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Multiclass classification of dephasing channels
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We address the use of neural networks (NNs) in classifying the environmental parameters of single-qubit
dephasing channels. In particular, we investigate the performance of linear perceptrons and of two nonlinear
NN architectures. At variance with time-series-based approaches, our goal is to learn a discretized probability
distribution over the parameters using tomographic data at just two random instants of time. We consider
dephasing channels originating either from classical 1/ f α noise or from the interaction with a bath of quantum
oscillators. The parameters to be classified are the color α of the classical noise or the Ohmicity parameter s of
the quantum environment. In both cases, we find that NNs are able to exactly classify parameters into 16 classes
using noiseless data (a linear NN is enough for the color, whereas a single-layer NN is needed for the Ohmicity).
In the presence of noisy data (e.g., coming from noisy tomographic measurements), the network is able to classify
the color of the 1/ f α noise into 16 classes with about 70% accuracy, whereas classification of Ohmicity turns out
to be challenging. We also consider a more coarse-grained task and train the network to discriminate between
two macroclasses corresponding to α ≶ 1 and s ≶ 1, obtaining up to 96% and 79% accuracy using single-layer
NNs.
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I. INTRODUCTION

Noisy intermediate-scale quantum devices are currently
available [1], but the technology does need to overcome
this intermediate stage to allow their full scalability [2]. In
this endeavor, the ability to fully characterize the unavoid-
able impact of the environment on the quantum system of
interest is a cornerstone of the implementation of quantum
information tasks [3,4], including redundancy calibration or
high-fidelity quantum gates. In particular, high-performance
quantum simulators [5], sensors [6], and computers [7] rely
on the precise knowledge of the surrounding environment [8],
which is usually modeled as a complex system, made of many
and uncontrollable degrees of freedom.

Dephasing channels describe the open dynamics of quan-
tum systems that do not exchange energy with their sur-
rounding environments, but are nevertheless affected in their
coherence [9]. If a qubit goes through a dephasing channel, the
environment, in particular the spectral features of the noise,
strongly affects the reduced dynamics of the qubit. Upon
accessing the quantum state of the qubit, it is thus possible
to infer the spectral parameters of the noise. The use of a
single qubit as a quantum probe for environmental parameters
has been extensively analyzed [10–15]. However, in all these
studies the qubit probe must be measured at a very specific
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time in order to achieve high precision. In this paper, we go
beyond this constraint and design a classification technique
which requires tomographic data at just two random instants
of times, within a fixed time window.

We consider two paradigmatic models of dephasing. The
first is the celebrated 1/ f α classical noise originating from the
interaction with a set of classical fluctuators [16]. The second,
referred to as quantum dephasing noise, comes from the inter-
action of the qubit with a bath of bosonic oscillators [3]. The
1/ f α noise is a ubiquitous model of noise, which affects both
quantum and classical systems. The value of the exponent α

is usually referred to as the color of the noise and depends on
the details of the system under investigation [17–23]. If the
environment is a collection of bosonic modes, the spin-boson
model is instead suitable to describe the dephasing dynamics
of a single qubit interacting with the quantum bath.

Machine learning (ML) for physics aims at discovering
and implementing data-driven-adaptive approaches to solve
physical problems. Machine learning is finding a widespread,
growing number of applications in quantum physics in-
cluding quantum tomography [24–29], metrology, sensing
and probing [30–33], entanglement classification [34,35],
quantum thermodynamics [36], quantum control [37], com-
munication [38], and renormalization group. In turn, attention
has been devoted also to open quantum system dynamics
and noise mitigation. Restricted Boltzmann machines and
neural quantum states have found several applications in dy-
namical systems [39–41] undergoing dephasing, and more
recently autoregressive models over experimental data have
been discussed [42]. Other techniques have been considered
also for simulation of open quantum systems, as convex
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optimization for Lindbladian unsupervised tensor network
learning [26], adaptive regression strategy [43], and deep evo-
lutionary approaches. In contrast, long short-term memory
architecture has been shown to offer large improvements in
the arduous problems of noise mitigation and spectrum un-
derstanding [44].

In this paper, we address discrimination (i.e., classification)
problems for single-qubit dephasing channels, originating
from the interaction with either a classical or a quantum en-
vironment. Specifically, we want the network to distinguish
among a discretized set of spectral parameters, i.e., the color
of the noise for classical dephasing and the Ohmicity for
the quantum baths. Our approach relies on the fact that deep
neural networks (NNs) are effective at learning functions or
at replicating the dynamical parameters thereof [45–49]. Our
goal is to infer the environmental parameters by feeding the
network with tomographic data taken at (only) two random
instants of time. In this way, we lift the constraint of the qubit
state being measured at a specific time. We show that NNs
are able to perfectly discriminate between different values of
the spectral parameters as long as we use noiseless data. Noisy
data instead reduce the performance. More specifically, classi-
fication of the color of classical noise is still feasible, whereas
boson baths are more difficult to classify. Higher levels of
accuracy are still accessible by reframing the problem into a
two-class discrimination task, which is of interest in several
potential applications [10,36,50].

