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We address the generation, propagation, and application of multipartite continuous variable entanglement in
a noisy environment. In particular, we focus our attention on the multimode entangled states achievable by
second-order nonlinear crystals—i.e., coherent states of the SU�m ,1� group—which provide a generalization
of the twin-beam state of a bipartite system. The full inseparability in the ideal case is shown, whereas
thresholds for separability are given for the tripartite case in the presence of noise. We find that entanglement
of tripartite states is robust against thermal noise, both in the generation process and during propagation. We
then consider coherent states of SU�m ,1� as a resource for multipartite distribution of quantum information and
analyze a specific protocol for telecloning, proving its optimality in the case of symmetric cloning of pure
Gaussian states. We show that the proposed protocol also provides the first example of a completely asym-
metric 1→m telecloning and derive explicitly the optimal relation among the different fidelities of the m
clones. The effect of noise in the various stages of the protocol is taken into account, and the fidelities of the
clones are analytically obtained as a function of the noise parameters. In turn, this permits the optimization of
the telecloning protocol, including its adaptive modifications to the noisy environment. In the optimized
scheme the clones’ fidelity remains maximal even in the presence of losses �in the absence of thermal noise�,
for propagation times that diverge as the number of modes increases. In the optimization procedure the
prominent role played by the location of the entanglement source is analyzed in details. Our results indicate
that, when only losses are present, telecloning is a more effective way to distribute quantum information than
direct transmission followed by local cloning.
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I. INTRODUCTION

Entanglement plays a fundamental role in quantum infor-
mation, being recognized as the essential resource for quan-
tum computing, teleportation, and cryptographic protocols.
In the framework of quantum information with continuous
variables �CV’s� �1,2� the possibility of generating and ma-
nipulating entanglement allowed the realization of a variety
of quantum protocols, such as teleportation, cryptography,
dense coding, and entanglement swapping. In these protocols
the source of entanglement is the bipartite twin-beam state of
two modes of radiation, usually generated by parametric
down-conversion in ��2� crystals. However, recent experi-
mental progresses �3� show that the coherent manipulation of
entanglement between more than two modes may be
achieved with current technology. This opens the opportunity
to realize a true quantum-information network, in which the
information can be stored, manipulated, and distributed
among many parties, in a fashion resembling the current
classical telecommunication networks. In a realistic imple-
mentation, entanglement needs to be transmitted along
physical channels, such as optical fibers or the atmosphere.
As a matter of fact, the propagation and influence of the
environment unavoidably lead to degradation of entangle-
ment, owing to decoherence effects induced by losses and
thermal noise. In this scenario, it is worth studying the en-
tanglement properties and the possible applications of multi-
partite systems in noisy environments, which will be the sub-
ject of this paper.

A prominent class of CV states is constituted by the
Gaussian states. They can be theoretically characterized in a
convenient way and generated and manipulated experimen-

tally in a variety of physical systems. In a quantum-
information setting, entangled Gaussian states provide the
basis for the quantum-information protocols mentioned
above. The basic reason for this is that the QED vacuum and
radiation states at thermal equilibrium are themselves Gauss-
ian states. This observation, in combination with the fact that
the evolutions achievable with current technology are de-
scribed by Hamiltonian operators at most bilinear in the
fields, accounts for the fact that the states commonly pro-
duced in laboratories are Gaussian. Indeed, bilinear evolu-
tions preserve the Gaussian character. As we already men-
tioned, the outmost used source of CV entanglement are the
twin beams, which belong to the class of bipartite Gaussian
states. In a group-algebraic language, they are the coherent
states of the group SU�1,1�—i.e., the states evolved from
vacuum via a unitary realization of the group. Within the
class of Gaussian states, the simplest generalization of twin
beams to more than two modes is the coherent states of the
group SU�m ,1�. Indeed, these states can be generated by
multimode parametric processes in second-order nonlinear
crystals, with Hamiltonians that are at most bilinear in the
fields. In particular, these processes involve m+1 modes of
the field a0 ,a1 ,… ,am, with mode a0 that interacts through a
parametric-amplifier-like Hamiltonian with the other modes,
whereas the latter interact one each other only via a beam-
splitter-like Hamiltonian �4,5�. In the framework of CV
quantum information, the first proposal to produce such
states was given in Ref. �6�, where a half of a two-mode
squeezed vacuum state interacts with m vacua via a proper
sequence of beam splitters. Other unitary realizations of the
algebra of SU�m ,1� have been proposed, in optical settings
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�7,8� as well as with cold atoms �9� or optomechanical sys-
tems �10�. In these schemes the Hamiltonian of the system,
rather than involving a sequence of two-mode interactions, is
realized via simultaneous multimode interactions. Experi-
mental realizations of tripartite entanglement in the optical
domain have been recently reported �3�.

