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Abstract – We address the intrinsic multimode nature of the quantum state of light obtained
by pulsed spontaneous parametric downconversion and develop a theoretical model based only
on experimentally accessible quantities. We exploit the pairwise entanglement as a resource for
conditional multimode measurements and derive closed formulas for the detection probability and
the density matrix of the conditional states. We present a set of experiments performed to validate
our model in different conditions that are in excellent agreement with experimental data. Finally,
we evaluate the non-Gaussianity of the conditional states obtained from our source with the aim
of discussing the effects of the different experimental parameters on the effectiveness of this type
of conditional state preparation.
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Nonclassical states of the radiation field are a crucial
ingredient for fundamental tests of quantum mechanics
and represent a resource for quantum communication
and high-precision measurements. In fact, much attention
has been devoted to their generation schemes. Besides
squeezing, nonclassical effects are generally observed in
connection with non-Gaussian states of light, and this
usually implies the presence of fluctuating parameters [1,2]
or the use of nonlinearities higher than second order, e.g.
the Kerr effect [3–5]. On the other hand, the reduction
postulate provides an alternative mechanism to achieve
effective nonlinear dynamics. In fact, if a measurement is
performed on a portion of a composite entangled system,
the other component is conditionally reduced according to
the outcome of the measurement. The resulting dynamics
may be highly nonlinear, and may produce quantum
states that cannot be generated by currently achievable
nonlinear processes [6]. The efficiency of the process, i.e.
the rate of success in getting a certain state, is equal to
the probability of obtaining a certain outcome from the
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measurement and it may be higher than nonlinear effi-
ciency, thus making conditional schemes possibly conveni-
ent even when a corresponding Hamiltonian process exists.
The nonlinear dynamics induced by conditional

measurements has been analyzed for a large variety of
schemes [6–27], including photon addition and subtrac-
tion schemes [8–10,12,13], optical state truncation of
coherent states [14], generation of cat-like states [15–17],
state filtering by active cavities [18,19], synthesis of
arbitrary unitary operators [20] and generation of optical
qubit by conditional interferometry [21]. More recently,
nonGaussian states and operations have been studied in
connection with entanglement distillation [28–31], tele-
portation [8–10], cloning [32] and quantum storage [33].
Conditional state generation has been achieved in the low
energy regime [34–39] by using single-photon detectors
and time-multiplexed photon resolving ones [36], and
a question arises on whether photon counting may
be exploited on multimode correlated states in the
mescoscopic regime.
In this paper we address multimode conditional

measurements and demonstrate a novel bright source of
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conditional states [40] based on i) pulsed multimode spon-
taneous parametric downconversion (PDC) [41–48], which
produces entangled states with a mesoscopic number
of photons and ii) a conditional intensity measurement
performed by photoemissive detectors, called hybrid
photodetectors, that are able to partially resolve the
number of detected photons [49]. We develop a theoretical
model based only on experimentally accessible quanti-
ties and derive closed formulas for both the detection
probabilities and the conditional states. We find an
excellent agreement with the experimental data and
succeed in evaluating the amount of non-Gaussianity of
the conditional states despite the multimode character of
the entangled state.
The pair of intense correlated beams obtained by pulsed

PDC represents a convenient system for state preparation
by conditional measurements. In this case, the state
outgoing the crystal is intrinsically multimode because
of the pulsed nature of the pump and the properties
of the nonlinear interaction [43,50], whereas correlations
are provided by the pairwise entanglement induced by
spontaneous PDC. If we assume that the output energy is
equally distributed among the µ modes of each beam, then
the overall multimode state produced by pulsed PDC can
be written as a tensor product of µ identical twin-beam
states, i.e.,

R =
µ
⊗

k=1

|λ〉〉kk〈〈λ|,

|λ〉〉 =
√

1−λ2
∑

n

λn|n〉⊗ |n〉

with λ2 =N/(µ+N), N being the mean total number of
photons in either of the two beams. In our scheme, which
is sketched in fig. 1, conditional preparation is obtained
when one of the two beams undergoes a photon counting
process. If we assume that the detector efficiency η is the
same for each of the µ modes, the probability operator-
valued measure (POVM) {Πm} describing the detection
of m photoelectrons may be written as

Πm =
∑

q

δmγ

µ
⊗

j=1

Πqj ,

where q= {q1, . . . , qµ}, γ =
∑µ
k=1 qk, δhk is the Kronecker

delta, and

Πq = η
q
∞
∑

k=q

(1− η)k−q
(

k

q

)

|k〉〈k|

denotes the single-mode photon counting POVM. The
joint probability distribution of photoelectrons is given by
p12(s, t)=Tr12 [RΠs⊗Πt], that, after some algebra, reads

p12(s, t) =

(

µη

M +µη

)µ( η

1− η
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)(
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Fig. 1: (Color online) Schematic diagram of the experimental
setup. BBO1 and BBO2: nonlinear crystals; F: cut-off filter;
HS: harmonic separators; PH: pin-hole apertures; L: lenses;
MF: multimode optical fibers; HPD: amplified hybrid photo-
detectors; SGI: synchronous gated integrator; PC: digitizing
PC board.