The paper is structured as follows. In Sec. II we introduce
the physical model for a dephasing qubit stemming from
either a classical or a quantum environment. In Sec. III we
describe the data-set preparation and we briefly review the
learning models’ salient characteristics and metrics. In Sec. IV
we present our results for two main families of data: noiseless
and noisy data. We address the accuracy and macro F1 score
to evaluate the classification performance. Section V summa-
rizes and discusses the results. All codes for data generation
and numerical experiments are available [51].

II. MODEL

A qubit dephasing channel is described by the quantum
map

ρ(t ) = 1 + �(t )

2
ρ(0) + 1 − �(t )

2
σzρ(0)σz, (1)

where σz is a Pauli matrix, ρ(0) is the initial density ma-
trix of the qubit, and �(t ) is referred to as the dephasing
function. The explicit expression of �(t ) depends on the spe-
cific microscopic model describing the system-environment
interaction. The dephasing map in Eq. (1) may originate
from different mechanisms. Here we consider two of them,
which are relevant to different branches of quantum tech-
nology, corresponding to situations where the qubit interacts
with a classical fluctuating environment or with a bosonic
bath [52,53]. If the qubit interacts with a classical bistable
fluctuator having random switching rates γ , the dephasing
coefficient takes the expression [54]

�c(t, α) =
∫ γ2

γ1

G(t, γ )pα (γ )dγ , (2)

with

G(t, γ ) = e−γ t
[
cosh(δt ) + γ

δ
sinh(δt )

]
, (3)

where δ =
√

γ 2 − 4 and t is dimensionless time. If the prob-
ability distribution pα (γ ) is defined as

pα (γ ) =
{ 1

γ ln(γ2/γ1 ) , α = 1
α−1
γ α

[ (γ1γ2 )α−1

γ α−1
2 −γ α−1

1

]
, α �= 1,

(4)

the overall spectrum of the noise corresponds to a 1/ f α dis-
tribution. As mentioned above, the parameter α is referred to
as the color of the noise, since it determines the weight of the
different frequencies f .

If the qubit is interacting with a bath of quantum oscillators
at zero temperature, the dephasing function has an exponential
decaying form [3]

�q(t, s) = e−�(t,ωc,s), (5)

with

�(t, ωc, s) =
{ 1

2 ln
(
1 + ω2

ct2
)
, s = 1(

1 − cos[(s−1) arctan(ωct )]
[1+ω2

c t2](s−1)/2 �[s − 1], s �= 1,

(6)

where �[x] = ∫ ∞
0 t x−1e−t dt . The quantity ωc is usually re-

ferred to as the cutoff frequency of the bath and s is the
so-called Ohmicity parameter. The Ohmicity governs the be-
havior of the spectrum at low frequency and identifies three
regimes: For s < 1 the spectrum is referred to as sub-Ohmic,
s = 1 represents the Ohmic case, and s > 1 corresponds to a
super-Ohmic environment.

Our aim is to infer the properties of the environment by
exploiting ML techniques. Since the estimation task (regres-
sion in ML jargon) is challenging because it requires inferring
the value of the parameter belonging to a continuous interval,
here we address the problem of classification, i.e., the ability
to discriminate among m different values, called classes, for
the estimated parameter. In particular, we want to discriminate
different values of the parameters α and s in the classical
and quantum cases, respectively. In order to overcome the
constraint of measuring the qubit at a very precise instant of
time, which could be a burden for the experimentalists, we
consider the situation where we have little or no control over
the measurement time. We thus feed the network only with
with two qubit states at two random instants of time.

III. LEARNING TASK AND MODELS

A. Data description

For a generic state |φ〉 = β1|0〉 + β2|1〉, randomly sampled
from the Haar distribution in C2, the associated density matrix
is ρ = |φ〉〈φ| and the state evolved in a dephasing channel is
given by Eq. (1), i.e.,

ρ(t, νl ) =
( |β1|2 β1β

∗
2 �l (t, νl )

β∗
1 β2 �l (t, νl ) |β2|2

)
, (7)

where �l (t, νl ) is the dephasing function with l = c, q and
we identify the noise parameters νc = α and νq = s. In order
to feed the network, we need to know the density matrix
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ρ(t ) at some time. To this aim we should consider a reliable
tomographic measurement, e.g., a symmetric informationally
complete (SIC) positive-operator-valued measure (POVM),
i.e., the set {Mk = |Mk〉〈Mk|,

∑d2

k=1 Mk = dI, rankMk =
1}d2

k=1, where the |Mk〉 are d-dimensional states with the

Hilbert-Schmidt product Tr(MkM j ) = 1+dδk j

d+1 [55,56]. Sym-
metric informationally complete operators are maximally
efficient at estimating the quantum state. For this very reason
they are largely employed in tomography and cryptogra-
phy [55,56] and this makes them good candidates for us as
well.