In this work we do not focus on any specific implemen-
tation of the SU�m ,1� evolution. Rather, we will analyze the
entanglement properties of SU�m ,1� coherent states in a uni-
fied fashion valid for a generic Hamiltonian of this kind. As
we will see in Sec. II, this is allowed by the observation that
the coherent states of SU�m ,1� have a common structure,
which can be conveniently written in the Fock representation
of the field �5�. In particular, the degradation effects of both
the thermal background in the generation process and losses
and thermal photons in the propagation will be outlined. The
robustness of these states against noise will be analyzed in
Sec. III where it will be also compared with the bipartite
case.

As already mentioned, one of the main results in CV
quantum communication concerned the realization of the
teleportation protocol �for a recent experiment see �11��. The
natural generalization of standard teleportation to many par-
ties corresponds to a telecloning protocol �12�. Teleportation
is based on the coherent states of SU�1,1�, which provide the
shared entangled states supporting the protocol. Thus, in or-
der to implement a multipartite version of this protocol, one
is naturally led to consider a shared entangled state produced
by a generic SU�m ,1� interaction. The telecloning protocol
will be analyzed in detail in Sec. IV. As concerns cloning
with CV’s, there are general results to assess the optimality
of the n→m symmetric cloning of coherent states �13�. Op-
timal local unitary realizations of such schemes have been
proposed in �14,15�, and an experimental realization of 1
→2 cloning has been recently reported �16�. Concerning
telecloning, existing proposals are about the optimal 1→m
symmetric cloning of pure Gaussian states, using a particular
coherent state of SU�m ,1� as support �6�. Recently, a pro-
posal which makes use of partially disembodied transport
has also been reported �17�. In view of the realization of a
quantum-information network, one is naturally led to con-
sider the possibility to retrieve different amounts of informa-
tion from different clones. This means that one may consider
the possibility to produce clones different one from each
other, in what is called asymmetric cloning. Examples of
optimal 1→2 asymmetric cloning are given in Refs. �15,18�,
where local and nonlocal realizations are considered. In this
work, we will see how the telecloning protocol involving a
generic coherent state of SU�m ,1� provides the first example
of a completely asymmetric 1→m cloning of pure Gaussian
states. In this sense, we provide a generalization of the pro-
posal in Ref. �6� to the asymmetric case. Moreover, we found
an expression for the maximum fidelity achievable by one
clone when the fidelities of the others are fixed to prescribed
values, thus giving explicitly the trade-off between the quali-
ties of the different clones.

In Sec. V we will analyze the effect of noise in each step
of the telecloning protocol. As expected, the presence of both
thermal noise and losses unavoidably leads to a degradation

of the cloning performances. Nevertheless, we will show that
the protocol can be optimized in order to reduce these deg-
radation effects. In particular, one may optimize not only the
energy of the entangled support, but also the location of the
source of entanglement itself. Remarkably, when only losses
are considered, this optimization completely cancels the de-
grading effects of noise on the fidelity of the clones. This
happens for finite propagation times which, however, diverge
as the number of modes increases.

We conclude the paper with Sec. VI, where the main re-
sults will be summarized.

