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We address binary communication channels with symbols encoded in two states of a finite dimensional
Hilbert spaces. For pure states we confirm that the optimal decoding stage, maximizing the mutual
information, coincides with the projective measure that minimizes the error probability (Bayes criterion).
On the other hand, we prove that for communication schemes based on mixed states the optimal
decoding, still being a projective measurement, is generally different from the Bayes’ one, unless the
two density operators commute.
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In a classical noise free communication channel we make the
basic assumption that different letters of input alphabet corre-
spond to mutually exclusive properties of the information carriers.
On the other hand, when the carriers have to be described quan-
tum mechanically, exact discrimination is no longer possible for
nonorthogonal quantum states. An optimization problem thus nat-
urally arises, which is aimed to find the best measurement to be
performed at the end of the channel, according to the extremiza-
tion of a suitable figure of merit [1]. Upon looking at the decoding
stage of a channel as a decision problem optimization corresponds
to the minimization of the error probability or, more generally,
of the Bayes’ mean cost of the inference strategy [2,3]. On the
other hand, from a communication perspective, the quantity to
be maximized is the mutual information between the sender and
the receiver [4]. Optimal measurements according to Bayes’ strat-
egy have been studied for pure states and also for some classes of
mixed signals [5,6]. In this Letter, we consider both the approaches
for the case of binary channels and prove that they lead to the
same measurement for pure states, a result which has been ob-
tained with a different method also in [7], whereas optimization
for mixed signals leads to different measurements, unless the two
density operators commute. The second result is the original con-
tribution of this Letter.

A binary communication channel consists in a sender (Alice)
who encodes symbols 0, 1 in two quantum states, ρ0 and ρ1, and a
receiver (Bob) who decodes the symbols by measuring a two value
probability operator-valued measure (POVM). In general ρ0 and ρ1

* Corresponding author at: Dipartimento di Fisica dell’Università di Milano,
I-20133, Italy.

E-mail address: matteo.paris@fisica.unimi.it (M.G.A. Paris).

are not orthogonal, and thus there are no POVMs that allow Bob to
discriminate exactly the state sent by Alice. The goal of Bob is thus
to optimize the decoding stage in order to retrieve the information
sent by Alice as carefully as possible. To this aim Bob may follow
different strategies, among which we focus on those minimizing
the error probability (Bayes strategy) or maximizing the mutual
information. As we will see, the two strategies are equivalent for
pure-state encoding, whereas they lead to different optimal POVM
for mixed signals.

The POVM that minimizes the error probability may be found
as follows. Upon denoting by p jk the conditional probability to
infer the symbol j when k was sent by Alice, and by z the a
priori probability for the symbol 0, the error probability is given
by Pe(p01, p10, z) = zp10 + (1 − z)p01. Assuming that Alice uses
the states ρ0,ρ1 and Bob implements the POVM Π0 + Π1 = I we
have Pe = z Tr[Π1ρ0] + (1 − z)Tr[Π0ρ1], i.e., Pe = z + Tr[ΛΠ0] =
(1− z) − Tr[ΛΠ1], where Λ = (1− z)ρ1 − zρ0. The optimal POVM,
minimizing the error probability, thus corresponds to a projective
POVM with Π0 being the projector on the subspace spanned by
the eigenvectors associated to the negative eigenvalues of Λ and
Π1 the corresponding projector on the positive subspace of Λ.

If pX (x) is the a priori distribution of Alice’s alphabet, then ev-
ery letter sent by Alice contains on the average an information
given by the Shannon information H(X) = −∑

x pX (x) log pX (x).
Given pY (y), the distribution of Bob’s outcomes, H(Y ) is the
corresponding average information per letter. Upon defining the
Shannon information H(X, Y ) for the joint probability distribu-
tion pX,Y (x, y) we have that the average information shared by
Alice and Bob is measured by the mutual information H(X : Y ) =
H(X)+ H(Y ) − H(X, Y ), which is the quantity Bob wants to maxi-
mize. For a binary channel the mutual information may be written
as a function of the conditional and a priori probabilities as follows
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H = z(1− p10) log
1− p10

q0
+ zp10 log

p10

q1

+ (1− z)p01 log
p01

q0
+ (1− z)(1 − p01) log

1− p01

q1
(1)

where q0 = z(1− p10)+ (1− z)p01 and q1 = zp10 + (1− z)(1− p01)
are the overall (unconditional) probabilities of Bob’s outcomes 0,1.