To build our data sets, we leverage the injective map-
ping between the convex set of density operators and the
set of probability distributions over d2 outcomes pk (t ) =
Tr[Mkρ(t )] [57]. A quantum state of a d-dimensional sys-
tem can be thus expressed as a d2-dimensional real vector
on a regular simplex S immersed in Rd2−1, ‖p�l (t,νl )〉〉 =
(p1, p2, . . . , pd2 )T

�l
, with l = (c, q) (i.e., classical or quan-

tum). Indeed, the subset of the points representing density
matrices in the d2 − 1 simplex corresponds to the d2 − 1 gen-
eralized Bloch sphere vectors [58]. In particular, we consider
the qubit systems, for which the SIC basis can be directly
expressed in term of Pauli matrices [57].

For a given number N of initial density matrices and a fixed
dimensionless-time window D of arbitrary width, we consider
the set of pairs {(t1, t2), t1, t2 ∈ D}. The input states xνl for the
networks are devised as

{t1, t2} → {xνl } = {‖pνl (t1)〉〉 ⊕ ‖pνl (t2)〉〉}.
We create a selection of m arbitrarily chosen classes of bath
parameters �νc = (α1, . . . , αm) and �νq = (s1, . . . , sm), for the
classical and quantum environments, respectively. To build
our data set Dl we collect and shuffle the inputs xνl for the
selected values of the parameter νl ∈ �νl ,

Dl =
N⋃

k=1

⋃
νl ∈�νl

{xνl , νl}ρk , l = c, q, (8)

where ρk is the kth randomly generated density matrix of
Eq. (7) and we use the shorthand notation νl ∈ �νl to indicate
the different elements of the set �νl .

B. Learning models

Our task is to learn the function

f : S ⊕ S → Rm, xνl → yout

mapping the input xνl to the vector yout, i.e., the probability
distribution of the parameter νl over the m classes. The class
with highest probability is then the estimated value of the bath
parameter. The explicit equations for a feedforward neural
network of n − 2 hidden layer are given by

h1 = σ (W1xνl + b1),

...

hn = σ (Wn−1 hn−1 + bn−1),

yout = softmax(hn), (9)

FIG. 1. Schematic diagram of our NN-based classification meth-
ods. We address the use of a linear perceptron, a single-inner-layer
8-5-16 feedforward neural network (in the picture), and a 8-30-30-
30-30-30-16 feedforward NN.

where Wi (i = 1, . . . , n − 1) are the weights that the network
is going to learn during the training phase, hi is the ith network
layer, bi is the bias vectors, and σ is the activation function,
which is the rectified linear unit (ReLU) function ReLU(x) =
max(0, x). When the network maps a function from hi−1 → hi

with dim(hi−1) < dim(hi ), the network is compressing infor-
mation by mapping the input into a lower space. Otherwise the
network is mapping the input to a space of higher dimension.

We use three different models for our analysis: a simple
linear perceptron (LP), which is just an input and an output
layer; a single inner-layer 8-5-16 feedforward neural network,
which is an encoder with a stacked classifier; and an 8-30-30-
30-30-30-16 feedforward NN. By construction, the LP model
will just be able to provide a linear discrimination between the
classes [59]. As usual in machine learning classification tasks,
we employ the softmax activation function on the output layer

softmax(yout
i ) = eyout

i∑d2

j eyout
j

, (10)

which takes the last layer’s output and turns it into a prob-
ability distribution over the target classes (see Fig. 1). This
setup allows us to solve our multinomial logistic regression
problem. As a loss function to train our network, we use
the categorical cross entropy, which quantifies how far the
prediction of the models is from the correct class.

In order to assess the predictions made by our classification
models, we use two performance metrics: accuracy and the
macro F1 score. Both are built from the confusion matrix C,
which is an m × m table where the entry Cjk contains the num-
ber of events where the jth actual class leads to a predicted kth
class. Given a data set of N elements, the first measure is the
accuracy, naturally defined as A = 1

N

∑
j Cj j . However, we

cannot rely on this measure alone, especially when it comes
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to comparing different models. We need a measure that takes
into account the imbalances in the class distribution [60].
In turn, the precision is defined as the number of corrected
predicted instances out of all predicted instances. For each
actual class j, precision is defined as Pj = Cj j∑

k Cjk
. The recall is

instead defined as the number of correctly predicted instances
out of the number of true ones. For each predicted class k,
we have Rk = Ckk∑

j Cjk
. Finally, we define the F1 score for each

class as the harmonic mean F1 j = 2 Pj R j

Pj+Rj
. The overall metric

we use to assess performance is then the macro averaged F1
score

F1 = 1

m

m∑
j=1

F1 j, (11)

which we just refer to as the F1 score hereafter.

IV. RESULTS

A. Data-set preparation

For each data set, we employ N = 2500 Haar-generated
density matrices undergoing the dephasing channel of Eq. (7).
Then we create 1000 time-ordered couples {(t1, t2)} using
110 random times, uniformly distributed in the selected time
window D. In addition, we set the following physical param-
eters: The frequency parameter for colored noise lies in the
interval [γ1, γ2] = [10−4, 104], whereas the cutoff frequency
for the spin-boson model is set to ωc = 1. All the functions
are implemented using a PYTHON library for real and complex
floating-point arithmetic with arbitrary precision [61].