II. MULTIMODE PARAMETRIC INTERACTIONS:
SU„m ,1… COHERENT STATES

Let us consider the set of bilinear Hamiltonians expressed
by

Hm = �
l�k=1

m

�kl
�1�akal

† + �
k=1

m

�k
�2�aka0 + H.c., �1�

where �ak ,al�=0 and �ak ,al
†�=�k,l �k , l=0,… ,m� are inde-

pendent bosonic modes. A conserved quantity is the differ-
ence D between the total mean photon number of the mode
a0 and the remaining modes, in the formula

D = �
k=1

m

ak
†ak − a0

†a0. �2�

The transformations induced by Hamiltonian �1� correspond
to the unitary representation of the SU�m ,1� algebra �5�.
Therefore, the set of states obtained from the vacuum coin-
cides with the set of SU�m ,1� coherent states—i.e.,

��m� � exp	− iHmt
�0� = exp��
k=1

m

�kak
†a0

† − H.c.��0� ,

�3�

where �k are complex numbers, parametrizing the state,
which are related to the coupling constants �kl

�1� and �k
�2� in

Eq. �1�. Upon defining

Ck = �k

tanh�
r=1

m

��r�2�
�
r=1

m

��r�2
,

��m� in Eq. �3� can be explicitly written as

��m� = �Zm�
	n


C1
n1C2

n2
¯ Cm

nm��n1 + n2 + ¯ + nm�!
�n1 ! n2 ! ¯ nm!

���
k=1

m

nk;	n
� , �4�

where 	n
= 	n1 ,n2 ,… ,nm
. The sums over n are extended
over natural numbers, and Zm=1−�k=1

m �Ck�2 is a normaliza-
tion factor. We see that for m=1 one recovers the twin-beam
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state. Notice that, being interested in the entanglement prop-
erties and applications of states ��m�, we can take the Ck’s
coefficients as real numbers. In fact one can put to zero the
possible phases associated with each Ck by performing a
proper local unitary operation on mode ak, which in turn
does not affect the entanglement of the state. Calculating the
expectation values of the number operators Nk= �ak

†ak� on the
multipartite state ��m� one may reexpress the coefficient in
Eq. �4� as follows:

Ck =  Nk

1 + N0
�1/2

, Zm =
1

1 + N0
�k = 1,…m� . �5�

In order to obtain Eq. �5� we have considered Eq. �2� with
D=0 �vacuum input�, from which it follows that

N0 = �
k=1

m

Nk, �6�

and repeatedly used the following identity:

�
n=0

�

xn �n + a�!
n!

= a ! �1 − x�−1−a. �7�

The case D�0 will be considered in the next section, in
which the effects of thermal background will be taken into
account. The basic property of states in Eq. �4� is their full
inseparability; i.e., they are inseparable for any grouping of
the modes. To prove this statement first notice that, being
evolved with a bilinear Hamiltonian from the vacuum, the
states ��m� are pure Gaussian states. They are completely
characterized by their covariance matrix �, whose entries are
defined as

���kl =
1

2
�	Rk,Rl
� − �Rl��Rk� , �8�

where 	A ,B
=AB+BA denotes the anticommutator, R
= �q0 , p0 ,… ,qm , pm�T and the position and momentum opera-
tor are defined as qk= �ak+ak

†� /�2 and pk= �ak−ak
†�i /�2. The

covariance matrix for the states ��m� reads as

�m =�
N0 A1 A2 ¯ Am

A1 N1 B1,2 ¯ B1,m

A2 B1,2 N2 � �

� � � � Bm−1,m

Am B1,m ¯ Bm−1,m Nm

� , �9�

where the entries are given by the following 2�2 matrices
�k=0,… ,m, h=1,… ,m, j=2,… ,m, and 0� i� j�:

Nk = Nk +
1

2
�1, Ah = �Nh�N0 + 1�P, Bi,j = �NiNj1 ,

�10�

with 1=Diag�1,1� and P=Diag�1,−1�. Since ��m� are pure
states, full inseparability can be demonstrated by showing
that the Wigner function does not factorize for any grouping
of the modes, which in turn is ensured by the explicit expres-

sion of the covariance matrix �m given above �as soon as
Nh�0�.

