD B 2
oin being the density matrix of the state at the input of the
cloning machine and 7 is the noise added by the cloning
process. The density matrix of the clones o, is the partial
trace over all the modes except the one of the overall state R at
the output of the cloning machine, namely o1, = Tty,, .. 4, [R]
(recall that we are considering the case in which the clones
are all equal). Actually, the overall state R plays no role in
our analysis. Indeed, once the partial traces o, are fixed by
the requirement in equation (25), the overall state R has no
influence on the clones propagating through the noisy channels.
In fact, the m noisy channels are independent, and the overall
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Liouvillian superoperator £ factorizes into the single-channel
superoperators L. As a consequence, one can easily show,
considering the Kraus decomposition of each £, that

01 =Trg,, . 0, [L(R)] = L1(Trg,,.. q,[RD) = Li(0c10), (26)

where o, is the final state of the clones. The remaining step
to be performed is now the optimization of the location of
the cloning machine. To this end, let us calculate the fidelity
between the clones at the end of the transmission line and the
input state. After propagating for a time 7y, the input state
covariance matrix and amplitude are given by

o-icrllo = [% +(1—e ™)u]l, Xérllo — e M/2X. 27)
Then, the cloning machine produces m optimal clones (7 =
(m — 1)/m) accordingly to equation (25), i.e.,

out
clo

oy =3+ —e™p+nll, X3 =c X, (28)

Letting the latter propagate one finally has

oy =[+(1—e ™p+ne ]I, X, =e "2X, (29)

from which the fidelity F, follows:
1

Fy=——— -
l+ne %+ (1 —e ™u

I (1 —e /2
« expl—=—0 . (30)
21+ne %+ (1 —e™)u
The maximum of Fj is given by
2e™r!
max __
T Py ey

and it is attained for

1

P =17r —In {2—_[|cx|2(e”/2 — D +2u —2e"(1 + u)]} )
n

(32)

However, from equation (32) it follows that ¢’ P! is admissible
(namely, P ' < 7r) only when

2ln — pw+e™(1+ )]
(erT/Z _ ])2

la> > |&@)* = (33)

The equation above, in turn, implies that F;"** is always lower
than the classical bound F = % In fact, one has that

max 2! 1 e’ Ul
O aREn2 =12 T eem+mper—1)] e
(34)

In other words, we have that, when the LCDT strategy is useful,
the best location of the cloning machine is at the sending station
(t. = 7r). Thisis due to the fact that the noisy propagation after
the cloning machine, besides degrading the signal, decreases
the noise added by the cloning machine, as we can see from
the term ne~™ in equation (29). The fidelity F, of the clones
produced by the optimal local strategy is thus given by
m

F;, =
m[l —p+er(l+p)]—1

1 m(l —e™/?)? || }

N

) eXp{” T 2wl = e+ ]

(35)
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which shows that the fidelity depends on the original input
state. In a communication scenario, in which the information
is amplitude modulated, it is thus necessary to introduce
a fidelity averaged over all the possible input. Let us
suppose that the message we want to transmit is encoded in
an alphabet distributed according to a Gaussian probability
density function of variance Q2:

Gola) = Le—\a\z/ﬂz (36)

92 ’

The averaged fidelity Ficpr = f d’a Go(a) F; of the clones
is thus given by

me™™
m[l —p+ Q21 —2e7/2) +en(l +pu+ Q2]
(37)
The result above will be compared with the telecloning fidelity
in the next section.

Ficpr =

5. Comparison between local and nonlocal strategy

We are now in a position to compare the performances of the
LCDT strategy and telecloning. First, notice that the fidelity
Ficpr inequation (37) goes to zero as €2 increases. This means
that for a truly random distributed coherent state the local
strategy is not useful at all. On the other hand, equations (21)—
(23) explicitly show that the performances of telecloning do
not depend on the value of the coherent amplitude, as follows
from the covariance of the process. Hence, as one may expect,
telecloning is undoubtedly more effective than the LCDT
strategy in the case of a generic unknown coherent state. Let
us now consider the case of finite €2 in the absence of thermal
noise (uw = 0). Then the fidelity is given by F, and F; in
equations (21), (23), which specialize as follows:

m 1
- Fom— .
2m — 1 2 Jei/m

Equation (38) implies, as already pointed out, that optimality
is still achieved for a time 7zt < Inm, and also that the
fidelity is greater than the classical bound at any time. The
comparison between equations (38) and (37) is given in figure 2
form = 2, 5. The figure shows that, even for small values of
the width =~ 2, telecloning is more effective than the LCDT
strategy. A similar behaviour is found also when thermal noise
is considered (u # 0), as figure 3 shows. Notice that in
the latter case, as one may expect, telecloning may also not
give a better fidelity than the classical limit. This happens for
propagation time tr larger than the threshold