We create different data sets for our experiments as fol-
lows. First, we want to test how our models work with
noiseless data. This is relevant in order to gauge the abso-
lute performance of our learning models. Then we introduce
Gaussian measurement noise into our data xνl . In particular,
we assume that each pi(t ) is affected by a random Gaussian
perturbation, taken from the normal distribution N (0, 0.01).

We then focus on two different classification tasks. First,
for noiseless and noisy data, we establish m = 16 classes �νl . In
particular, we divide the interval α = [0.5, 2] into 16 equally
spaced classes, while for the Ohmic parameter s we picked
unequally spaced ones.1 Then we reshape our noisy data
into two coarse-grained classes �μl = (νl � 1, νl > 1) with
l = c, q. The two-class data sets allow us to assess whether
the network is able to classify data according to a leading
physical property of the environment, i.e., being more or less
colored for classical noise or being sub- or super-Ohmic for
the quantum bath.

All data sets consist of 15.3 × 105 shuffled-input training
data and 3.6 × 105 shuffled-input data for (both) validation
and the test. The time windows are chosen to cover the rel-
evant dynamics of the system such that the curves �l (t, νl )
overlap as little as possible for different values of the pa-
rameter νl . The selected time windows are D = [0.2, 3.14]
for noiseless colored data, D = [0.4, 2.15] for noisy colored

1The Ohmic classes are s = {0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1,

1.3, 1.5, 1.8, 2.0, 2.2, 2.3, 2.8, 3}.

(a)

(b)

FIG. 2. Dephasing terms �c(t, α) and �q(t, s) for (a) classical
colored noise and (b) Ohmic quantum noise. For classical noise we
show �c(t, α) for α in the range [0.5,2] (from dark blue to light
green curves). For quantum noise we show �q(t, s) for s in the range
[0.1,3] (from dark blue to light green curves). The vertical lines in
both panels refer to the time windows D used in the data generation
stage (chosen to contain the relevant dynamics of the system). For
classical noise we have D = [0.2, 3.14] (dashed vertical lines) in the
noiseless case and D = [0.4, 2.15] (solid vertical lines) for the noisy
scenario. For quantum noise we have D = [0.2, 7] in both cases.

data, and D = [0.2, 7] for the bosonic bath (noiseless and
noisy cases; see Fig. 2). We use pure initial states, again to
test the model in ideal conditions, and mixed ones with purity
Tr[ρ(0, νl )2] = 0.72, to mimic realistic noisy conditions. The
mixed states are obtained by depolarizing the initial pure
states.

B. Noiseless measurement data

The noise-free scenario aims to test whether, and to what
extent, a LP or a NN are able to solve the classification prob-
lem using 16 classes for the dephasing parameters. For this
task the NN architecture is set to 8-5-16 with ReLU activation.
For both NN and LP we use the following specifications: batch
size of 300 for training and the data set split into test, train,
and validation, with the validation data set monitoring the
early-stopping function, set at one, to avoid overfitting [62].

For classical colored noise the problem is linear. Our ex-
periments confirm that the problem may be easily solved
with both (LP and NN) models, achieving 100 % accuracy
(and F1 score) with either pure or mixed initial states. In the
Ohmic case, we observe a difference in the performance of
the two classification models. The LP model cannot achieve
perfect classification using pure initial state states, while a
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(a) (b)

FIG. 3. (a) The F1 score and (b) accuracy for Ohmic dephasing
classification for the 16-class problem. For the linear projector, the
F1 score and accuracy values are [0.88,0.9] and [1,1] for pure and
mixed probes, respectively. The NN model achieves perfect clas-
sification for both types of probes. The red dashed line marks the
random guess for the F1 score and accuracy.

single-inner-layer NN achieves perfect environment discrim-
ination. Results are summarized in Fig. 3. We anticipate that
the small differences between the performance of the different
models will be amplified in the realistic scenario, i.e., when
measurement noise is added.

Additionally, we want to understand how our network is
generalized with respect to novel data, by training and testing
the network with data coming from different regions of the
Bloch sphere, e.g., states with a constraint in the component
along the z axis. The train and the test data sets are given by

Dνl = {xνl : |Tr[σz ρ(0, νl )]| < 0.7} (train and validation),

Dνl = {xνl : 0.7 < |Tr[σzρ(0, νl )]| < 0.8} (test).

In this way, we can ensure that the test states are always
far enough and separated from our train or validation set. In
this case, we use the 8-5-16 architecture and the experiment
aims to assess whether the network is truly inferring the bath
parameters from the {xνl } inputs or we are just overfitting.
Results for the single-layer NN confirm that our model is able
to classify novel data. Indeed, we obtain perfect scoring for
accuracy and macro F1 (both 100%). This provides further
evidence in favor of our basic hypothesis: The network is
learning a function able to catch the hallmark of the baths.