III. EFFECT OF NOISE ON THE GENERATION AND
PROPAGATION OF SU„m ,1… COHERENT STATES

In view of possible applications of the coherent states of
SU�m ,1� to a real quantum communication scenario, it is
worth analyzing the degrading effects on their entanglement
that may arise when generation and propagation in a noisy
environment is taken into account. Unfortunately, a manage-
able necessary and sufficient entanglement criterion for the
general case of a Gaussian multipartite state is still lacking.
Thus, in order to study quantitatively the effects of noise we
must limit ourselves to the case when only three modes are
involved �insights into the general m-mode case will be
given in the following sections�. In fact, up to three modes
the partial transpose criterion introduced in �19–21� is nec-
essary and sufficient for separability �22�. It says that a
Gaussian state described by a covariance matrix � is fully

inseparable if and only if the matrices �k=�− �i /2�J̃k

�k=0,1,2� are nonpositive definite, where J̃k=�kJ�k with
�0=Diag�1,−1,1 ,1 ,1 ,1�, �1=Diag�1,1 ,1 ,−1 ,1 ,1�, �2

=Diag�1,1 ,1 ,1 ,1 ,−1�, and

J =  0 − 13

13 0
� , �11�

and 1n is the n�n identity matrix. This criterion has been
applied in Refs. �22,23� in order to assess the separability of
the CV tripartite state proposed in Ref. �24� when thermal
noise is taken into account. In Ref. �10� the entanglement
properties of a state generated via a SU�2, 1� evolution when
one of the modes starts from thermal background has been
also numerically addressed.

Let us now analyze if the generation process of states
��m� is robust against thermal noise. This means that we
have to study the separability properties of a state generated
by a SU�m ,1� interaction starting from a thermal background
rather than from the vacuum, in the formula �
=e−iHmt�	eiHmt, where � and �	 are the density matrix of the
evolved state and of a thermal state, respectively. We may
call these states thermal coherent states of SU�m ,1�. First
notice that, being the thermal state Gaussian, the thermal
coherent states will be Gaussian too, and their covariance
matrix �m,th may be immediately identified from Eq. �9�. In
fact, in the phase space identified by the vector R, every
SU�m ,1� evolution will act as a symplectic operation S on
the covariance matrix of the input state—i.e., �out
=ST�inS. Recalling that the covariance matrix of a thermal
state can be written as �th= �2	+1��v , �v=1 /2 being the
covariance matrix of vacuum and 	 the mean thermal photon
number, we obtain

�m,th = �2	 + 1��m. �12�

Let us now apply the separability criterion recalled above to
�3,th. Concerning the first mode, from an explicit calculation
of the minimum eigenvalue of matrix �0 it follows that
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0
min = 	 + �1 + 2	��N0 − �N0�N0 + 1�� . �13�

As a consequence, mode a0 is separable from the others
when

	 � N0 + �N0�N0 + 1� . �14�

Calculating the characteristic polynomial of matrix �1 one
deals with the following pair of cubic polynomials:

q1�
,N0,N1,N2,	� = 
3 − 2�2�1 + N0� + 	�3 + 4N0��
2 + 4	1

+ N1 + 2N2 + 	�4 + 4N1 + 6N2 + 	�3

+ 4N0��

 − 8	�1 + N1 + 	�2 + 	 + 2N1�� ,

�15�

q2�
,N0,N1,	� = 
3 − 2�1 + 2N0 + 	�3 + 4N0��
2 + 4�N1

+ 2	�1 + N0� + 	2�3 + 4N0��
 − 8�1 + 	��	2

− 2N1 − 2	N1� . �16�

While the first polynomial admits only positive roots, the
second one shows a negative root under a certain threshold.
It is possible to summarize the three separability thresholds
of the three modes involved in the inequalities

	 � Nk + �Nk�Nk + 1� . �17�

If inequality �17� is satisfied for a given k, then mode ak is
separable. Clearly, it follows that the state ��2� evolved from
vacuum �i.e., 	=0� is fully inseparable, as expected from
Sec. II. Remarkably, inequality �17� is the same as for the
twin beam evolved from noise �25�, which means that the
entanglement of the thermal coherent states of SU�2, 1� is as
robust against noise as it is for the case of the thermal co-
herent states of SU�1, 1�.