Let us now assume that Alice encodes symbols onto two pure
states, |ψ0〉 and |ψ1〉 of a finite dimensional Hilbert space. If P
is the projector on the subspace spanned by the two vectors then
p jk = Tr[Π j |ψk〉〈ψk|] = Tr[PΠ j P |ψk〉〈ψk|] where {PΠ0P , PΠ1P } is
a POVM if {Π0,Π1} is a POVM. It follows that in maximizing mu-
tual information, or minimizing error probability, we may focus
to the bidimensional Hilbert space spanned by Alice’s states. As-
suming, without loss of generality, that |ψ0〉 and |ψ1〉 belong to a
bidimensional Hilbert space, we can always find a base {|0〉, |1〉} to
write (see Fig. 1)

ρ j = |ψ j〉〈ψ j | =
1
2

(
I + cosφσ1 + (−) j sinφσ2

)

where φ ∈ [0,π/2]. Analogously a generic two-value POVM may
be written as Π1 = k0σ0 +kxσ1 +kyσ2 +kzσ3, Π0 = I −Π1, where
σk , k = 1,3, are Pauli matrices. The positivity conditions for Π0
and Π1 correspond to 0 ! k0 ! 1 and |&k| ! min(k0,1−k0) with the
conditions k0 = 1/2, |&k| = 1/2, |&k| = (k2x +k2y +k2z )

1/2 corresponding
to a POVM made by orthogonal projectors (PVM). The conditional
probabilities p01 and p10 may be thus written as

p01 = k0 + kx cosφ − ky sinφ,

p10 = 1− k0 − kx cosφ − ky sinφ. (2)

The mutual information is a function of the five variables: k0,
kx , ky , φ, and z. Upon maximizing H over k0,kx,ky (within the
domain imposed by the positivity conditions) we found that the

Fig. 1. Representation of a couple of signals ρ0 and ρ1 on the (x, y) plane of the
Bloch sphere.

optimal POVM is projective, i.e., that the mutual information is
maximal for k0 = 1/2 and k2x + k2y + k2z = 1/4. In order to continue
optimization we parametrize the general PVM as Π0 = 1

2 (I − &n ·σ)
where |&n| = 1, i.e., in the polar representation

Π0 = 1
2
(I − sin θ cosβσ1 − sin θ sinβσ2 − cos θσ3) (3)

where θ ∈ [0,π ] and β ∈ [0,2π ]. The conditional probabilities in
term of the three parameters θ,β,φ rewrites as

p01 = 1
2

(
1− sin θ cos(β + φ)

)
,

p10 = 1
2

(
1+ sin θ cos(β − φ)

)
(4)

which can be used to write the mutual information H(θ,β,φ, z)
and the error probability Pe(θ,β,φ, z) as functions of the four pa-
rameters θ,β,φ and z, φ and z describing Alice’ encoding and
θ and β defining the projective measurement performed by Bob.
The optimization of the measurement scheme thus reduces to
the maximization of H , or the minimization of Pe , with respect
to the variables θ and β . Notice that for φ = 0 the two states
coincide and no information may be sent. We also notice that
H(θ,β,φ, z)=H(θ,β + π,φ, z) and use this symmetry to restrict
the domain to θ,β ∈ [0,π ] × [0,π ]. The maximum of H(θ,β,φ, z)
is located at θ(φ, z) = π

2 and

β(φ, z) ≡ βH = arccos
(

(2z − 1) cosφ

γ

)
(5)

with value

HM(φ, z) = 1
2

[
log cos2 φ + (1− 2z) log

z
1− z

+ γ log
1+ γ

1− γ

]
(6)

where γ =
√
sin2 φ + (2z − 1)2 cos2 φ (see Fig. 2).

For the error probability Pe(θ,β,φ, z) the minimum value is
given by the Helstrom bound

Pe,min(φ, z) = 1
2
[1− γ ] (7)

and is achieved for θ = π/2 and β = βH , i.e., the measurement
maximizing the mutual information coincide with that minimizing
the error probability; both of them are projective measurements
(see Fig. 2).

Let us suppose now that Alice employs two mixed states be-
longing to a bidimensional Hilbert space. We can parametrize two
general mixed states as

ρ j =
1
2

(
I + (1− 2p j) cosφσ1 + (−) j(1− 2p j) sinφσ2

)
, (8)

Fig. 2. Maximum mutual information (left) and minimum error probability (right) as functions of z for some values of φ: φ = 0 (thick line, coinciding with z-axis in the left
graph), φ = π/8 (thin line), φ = π/4 (dot line), φ = π/3 (dashed line), φ = π/2 (large dashed line, coinciding with the z-axis in the right graph).
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Fig. 3. Angle β optimizing the error probability (dashed line), and angle β optimizing the mutual information (solid line) as functions of p0. Top left: for p1 = p0, φ = π/6
and z = 0.6. Other panels: for φ = π/3, z = 0.6 and some values of p1.