Finally, we also consider a situation in which we train the
network over initial pure states and test it with mixed initial
states. Specifically, the data sets are

Dνl = {xνl Tr[ρ2(0, νl )] = 1} (train),

Dνl = {xνl Tr[ρ2(0, νl )] = 0.72} (test).

The test data set is obtained by depolarizing the initial pure
states. We consider the 16-class problem and use the 8-5-16
model. The batch size is equal to 300 and early stopping
is set to one. The above single-layer NN is indeed able to

(a) (b)

FIG. 4. (a) The F1 score and (b) accuracy for noisy classification
for colored dephasing using 16 classes. For this task the three dif-
ferent models increase in complexity stepwise, offering us a global
view of the increasing level of difficulty of the task. The LP model
F1 score and accuracy values are [0.05, 0.07] for pure initial states
and [0.01, 0.05] for mixed ones. The single-layer NN model values
are [0.34, 0.36] for initial pure states and [0.29, 0.31] for mixed.
With the five-layer model NN we achieve [0.690, 0.695] for pure
states and [0.64, 0.65] for mixed ones. The red dashed line marks the
random guess for the F1 score and accuracy.

discriminate the bath parameters, obtaining an accuracy
∼100% for the color α and ∼88% for the Ohmicity s.

C. Noisy measurement data

If data are affected by Gaussian noise, the performance of
LP and NN models degrades. In particular, LPs fail to classify
parameters due to the strong nonlinearity of the problem.
For the 16-class problem, we employ both the 8-5-16 NN
model and 8-30-30-30-30-30-16 NN architecture. Batch size
and early stopping parameters are left unchanged. Similar
architectures have been exploited in other applications facing
noisy data sets [27,63].

Results for the colored noise classification case are shown
in Fig. 4. The LP model apparently fails at classifying noise,
reaching at most the order of the random guess (∼0.06). The
nonlinear NN architectures can instead achieve higher values
of F1 score and accuracy by increasing the number of layers.
We find that for the 16-class problem, the noisy case requires
wider inner layers. In other words, data are mapped into a
space of higher dimension than their initial one. In order to
illustrate the model statistics, we report the confusion matrix
for the 16-class colored classical noise (mixed initial state)
in Appendix B. The confusion matrix suggests that with the
addition of the noise the models tend to confuse some of
the classes. The classification task is instead challenging in
the Ohmic noisy case, where the best performer is the five-
inner-layer model and is able to achieve an accuracy of 0.25,
corresponding to an F1 score equal to 0.22.

Our results show that the classification task for the Ohmic
noise parameters is in general a harder problem. This behavior
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(a) (b)

(c) (d)

FIG. 5. (a) and (c) The F1 score and (b) and (d) accuracy for the
two-class classification problem involving (a) and (b) colored and
(c) and (d) Ohmic noise. For colored noise, the largest values of the
F1 score and accuracy are obtained by the single-layer NN (0.96%)
for pure states, while for mixed states the two models are almost
equivalent. For Ohmic dephasing, we obtain the best results with
the five-layer NN with pure states and with the single-layer NN for
mixed states. The red dashed line denotes the random guess threshold
for the F1 score and accuracy.

is due to the fact that the 16 classes in the Ohmic case are
closer to each other, in terms of SIC POVMs.

Two-class classification problem

In order to investigate the problem from a physically driven
perspective, we also consider the case where the network is
given the problem to distinguish between the α ≶ 1 regimes
for the classical noise and sub- or super-Ohmic dephasing
(s ≶ 1) for the quantum bath. Results are illustrated in Fig. 5,
which shows how the problem is nonlinear and highly depen-
dent on the classical or quantum nature of the environment.
For classical colored noise with pure initial states, the best
performer is the single-layer NN, able to achieve 96% in
both accuracy and F1. For mixed states, the corresponding
values of F1 and accuracy are 83% and 82%, just 1% less
with respect to the five-layer NN, however obtained with a
simpler architecture. Indeed, the model deals with the noise

perturbations efficiently. This is further evidence that the net-
work captures the physically identifying characteristic of the
environment parameters.

For the quantum bath with mixed initial states, a 8% ad-
vantage is gained by the one-layer model. In contrast, for pure
initial states the five-layer model leads to a higher accuracy
and F1 score. This behavior may be understood by consider-
ing the data sparseness. Indeed, if we add an L1 regularization
term [64] the network may reach up to 81% accuracy and 80%
for F1 score. Overall, the single-layer network turns out to be
the most efficient model for tackling the two-class task.

V. CONCLUSION

In this paper, we have analyzed the use of neural networks
to classify the noise parameter of dephasing channels. We
have considered channels originating either from classical
1/ f α noise or from the interaction with a bath of quantum
oscillators. Our strategy involves the use of a single qubit
to probe the channel and requires, to train the classifying
network, the knowledge of the qubit density matrix at just two
random instants of time within a fixed time window.