where M = 12Tr12[R
∑

s sΠs⊗
∑

t tΠt] = ηN is the total
mean number of photoelectrons measured on each of the
two beams. Notice that (1) only contains quantities that
can be experimentally accessed by direct detection.
When one beam is detected, say the idler, and t

photoelectrons are obtained in the measurement, the
corresponding conditional state of the signal is given by
%t = 1/p2(t)Tr2 [R I⊗Πt] where p2(t) =

∑

s p12(s, t) is the
marginal probability of measuring t photoelectrons on the
idler beam. After some calculations we arrive at

%t =
∑

q

wt(γ) θ(γ− t)
µ
⊗

k=1

|qk〉〈qk| ,

where θ(x) is the Heaviside step function,

wt(γ) =

(

γ

t

)

ηt(Mt− tη)γ

(Mt+µη)γ [p2(t) (1+M/ηµ)
µ (1− η)t]

and

Mt =Tr1

[

%t
∑

s

sΠs

]

= [t(M + ηµ)+µM(1− η)](M+µ)−1

is the mean number of photoelectrons for the conditional
state %t. Similarly, upon selecting a set of possible results
t∈ T according to a given rule T , a suitable engineering of
the conditional state %T may be achieved. As an example,
we will consider the states

%(±)∗ =
∑

t≷t∗

p2(t) %t

obtained by keeping the photoelectrons on the idler that
are larger or smaller than a given threshold t∗.
The experimental setup is sketched in fig. 1. The

light source was a Nd :YLF ps-pulsed laser (High-Q
Laser Production, Austria) with built-in second and third
harmonic generation. The output at the fundamental
(1047 nm) and that at the third harmonics (349 nm)
were used to produce a UV pump field (261.75 nm) via
noncollinear sum frequency generation in a BBO crystal
(β-BaB2O4, Castech, China, cut angle 37◦, 8mm thick).
The pump was then sent into another BBO crystal

20007-p2



Conditional measurements on multimode pairwise entangled states from SPDC

(Kaston, China, cut angle 48.84◦, 4mm length) to produce
pairwise entanglement at 523.5 nm, in order to match the
peak quantum efficiency (η∼ 50%) of our hybrid photo-
detectors (HPD, R10467U-40, Hamamatsu, Japan). The
UV stray light was cut-off by a filter and by two harmonic
separators. Signal and idler were selected by two pin-
holes (PH of 200 or 300µm diameter in fig. 1), located
at 1m distance from the nonlinear crystal (BBO2) in
order to minimize the number of collected modes. Notice
that the number of temporal modes, which is evaluated
from the marginal detected-photon number distribution,
cannot be reduced at will. The only way to reduce the
number of modes is to select a single spatial mode, which
involves the challenging matching of the collection areas
in signal and idler. The possible mismatch between the
collection areas results in an effective detection efficiency,
reduced in comparison to the nominal efficiency of the
detectors, which can be estimated through the level of
noise reduction R= σ2(s− t)/〈s+ t〉= 1− η [43] exhibited
by two beams. For our beams we obtain, without noise
subtraction, η∼ 0.06. The light passing the pin-holes was
coupled to two multimode optical fibers and delivered to
the detectors, whose outputs were amplified (preamplifier
A250 plus amplifier A275, Amptek), synchronously inte-
grated (SGI, SR250, Stanford), digitized (ATMIO-16E-1,
National Instruments) and, finally, processed off-line. Each
experimental run was performed on 50 000 subsequent
laser shots at fixed values of the pump intensity.
HPD detectors, which play a crucial role in our

conditional scheme, are endowed with a partial photon
number resolving power, that allows the recognition of
a few number of detected-photon peaks in their output.
HPD detectors proved to be useful in reconstructing
the detected-photon number distributions of a number
of optical states without any a priori knowledge of
it [49,51] and the shot-by-shot detected-photon number
correlations [52]. To achieve these results, a novel
method to analyze the output signal of linear detectors
with high gain has been developed [53]. The primary
photon-detection process (e.g. photoelectron emission)
is described by a Bernoullian convolution, whereas the
overall amplification and conversion process is assumed
to correspond to a convolution with the amplification
lineshape of the detection [53]. Actually, the amplification
process may be described by a single multiplicative factor,
γ, if the single-photoelectron response of the detector is
well separated from the zero-peak, which is the case of our
HPD detectors [53]. With these assumptions, the statistics
of the output of the detection apparatus (voltages, v, in
the present case) can be linked to that of the detected
photons. In particular, we can write the mean value as
v= γm= ηγn, η being the overall detection efficiency,
and the variance as σ2(v) = γ2σ2(m) = γ2(η2σ2(n)+
η(1− η)n). By writing the Fano factor of the output
voltages as Fv = σ2(v)/v= (Q/n)v+ γ, we find a linear
dependence on v and observe that the dependence on
the field under investigation is only in the angular