(3%)

a

a,th (1 + 2 + m/“'“)z
Tt =In [W (39)
for p < ﬁ, and larger than
c,th 1
7 =—In |:1 — —] (40)
mipl

otherwise.
From a quantum communication viewpoint it is interesting
to consider the threshold for € above which telecloning
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F1 —
0.9 -7 (a)
P 7
0.8 ,
7
071 2
iuiNG
06f
\
0.5 A
N\
\ AN
0 1 2 3 4 5

Flm—m—mmm =
0.9 -7 (b)
7
0.8 L7
7
/
0.7 S~
v T~
06 ¢~ S~
N~ T ~=--
05} — -
\ N
0 1 2 3 4 5

Figure 2. Comparison for u = 0 and m = 2 (a) im = 5 (b)) between the telecloning fidelity given in equation (38) (solid line) and the
fidelity of the LCDT strategy given in equation (37) (dotted lines). The latter refer to the cases of 2 = 0, 1, 2, 3 from top to bottom. The

vertical line correspondsto 7t = In2 (a) (rr = In5 (b)).
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Figure 3. Comparison for 1 = 0.4 and m = 2 (a) (m = 3 (b)) between the telecloning fidelity given in equations (21), (23) (solid line) and
the fidelity of the LCDT strategy given in equation (37) (dotted lines). The latter refer to the cases of 2 = 0, 1, 2, 3 from top to bottom. The

vertical line corresponds to 7t = In2 (a) (rr = In 3 (b)).

Q5
4 (&)

02 04 06 08 1 12 14
Tr

02 04 06 08 1 12 14
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Figure 4. Plot of the thresholds €2, i, in equation (41) and €2, 4, in equation (42) for different values of the number of clones. We fixed
n =0 (a) (u = 0.4 (b)) and, from bottom to top, we set m = 2,4, 8, 16. The region above the lines refers to the case in which telecloning is

more effective than the LCDT strategy.

becomes more effective than LCDT strategy. The latter can

be analytically retrieved and one has that F, in equation (21)

is greater than Ficpr when Q > Q, ¢, with

5 (1 +e"?)y(m —1)

Qa,th = W,

whereas F. in equation (23) is greater than Fycpr when
Q > Q¢ n, with

2

Qc,th

Clem(u— 1D +me™(1+p) — e 2 (1 + p+mp)
B m(em/2 — 1)° '

(41)

(42)
Notice that 2, ¢, does not depend on the thermal photons . In
figure 4 the thresholds €2, ¢, and 2. are plotted for different

values of m and p (see the caption for details). The regions
below the thresholds refer to the regimes for which the local
strategy is more effective than telecloning. We notice that the
benefits of telecloning become slightly less effective as the
number of modes m and the thermal noise y increase. This
is due to the fact that in this case the performance of ideal
telecloning decreases too.

6. Conclusions

In this paper we considered the application of CV cloning in a
quantum communication scenario. In particular, we analysed
an amplitude-modulated channel in which a coherent signal has
to be distributed among m parties. On the basis of the fidelity of
the clones as a figure of merit, we compared two strategies for
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performing the distribution task in a noisy environment: onone
hand the optimized LCDT scheme, where no entanglement is
present; on the other hand the optimized telecloning protocol.
Since the noise acts differently in the two protocols, we found
that telecloning is more effective than the LCDT scheme for
a wide range of noise parameters. This result shows that
entanglement, besides being recognized as a valuable resource
for a variety of two-party protocols, is also a robust resource
when many parties are involved. Furthermore, the high fidelity
obtained by telecloning suggests that entanglement may be
a resource for enhancing the exchanged information in a
multiparty communication network. Work along these lines
is in progress and results will be reported elsewhere.
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