First we showed that the qubit dephasing problem may be
recast into a linear discrimination task, solvable with minimal
resources, e.g., basic ML models. In particular, we showed
that our network is able to exactly classify spectral param-
eters into 16 classes using noiseless data. Then, in order to
assess the performance in a more realistic scenario, we added
Gaussian noise to data. For the 16-class task linearity is lost
for both colored and Ohmic dephasing. The classical noise
classification is still feasible with a five-layer NN model, lead-
ing to relatively high accuracy, whereas quantum dephasing
classification is prone to fail. We also trained the network
to discriminate between two macro classes, involving either
α ≶ 1 or s ≶ 1. In these cases the single-layer model outpaces
the five-layer one, reaching levels of F1 and accuracy of 96%
for the colored and 79% for the Ohmic environment.

Our results confirm the feasibility of the approach, i.e.,
the use of neural networks in classifying the environmen-
tal parameters of single-qubit dephasing channels. This is
remarkable in view of the small number of experimental mea-
surements required (the state at two random instants of time)
to use the network. Our results show that, in general, bosonic
baths are more demanding to discriminate compared to clas-
sical 1/ f α noise and that NNs may not be able to achieve
multiclass classification of quantum noise. For the simpler
task of two-class classification a single-layer NN is able to
effectively discriminate noise, either classical or quantum.

Our results show that quantum probing may be effectively
enhanced by the use of NNs, which provide a way to effec-
tively extract information from tomographic data, and pave
the way for future investigations devoted to more advanced
and in-depth architectures for realistic use cases, e.g., to reveal
the reason for the bosonic bath hardships. Future outlooks
also include the possibility to give a solid contribution to
the task of environmental characterization, by overcoming the
assumption of the decoherence model and investigate whether
it is possible to train a network without any previous knowl-
edge about the noise. This is a big challenge that needs to be

052412-6



MULTICLASS CLASSIFICATION OF DEPHASING … PHYSICAL REVIEW A 104, 052412 (2021)

addressed in steps, each requiring a tailored solver. From this
perspective, this work sets the ground to attack this problem.

APPENDIX A: SINGLE-QUBIT SIC POVM

Symmetric informationally complete positive-operator-
valued measurements are described by the set of operators
{Mk = |Mk〉〈Mk|}d2

k=1 that satisfy the following properties:∑d2

k=1 Mk = d I and Tr(MkM j ) = 1+dδk j

d+1 . The |Mk〉 are nor-
malized d-dimensional vectors. For a single qubit, i.e., d = 2,
we choose

|M1〉 = |0〉, |M2〉 = 1√
3
|0〉 +

√
2√
3
|1〉,

|M3〉 = 1√
3
|0〉 +

√
2√
3
ei(2π/3)|1〉,

|M4〉 = 1√
3
|0〉 +

√
2√
3
ei(4π/3)|1〉

in the {|0〉, |1〉} basis.

APPENDIX B: 16-CLASS CONFUSION MATRICES

For the sake of completeness, we report here (see Fig. 6)
an example of a confusion matrix for a 16-class classifica-
tion task involving classical colored noise and initially mixed
states in the presence of noise. Similar patterns may be
observed for pure initial states. The good accuracy level is wit-
nessed by the higher values of the diagonal entries, whereas
the good F1 score is achieved because the off-diagonal ele-
ments are smaller. Notice that the accuracy starts to drop from
the class α = 1.2 and a larger drop may be seen in the range
[1.7, 2], where the off-diagonal entries take non-negligible
values. This introduces a geometrical consideration inspired

FIG. 6. Confusion matrix for a 16-class classification model in-
volving mixed states undergoing a colored noise dephasing and
subject to Gaussian noise in the tomographic stage (red denotes
higher values and light blue lower ones). The higher contributions
to the confusion correspond to the region α = [1.7, 2], where the
dephasing factors become closer and closer, which makes it very
difficult for the network to find optimal separating hyperplanes.

by the behavior of the dephasing factor �c(t, α): When noise
is added, the data are no longer well separated. The smaller the
difference |�c(t, α j ) − �c(t, α j+1)| is, the harder it is for the
network to identify an optimal separating hyperplane between
classes j and j + 1. This is especially true for the classes
α ∈ [1.7, 2].

[1] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng,
Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang,
W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z.
Wang et al., Science 370, 1460 (2020).

[2] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert,
D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M.
Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff,
I. Walmsley, and F. K. Wilhelm, New J. Phys. 20, 080201
(2018).

[3] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[4] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, 2009).

[5] T. H. Johnson, S. R. Clark, and D. Jaksch, EPJ Quantum
Technol. 1, 10 (2014).

[6] M. A. C. Rossi, F. Albarelli, D. Tamascelli, and M. G. Genoni,
Phys. Rev. Lett. 125, 200505 (2020).

[7] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco,
npj Quantum Inf. 6, 1 (2020).

[8] C. Foti, T. Heinosaari, S. Maniscalco, and P. Verrucchi,
Quantum 3, 179 (2019).

[9] S. Cialdi, M. A. C. Rossi, C. Benedetti, B. Vacchini, D.
Tamascelli, S. Olivares, and M. G. A. Paris, Appl. Phys. Lett.
110, 081107 (2017).

