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Abstract. We describe an optical scheme for optimal Gaussian n → m cloning
of coherent states. The scheme, which generalizes a recently demonstrated
scheme for 1 → 2 cloning, involves only linear optical components and homo-
dyne detection.
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1. Introduction

The generation of perfect copies of a given, unknown, quantum state is impossible
[1–4]. Analogously, starting from n copies of a given, unknown, quantum state no
device exists that provides m > n perfect copies of those states. On the other
hand, one can make approximate copies of quantum states by means of a quantum
cloning machine [5], whose performances may be assessed by the single clone fidelity,
namely, a measure of the similarity between each of the clones and the input state.
A cloner is said to be universal if the fidelity is independent on the input state,
whereas the cloning process is said to be optimal if the fidelity saturate an upper
bound F (opt), which depends on the class of states under investigation, as well
as on the class of involved operations. For coherent states and Gaussian cloning
(i.e. cloning by Gaussian operations) F (opt) = 2/3 whereas, using non-Gaussian
operations, it is possible to achieve F ≈ 0.6826 > 2/3 [6]. Therefore, though non-
Gaussian operations are of some interest [7–10], the realization of optimal Gaussian
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cloning would provide performances not too far from the ultimate bound imposed
by quantum mechanics.

Optimal Gaussian cloning of coherent states may be implemented using an
appropriate combination of beam splitters and a single phase insensitive parametric
amplifier [11, 12]. However, the implementation of an efficient phase insensitive
amplifier operating at the fundamental limit is still a challenging task. This problem
was solved by Andersen et al. [13], who proposed and experimentally realized an
optimal cloning machine for coherent states, which relies only on linear optical
components and a feed-forward loop [14]. As a consequence of the simplicity and
the high quality of the optical devices used in this experiment, performances close
to optimal ones were attained. The thorough theoretical description of this cloning
machine as well as its average fidelity for different ensembles of input states has been
given in [15], and a generalization to asymmetric cloning was presented in [16].

In this paper we describe in details a generalization of the cloning machine
considered in [13] to realize n → m universal cloning of coherent states. The
scheme involves only linear optical components and homodyne detection and yields
the optimal cloning fidelity [17].

The paper is structured as follows: in Section 2 we described the linear cloning
machine for 1 → m cloning of coherent states and we give the conditions to achieve
universal and optimal cloning as in the case of 1 → 2. In Section 3 we deal with a
scheme to realize n → m optimal universal cloning. Finally, in Section 4 we draw
some concluding remarks.

2. The 1 → m Cloning Machine

The scheme of the 1 → m Gaussian cloning machine is sketched in Fig. 1. The
coherent input state |α〉 is mixed with the vacuum at a beam splitter (BS) with
transmissivity τ . On the reflected part, double-homodyne detection is performed
using two detectors with equal quantum efficiencies η: this measurement is executed
by splitting the state at a balanced beam splitter and, then, measuring the two
conjugate quadratures x̂ = 1√

2
(â + â†) and ŷ = 1

i
√

2
(â − â†), with â and â† being

the field annihilation and creation operator. The outcome of the double-homodyne
detector gives the complex number z = x + iy. According to these outcomes,
the transmitted part of the input state undergoes a displacement by an amount
gz, where g is a suitable electronic amplification factor. Finally, the m output
states, denoted by the density operators ̺k, k = 1, . . . ,m, are obtained by dividing
the displaced state using a multi-splitter (MS). When m = 2 the present scheme
reduces to a 1 → 2 Gaussian cloning machine recently experimentally realized [13]
and studied in details [15].

If we denote with Uτ the evolution operator of the first BS with transmissivity
τ , after the BS we have:

Uτ |α〉 ⊗ |0〉 =
∣

∣α
√

τ
〉

⊗
∣

∣α
√

1 − τ
〉

; (1)
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the reflected beam, i.e.
∣

∣α
√

1 − τ
〉

undergoes a double-homodyne detection de-
scribed by the positive operator-valued measure (POVM) [18]

Πη(z) =

∫

C
d2ζ

1

πσ2
η

exp

{

−|ζ − z|2
σ2

η

} |ζ〉 〈ζ|
π

, (2)

with σ2
η = (1 − η)/η, η being the detection quantum efficiency, and, in turn, the

probability of getting z as outcome is given by:

pη(z) = Tr[Πη(z)
∣

∣α
√

1 − τ
〉 〈

α
√

1 − τ
∣

∣ ] (3)

=
η

π
exp

{

−η|z − α
√

1 − τ |2
}

. (4)

After the measurement, the transmitted part of the input state, i.e. |α√τ〉 , is
displaced by an amount gz, and, averaging over all the possible outcomes z, we
obtain the following state:

̺ =

∫

C
d2z pη(z)D(gz)

∣

∣α
√

τ
〉 〈

α
√

τ
∣

∣ D†(gz) (5)

=

∫

C
d2z

η

π
exp

{

−η|z − α
√

1 − τ |2
} ∣

∣α
√

τ + gz
〉 〈

α
√

τ + gz
∣

∣ , (6)

which is then mixed in the MS with m − 1 vacuum modes (Fig. 1). The MS acts
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Fig. 1. Gaussian cloning of coherent states by linear optics: the input state |α〉
is mixed with the vacuum |0〉 at a beam splitter (BS) of transmissivity τ . The
reflected beam is measured by double-homodyne detection and the outcome of the
measurement x + iy is forwarded to a modulator, which imposes a displacement
g(x+iy) on the transmitted beam, g being a suitable amplification factor. Finally,
the displaced state is impinged onto a multi-splitter (MS), where it is mixed with
m − 1 vacuum modes. The states ̺k, k = 1, m, are the m clones
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on a single coherent state |β〉 as follows:

UMS |β〉 1 ⊗ |0〉 2 ⊗ . . . ⊗ |0〉m =

∣

∣

∣

∣

β√
m

〉

1

⊗
∣

∣

∣

∣

β√
m

〉

2

⊗ . . . ⊗
∣

∣

∣

∣

β√
m

〉

m

, (7)

where the subscripts refer to the mode entering the MS and UMS being the MS
evolution operator [19]. In turn, the m-mode state emerging from the MS reads:

̺out =

∫

C
d2z pη(z)

m
⊗

k=1

∣

∣

∣

∣

α
√

τ + gz√
m

〉

k k

〈

α
√

τ + gz√
m

∣

∣

∣

∣

. (8)

Note that, in practice, the average over all possible outcomes z in Eq. (5) should
be performed at this stage, that is after the MS. On the other hand, because of the
linearity of the integration, the results are identical, but performing the averaging
just before the MS simplifies the calculations. Moreover, notice also that the m-
mode state (8) is separable and all the m outputs ̺k are equal.

As figure of merit to characterize the performance of the 1 → m cloning ma-
chine, we consider the fidelity, which is a measure of similarity between the hypo-
thetically perfect clone, i.e. the input state, and the actual clone. If the cloning
fidelity is independent on the initial state the machine is referred to as a universal

cloner. In the present case, the fidelity is the same for all the clones ̺k and is given
by:

Fη(α, τ,m) = 〈α| ̺k |α〉 (9)

=

∫

C
d2z pη(z) exp

{

−
∣

∣

∣

∣

α − α
√

τ + gz√
m

∣

∣

∣

∣

2
}

(10)

=
mη

g2 + mη
exp

{

−η
[

g
√

1 − τ +
√

τ −√
m

]2

g2 + mη
|α|2

}

. (11)

If we set

g =

√
m −√

τ√
1 − τ

, (12)

Eq. (11) becomes independent on the input coherent state amplitude, i.e. we have
an universal cloning machine, and we get:

Fη(τ,m) =
mη(1 − τ)

(
√

m −√
τ)2 + mη(1 − τ)

, (13)

which reaches its maximum

F (max)
η (m) =

mη

(1 + η)m − 1
, (14)

when τ = 1/m. Notice that if η → 1, then one obtains the optimal 1 → m cloning
fidelity, i.e.

lim
η→1

F (max)
η (m) =

m

2m − 1
≡ F

(opt)
1→m . (15)
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3. n → m Cloning

The linear cloning machine can be also used to produce m copies of n equal input
coherent states (m > n). Given two coherent states, |α〉 1 and |

√
kα〉2, one has

Uk |α〉 1 ⊗ |
√

kα〉2 = |
√

k + 1α〉1 ⊗ |0〉 2 , (16)

Uk being the evolution operator associated with a BS with transmissivity τk =
(1 + k)−1; in turn, using a suitable cascade of BSs, we can transform the n-mode
input state |Ψ〉 in = ⊗n

k=1 |α〉k into the output |Ψ〉 out = |√nα〉 1 ⊗n
k=2 |0〉k (see

Fig. 2) [12]. This scheme becomes very simple if n = 2k: in this case one only needs
n−1 balanced BSs to produce |Ψ〉 out, as depicted in Fig. 3 for n = 4. Now, we take
|√nα〉 as input state of the 1 → m cloning machine described above obtaining the
following new expression for the fidelity

Fη(α, τ, n,m) =
mη

g2 + mη
exp











−
η

[

g
√

n(1 − τ) +
√

nτ −√
m

]2

g2 + mη
|α|2











, (17)

which becomes independent on the amplitude α (universal cloning) if

g =

√
m −√

nτ
√

n(1 − τ)
, (18)

|α〉 1

|α〉 2 |α〉 3 |α〉n

|√nα〉 1

τ1 τ2 τn

Fig. 2. Cascade of BSs with transmissivity τk = (1 + k)−1: the n-mode input
state |Ψ〉

in
= ⊗n

k=1 |α〉 k
is converted into the output |Ψ〉

out
= |√nα〉

1
⊗n

k=2 |0〉 k

|α〉 1

|α〉 2

|α〉 3

|α〉 4

∣

∣

√
4α

〉

out

Fig. 3. Simplified scheme able to convert 4 coherent states with the same am-
plitude α into a single coherent state with amplitude

√
4α. All the involved BSs

are balanced and the scheme can be easily extended to the case of 2k input states
and 2k − 1 BSs
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and reaches its maximum

F (max)
η (n,m) =

mnη

mnη + m − n
, (19)

when τ = n/m (see Fig. 4). As in the case of 1 → m cloning, if η → 1 then we
obtain

lim
η→1

F (max)
η (n,m) =

mn

mn + m − n
≡ F (opt)

n→m , (20)

i.e. the maximum fidelity achievable in n → m cloning [20].

Fig. 4. Fidelity of optimal n → m cloning of coherent states as a function of
the number of input (n) and output (m ≥ n) copies for different values of the
quantum efficiency (from left to right η = 0.99, 0.5, 0.1)

4. Conclusions

We have addressed the 1 → m and the n → m Gaussian cloning of coherent states
based on an extension of a linear 1 → 2 cloning machine, namely, a cloner which
relies only on linear optical elements and a feed-forward loop. In both 1 → m and
n → m cloning, we have shown that the electronic gain and the BS transmissivity
can be chosen in such a way that the machine acts as an optimal universal Gaussian
cloner. We can conclude that the linear cloning machine represents a highly versatile
tool.
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