Fig. 2: (Color online) Joint probability distribution of photo-
electrons p12(s, t) compared to the experimental points.
(a) µ= 197, η= 0.06 and M = 13.4; (b) µ= 25, η= 0.056 and
M = 17.1.

coefficient, Q/n, where Q is the Mandel parameter. Thus,
by measuring the Fv at different values of v, we can
obtain γ from a fit of the experimental data. Once γ
is evaluated, it is possible to find the detected-photon
distribution by dividing the v output values by the
experimental value of γ and re-binning the data in
unitary bins [49,51]. Moreover, we demonstrated that by
directly assigning the value of the bin, that is the specific
number of detected photons, to the shot-by-shot value of
the output v, we actually could correctly evaluate photon
number correlations [52]. Here, we exploit HPD detectors
to perform both conclusive and inconclusive conditional
measurements of the photon number statistics [13].
As a first test of the correctness of our multimode

description we checked the expression of p12(s, t) against
data: in fig. 2 we report the experimental joint proba-
bility distribution superimposed to the theoretical one,
evaluated for the experimental values of the parameters
(panel (a): PH= 200µm, µ= 197, η= 0.06 and M = 13.4;
panel (b): PH300µm, µ= 25, η= 0.056 and M = 17.1).
The experimental results fit the theory very well and
the fidelity

∑

st

√

pth12(s, t)p
exp
12 (s, t) exceeds 0.99 for the

whole range of parameters. We also notice that the
marginal probability distributions p1(s) and p2(s) are
multithermal distributions as it has been already observed
in experiments performed at different intensity regimes
[43,49,50].
In fig. 3 we report the photon distributions p1|2(s|T ) =

Tr1[%T Πs] of conditional states as obtained from the
state in fig. 2(a) by choosing the values of the measured
photons on the idler beam according to a given rule
and selecting the corresponding ensemble on the signal
beam. Panel (a) of fig. 3 displays the distributions for the
detected photons state %t obtained by choosing a definite
number of detected photons (t= 10 and t= 15); panel (b)

those for %(+)∗ , obtained by keeping the values of detected
photons larger than a threshold t∗ (t∗ = 11 and t∗ = 17);

finally, panel (c) those for %(−)∗ (t∗ = 8 and t∗ = 15). We
notice that i) the results are in excellent agreement with
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Fig. 3: (Color online) Photon distribution for conditional
states. (a) Experimental results (points) and theoretical distri-
bution (histograms) for the photoelectrons in the conditional
signal state "t for t= 10 (red histogram) and t= 15 (gray
histogram). The black line and the full circles represent, respec-
tively, the theoretical and experimental distribution for the
unconditional state. (b) As in panel (a) for "(+)∗ , t

∗ = 11 (red)

and t∗ = 17 (gray). (c) As in panel (a) for "(−)∗ , t
∗ = 8 (red)

and t∗ = 15 (gray). (d) Experimental mean value of the distri-
butions as a function of the conditioning value (or threshold).

Black circles refer to "t, red circles to "
(+)
∗ and gray circles to

"
(−)
∗ . Solid lines are the theoretical predictions obtained forMt.
The dashed line corresponds to the mean value of the uncon-
ditioned state. The other involved parameters are: µ= 197,
η= 0.06 and M = 13.4.

theory and ii) despite the small value of effective quantum
efficiency the “conditioning power” of the measurement
(i.e. the differences between the conditional states and the
corresponding original ones) is appreciable. This is clearly
illustrated by the behavior of the mean values of the
distributions, which are reported in panel (d) of fig. 3 as a
function of either the conditioning value or the threshold:
the experimental data are in excellent agreement with the
predictions for Mt.
In fig. 4 we show the results for a different dataset having

similar mean value and a considerably lower number of
modes. We note that the results are again in excellent
agreement with theory and that we have a greater “condi-
tioning power” compared to the dataset with a larger
number of modes.
As an application of our model, we have evaluated

the amount of non-Gaussianity of the conditional states.
Indeed, the non-Gaussian character of the conditional
states may be foreseen from the deviation of the
detected-photon statistics from that of the original
state. However, the shape of the distributions (not too
different from the unconditioned ones) and the low value
of the quantum efficiency anticipate that the amount of
non-Gaussianity will be unavoidably small. In order to
assess the performances of our scheme we focus on the
conditional state %t and use the non-Gaussianity measure

Fig. 4: (Color online) Photon distribution for conditional
states. (a) Experimental results (points) and theoretical distri-
bution (histograms) for the photoelectrons in the conditional
signal state "t for t= 13 (red histogram) and t= 19 (gray
histogram). The black line and the full circles represent, respec-
tively, the theoretical and experimental distribution for the
unconditional state. (b) As in panel (a) for "(+)∗ , t

∗ = 17 (red)

and t∗ = 21 (gray). (c) As in panel (a) for "(−)∗ , t
∗ = 10 (red)

and t∗ = 15 (gray). (d) Experimental mean value of the distri-
butions as a function of the conditioning value (or threshold).