[10] C. Benedetti, F. Buscemi, P. Bordone, and M. G. A. Paris,
Phys. Rev. A 89, 032114 (2014).

[11] C. Benedetti and M. G. Paris, Phys. Lett. A 378, 2495
(2014).

[12] C. Benedetti, F. Salari Sehdaran, M. H. Zandi, and M. G. A.
Paris, Phys. Rev. A 97, 012126 (2018).

[13] Q. Bouton, J. Nettersheim, D. Adam, F. Schmidt, D. Mayer, T.
Lausch, E. Tiemann, and A. Widera, Phys. Rev. X 10, 011018
(2020).

[14] D. Tamascelli, C. Benedetti, H.-P. Breuer, and M. G. A. Paris,
New J. Phys. 22, 083027 (2020).

[15] I. Gianani, D. Farina, M. Barbieri, V. Cimini, V. Cavina, and V.
Giovannetti, Phys. Rev. Research 2, 033497 (2020).

[16] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler,
Rev. Mod. Phys. 86, 361 (2014).

[17] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang,
H. Wang, C. C. Yu, R. Q. Wu, D. P. Pappas, and R. McDermott,
Phys. Rev. Appl. 6, 041001(R) (2016).

[18] P. H. Handel, 2017 Joint Conference of the European Frequency
and Time Forum and IEEE International Frequency Control
Symposium (EFTF/IFCS) (IEEE, Piscataway, 2017), pp. 257–
260.

[19] L. A. Pachón, A. Relaño, B. Peropadre, and A. Aspuru-Guzik,
Phys. Rev. E 98, 042213 (2018).

052412-7

https://doi.org/10.1126/science.abe8770
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1140/epjqt10
https://doi.org/10.1103/PhysRevLett.125.200505
https://doi.org/10.1038/s41534-019-0235-y
https://doi.org/10.22331/q-2019-08-26-179
https://doi.org/10.1063/1.4977023
https://doi.org/10.1103/PhysRevA.89.032114
https://doi.org/10.1016/j.physleta.2014.06.043
https://doi.org/10.1103/PhysRevA.97.012126
https://doi.org/10.1103/PhysRevX.10.011018
https://doi.org/10.1088/1367-2630/aba0e5
https://doi.org/10.1103/PhysRevResearch.2.033497
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/PhysRevApplied.6.041001
https://doi.org/10.1103/PhysRevE.98.042213


PALMIERI, BIANCHI, PARIS, AND BENEDETTI PHYSICAL REVIEW A 104, 052412 (2021)

[20] J. Bergli, Y. M. Galperin, and B. L. Altshuler, New J. Phys. 11,
025002 (2009).

[21] K. A. Kazakov, Phys. Lett. A 384, 126812 (2020).
[22] M. M. Glazov and E. Y. Sherman, Phys. Rev. Lett. 107, 156602

(2011).
[23] A. V. Shumilin, E. Y. Sherman, and M. M. Glazov, Phys. Rev.

B 94, 125305 (2016).
[24] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,

and G. Carleo, Nat. Phys. 14, 447 (2018).
[25] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita,

Nat. Mach. Intell. 1, 155 (2019).
[26] G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla,

and L. Aolita, arXiv:2006.02424.
[27] A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe,

J. D. Biamonte, and S. Kulik, npj Quantum Inf. 6, 20 (2020).
[28] S. Ahmed, C. S. Muñoz, F. Nori, and A. F. Kockum, Phys. Rev.

Lett. 127, 140502 (2021).
[29] D. Bondarenko and P. Feldmann, Phys. Rev. Lett. 124, 130502

(2020).
[30] L. J. Fiderer, J. Schuff, and D. Braun, PRX Quantum 2, 020303

(2021).
[31] V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, and

M. Barbieri, Phys. Rev. Lett. 123, 230502 (2019).
[32] V. Cimini, E. Polino, M. Valeri, I. Gianani, N. Spagnolo, G.

Corrielli, A. Crespi, R. Osellame, M. Barbieri, and F. Sciarrino,
Phys. Rev. Appl. 15, 044003 (2021).

[33] G. Garau Estarellas, G. L. Giorgi, M. C. Soriano, and R.
Zambrini, Adv. Quantum Technol. 2, 1800085 (2019).

[34] Y. Ma and M. Yung, npj Quantum Inf. 4, 34 (2018).
[35] C. Harney, S. Pirandola, A. Ferraro, and M. Paternostro, New J.

Phys. 22, 045001 (2020).
[36] P. Sgroi, G. M. Palma, and M. Paternostro, Phys. Rev. Lett. 126,

020601 (2021).
[37] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A. Polkovnikov,

and P. Mehta, Phys. Rev. X 8, 031086 (2018).
[38] J. Wallnöfer, A. A. Melnikov, W. Dür, and H. J. Briegel, PRX

Quantum 1, 010301 (2020).
[39] M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502

(2019).
[40] S. Bandyopadhyay, Z. Huang, K. Sun, and Y. Zhao,

Chem. Phys. 515, 272 (2018).
[41] F. Vicentini, A. Biella, N. Regnault, and C. Ciuti, Phys. Rev.