Fig. 4. Maximum mutual information (left) and minimum error probability (right) as functions of z for µ0 = 0.68 and µ1 = 0.52 for some values of φ: φ = 0 (thick line),
φ = π/8 (thin line), φ = π/4 (dot line), φ = π/3 (dashed line), φ = π/2 (large dashed line).

with purity of the two signals given by µ j = 1
2 (1 − √

2p j − 1 ).
In a way similar to the one used for pure states it is possi-
ble to prove that the general measure that maximizes the mu-
tual information is a projective measure. Parametrizing the gen-
eral PVM as in the pure states situation we can write the mutual
information and the error probability as functions of six vari-
ables:

H = H(φ, p0, p1, z, θ, β), Pe = Pe(φ, p0, p1, z, θ, β) (9)

where again the variables θ and β define the PVM implemented
by Bob. Upon maximizing mutual information one may prove an-
alytically that also for mixed states θ = π/2. The optimal value of
β may be instead found numerically. Concerning the error prob-
ability, the minimization may be solved analytically leading to
θ = π/2 and

β = arccos
[2z(1 − p0) − δ] cosφ

[δ − 2z(1 − p0)]2 cos2 φ + [δ − 2zp0]2 sin2 φ
(10)

where δ = 1 − 2p1(1 − z). Comparing now the values of β
that maximize mutual information with those minimizing the

error probability it is apparent, see Fig. 3, that they gener-
ally differ. In the limiting case p0 = p1 the POVM that mini-
mizes the error probability does not depend on p0 whereas the
POVM that maximizes mutual information show a clear depen-
dence.

We conclude that the measurement that minimizes error prob-
ability differs from the measurement that maximizes mutual in-
formation. As expected, the states used by Alice commute, then
the two optimizing measurements coincide with the projectors on
the elements of the common basis. In Fig. 4 we report the maxi-
mum mutual information and the minimum error probability as a
function of the a priori probability z and some values of the state
parameters φ, p0, p1. The mutual information no longer vanishes
for φ = 0, as in the pure states case, since the two states are not
generally coincident unless p0 = p1 = 0. Similarly, the error proba-
bility does not vanish for φ = π/2, because the two states are not
perfectly distinguishable unless p0 = p1 = 0.

Of course, also after optimization, the protocol with mixed sig-
nals cannot outperform the pure state one. The point here is that
maximization of H is in general different from minimizing the er-
ror probability, as far as the involved signals are mixed, and that



Author's personal copy

64 N. Tomassoni, M.G.A. Paris / Physics Letters A 373 (2008) 61–64

Fig. 5. Relative gain of mutual information (see text) as a function of the a priori probability for different values of φ and signals’ purities. Top left: µ1 = 0.7, µ2 = 0.8. Top
right: µ1 = 0.9, µ2 = 0.95. Bottom left: µ1 = 0.6, µ2 = 0.55. Bottom right: µ1 = 0.95, µ2 = 0.55. In all the plots the different curves are for, from top to bottom, φ = π/10
(solid black), φ = π/8 (dotted black), φ = π/6 (dashed black), φ = π/4 (solid gray), φ = π/3 (doted gray).

optimization is worth to be performed, as it is apparent from
Fig. 5, where we compare the mutual information achieved with
the optimized measurement with that achievable using Bayes opti-
mal one. We report, for different values of the signals’ purities, the
relative gain of mutual information ,H = (HM − HB)/HM , where
HB is the mutual information obtained by performing he measure-
ment which leads to minimum error probability, as a function of
the a priori probability z.

The expression (6) represent the maximum mutual information,
optimized over two-value POVMs. On the other hand, the maxi-
mum mutual information, optimized over all possible POVMs [8],
is bounded by the so-called accessible information, as expressed by
the Holevo bound

HM ! S(ρ) − zS(ρ0) − (1− z)S(ρ1) = χH (11)

where ρ = zρ0 + (1 − z)ρ1 and S(ρ) = −Tr[ρ lnρ] denotes the
Von Neumann entropy of the state ρ . The Holevo bound is satu-
rated by HM iff one of the following relation is satisfied: z = 0,1,
φ = 0π/2, p0 = 1/2, p1 = 1/2. In the first case we have HM =
χH = 0. In the other cases the states used by Alice to communi-
cate commute. When the bound is saturated the quantity HM is of
course equal to the accessible information.

In conclusion, in a binary communication channel based on
pure states of an arbitrary, finite-dimensional, Hilbert space the

measurement that maximizes the mutual information is a projec-
tive measurement and coincides with the measurement that mini-
mizes the error probability. If the encoding signals are mixed states
belonging to a bidimensional Hilbert space the measurement max-
imizing the mutual information is still a projective measurement
but is generally different from the measurement that minimizes
error probability. Only for “classical” commuting signals, the two
POVMs coincide, and are given by the projectors on the elements
of the common basis. Remarkably, optimization for mixed signals
generally leads to a consistent gain of mutual information com-
pared to the Bayes one. The maximum mutual information over all
two-value measurements is less or equal to the accessible informa-
tion and saturates the Holevo bound when the signals commute.
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