Black circles refer to "t, red circles to "
(+)
∗ and gray circles

to "(−)∗ . Solid lines are the theoretical predictions obtained
for Mt. The dashed line corresponds to the mean value of
the unconditioned state. The other involved parameters are:
µ= 25, η= 0.056 and M = 17.1.

δ[%] = S[τ ]−S[%], where S[%] is the Von Neumann
entropy of the state % and τ is the Gaussian reference
state of %, i.e., a Gaussian state with the same mean
value and covariance matrix as %. δ has been proved to
be a proper measure of non-Gaussianity [54], as well
as a critical parameter to asses non-Gaussianity as a
resource [55]. In our case τ is a factorized thermal state
with Mt/ηµ mean photons per mode [54] and the Von
Neumann entropy of the conditional state is given by
S[%t] =−

∑∞
γ=0

(

γ+µ−1
γ

)

wt(γ) logwt(γ). By using the
above expression and the Von Neumann entropy of a
factorized thermal state, we evaluate the non-Gaussianity
and normalize its value to that of a maximally non-
Gaussian state for the same mean number of photons and
modes, i.e., a factorized Fock state [54]. The renormalized
non-Gaussianity δR[%t] is reported in fig. 5 for different
values of the experimental parameters.
As is apparent from the plots the renormalized non-

Gaussianity δR is a decreasing function of the energy of the
conditional state and of the number of modes. The effect
of the quantum efficiency is more relevant for large number
of modes and large energy. As it concerns the conditioning
value t of detected photons, we see that δR monotonically
increases with t, again with the quantum efficiency playing
a major role for large number of modes. Overall, the goal
of achieving high non-Gaussianity requires a small number
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Fig. 5: (Color online) Renormalized non-Gaussianity δR of the
conditional state "t for different values of the experimental
parameters. Top left panel: δR as a function of the total number
of measured photoelectronsMt for t= 5 and for different values
of the quantum efficiency η and of the number of modes µ.
Solid lines are for µ= 197, dotted lines for µ= 25 and dashed
lines for µ= 1. For each group of lines we have, from bottom to
top, η= 6% (red), η= 8% (green), η= 10% (blue) and η= 20%
(black). Top right panel: δR as a function of the conditioning
number t of detected photoelectrons on the idler beam for
Mt = 4 and for different values of the quantum efficiency η
and of the number of modes µ. Solid lines are for µ= 197,
dotted lines for µ= 25 and dashed lines for µ= 1. For each
group of lines we have, from bottom to top, η= 6% (red),
η= 8% (green), η= 10% (blue) and η= 20% (black). Bottom
left panel: δR as a function of the quantum efficiency η for
Mt = 4 and for different values of the conditioning number t of
detected photoelectrons and of the number of modes µ. Solid
lines are for t= 5 and dashed ones for t= 15. From bottom
to top we can see lines for µ= 197 (blue), µ= 25 (green), and
µ= 1 (red). Bottom right panel: δR as a function of the number
of modes µ for Mt = 4 and for different values of conditioning
number t of detected photoelectrons and for the quantum
efficiency η. Solid lines are for t= 2 and dashed lines for t= 15.
For each group of lines we have, from bottom to top, η= 6%
(red), η= 8% (green), η= 10% (blue) and η= 20% (black).

of modes or, at fixed number of modes, a high value of
the quantum efficiency. Since the pulsed nature of the
PDC pump unavoidably leads to a multimode output, the
performances of the present source in the generation of
non-Gaussian states may be improved either by increasing
the overall quantum efficiency, i.e., the matching of the
collection areas in signal and idler beams or by a suitable
source engineering of PDC output [56].
In conclusion, we have suggested and demonstrated a

novel bright source of conditional states based on multi-
mode spontaneous PDC and intensity measurements. We
have developed a theoretical model based only on experi-
mentally accessible quantities and derived closed formulas
for the detection probability, the conditional states and the

corresponding non-Gaussianity. We have compared our
predictions with experimental data and found an excellent
agreement in the whole range of accessible experimental
parameters. Our results clearly indicate the possibility of
quantum state engineering with multiphoton/multimode
conditional states using mesoscopic photon counting and
multimode pairwise correlated states.
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