Lett. 122, 250503 (2019).
[42] E. Flurin, L. S. Martin, S. Hacohen-Gourgy, and I. Siddiqi,

Phys. Rev. X 10, 011006 (2020).

[43] A. Goldschmidt, E. Kaiser, J. L. DuBois, S. L. Brunton, and
J. N. Kutz, New J. Phys. 23, 033035 (2021).

[44] D. F. Wise, J. J. L. Morton, and S. Dhomkar, PRX Quantum 2,
010316 (2021).

[45] J. Hermann, Z. Schätzle, and F. Noé, Nat. Chem. 12, 891
(2020).

[46] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys. Rev.
Lett. 120, 024102 (2018).

[47] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Chaos 27,
121102 (2017).

[48] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu,
Sci. Rep. 8, 6085 (2018).

[49] A. P. Trischler and G. M. D’Eleuterio, Neural Netw. 80, 67
(2016).

[50] S. Hesabi, D. Afshar, and M. G. Paris, Opt. Commun. 437, 377
(2019).

[51] https://github.com/AdriQD/multiclass-classification-
dephasing-channel.

[52] C. Benedetti, F. Buscemi, P. Bordone, and M. G. Paris, Int. J.
Quantum Inf. 10, 1241005 (2012).

[53] S. Razavian, C. Benedetti, M. Bina, Y. Akbari-Kourbolagh, and
M. G. A. Paris, Eur. Phys. J. Plus 134, 284 (2019).

[54] C. Benedetti, M. G. A. Paris, and S. Maniscalco, Phys. Rev. A
89, 012114 (2014).

[55] A. E. Rastegin, Phys. Scr. 89, 085101 (2014).
[56] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,

J. Math. Phys. 45, 2171 (2004).
[57] C. A. Fuchs and R. Schack, Rev. Mod. Phys. 85, 1693

(2013).
[58] J. I. Rosado, Found. Phys. 41, 1200 (2011).
[59] M. Minsky and S. A. Papert, Perceptron: An Introduction to

Computational Geometry (MIT Press, Cambridge, 1969).
[60] C. D. Manning, R. Prabhakar, and H. Schütze, Introduction

to Information Retrieval (Cambridge University Press, Cam-
bridge, 2009).

[61] F. Johansson et al., mpmath: A Python library for arbitrary-
precision floating-point arithmetic, version 0.18, 2013, avail-
able at http://mpmath.org/.

[62] Neural Networks: Tricks of the Trade, edited by G. Montavon,
G. B. Orr, and K. R. Müller, Lecture Notes in Computer Science
Vol. 7700 (Springer, Berlin, 2012).

[63] T. Xin, S. Lu, N. Cao, G. Anikeeva, D. Lu, J. Li, G. Long, and
B. Zeng, npj Quantum Inf. 5, 109 (2019).

[64] P. Bühlmann and S. van de Geer, Statistics for High-
Dimensional Data (Springer, Berlin, 2011).

052412-8

https://doi.org/10.1088/1367-2630/11/2/025002
https://doi.org/10.1016/j.physleta.2020.126812
https://doi.org/10.1103/PhysRevLett.107.156602
https://doi.org/10.1103/PhysRevB.94.125305
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s42256-019-0028-1
http://arxiv.org/abs/arXiv:2006.02424
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1103/PhysRevLett.127.140502
https://doi.org/10.1103/PhysRevLett.124.130502
https://doi.org/10.1103/PRXQuantum.2.020303
https://doi.org/10.1103/PhysRevLett.123.230502
https://doi.org/10.1103/PhysRevApplied.15.044003
https://doi.org/10.1002/qute.201800085
https://doi.org/10.1038/s41534-018-0081-3
https://doi.org/10.1088/1367-2630/ab783d
https://doi.org/10.1103/PhysRevLett.126.020601
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PRXQuantum.1.010301
https://doi.org/10.1103/PhysRevLett.122.250502
https://doi.org/10.1016/j.chemphys.2018.05.019
https://doi.org/10.1103/PhysRevLett.122.250503
https://doi.org/10.1103/PhysRevX.10.011006
https://doi.org/10.1088/1367-2630/abe972
https://doi.org/10.1103/PRXQuantum.2.010316
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.5010300
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1016/j.neunet.2016.04.001
https://doi.org/10.1016/j.optcom.2019.01.018
https://github.com/AdriQD/multiclass-classification-dephasing-channel
https://doi.org/10.1142/S0219749912410055
https://doi.org/10.1140/epjp/i2019-12708-9
https://doi.org/10.1103/PhysRevA.89.012114
https://doi.org/10.1088/0031-8949/89/8/085101
https://doi.org/10.1063/1.1737053
https://doi.org/10.1103/RevModPhys.85.1693
https://doi.org/10.1007/s10701-011-9540-9
http://mpmath.org/
https://doi.org/10.1038/s41534-019-0222-3