Let us now consider the evolution of the state ��2� in
three independent noisy channels characterized by loss rate �
and thermal photons , equal for the three channels. The
covariance matrix �2�t� at time t is given by a convex com-
bination of the ideal �2�0� �i.e., �2 in Eq. �9�� and of the
stationary covariance matrix ��,2= �+ 1

2
�16:

�2�t� = e−�t�2 + �1 − e−�t���,2. �18�

Consider for the moment a pure dissipative environment—
namely, =0. Applying the separability criterion above to
�2�t�, one can show that it describes a fully inseparable state
for every time t. In fact, we have that the minimum eigen-
value of �0 is given by


0
min = 2e−�t�N0 − �N0�N0 + 1�� . �19�

Clearly, 
0
min is negative at every time t, implying that mode

a0 is always inseparable from the others. Concerning mode
a1, the characteristic polynomial of �1�t� factorizes into two
cubic polynomials:

q1�
,�,N0,N1,N2� = − 
3 + 4�1 + e−�tN0�
2 + 4�− 1

− e−�t�2N1 + 3N2 − e−�tN0��


+ 8e−�tN2�1 − e−�t� , �20a�

q2�
,�,N0,N1,N2� = − 
3 + 2�1 + 2e−�tN0�
2 + 4�− e−�t�2N1

+ N2� + e−2�tN0�
 − 8e−2�tN1. �20b�

While the first polynomial has only positive roots, the second
one admits a negative root at every time. Due to the symme-
try of state ��2�, the same observation applies to mode a2;
hence, full inseparability follows. This result resembles again
the case of the twin-beam state in a two-mode channel
�20,26�. In other words, the behavior of the coherent states of
SU�2, 1� in a pure lossy environment is the same as the
behavior of the coherent states of SU�1, 1�, concerning their
entanglement properties.

When thermal noise is taken into account ��0� separa-
bility thresholds arise, which again resembles the two-mode
channel case. Concerning mode a0, the minimum eigenvalue
of the matrix �0�t� is negative when

t �
1

�
ln�1 +

�1

2
Ntot1

2
Ntot + 1� −

1

2
Ntot


� , �21�

where Ntot=N0+N1+N2. Remarkably, this threshold is ex-
actly the same as the two-mode case �20�, if one considers
both of them as a function of the total mean photon number
of the twin beam and of state ��2�, respectively. This con-
sideration confirms the robustness of the entanglement of the
tripartite state ��2�. Concerning mode a1, the characteristic
polynomial of �1�t� factorizes again into two cubic polyno-
mials. As above, one of the two have always positive roots,
while the other one admits a negative root for time t below a
certain threshold, in the formula

− 8e−2�tN1 + 8�e−�t − 1�e−�t�e−�tN0 − 2N1 − N2� + 8�e−�t

− 1�2�1 + 2e−�tN0�2 − 8�e−�t − 1�33 � 0. �22�

Mode a2 is subjected to an identical separability threshold,
upon the replacement N1↔N2. In Fig. 1 we compare the
separability thresholds given by Eqs. �21� and �22�. As is
apparent from the plot, modes a1 and a2 become separable
faster than modes a0; hence, the threshold for full insepara-
bility of ��2� is given by Eq. �22�.

We conclude that the entanglement properties of the co-
herent states of SU �2,1� in a noisy environment resemble the
twin-beam case both in generation and during propagation.

FIG. 1. Separability thresholds for modes a0 �solid line� and a1

�dashed line� according to Eqs. �21� and �22� for the case of N1

=N2=N=1. The behavior of these curves is similar if different val-
ues of N are considered.
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This may be relevant for applications, as the robustness of
the twin beam is at the basis of current applications in bipar-
tite CV quantum information.

IV. TELECLONING

We now show how the multipartite states ��m� introduced
in Sec. II can be used in a quantum communication scenario.
In particular we show that states ��m� permit one to achieve
optimal symmetric and asymmetric 1→m telecloning of
pure Gaussian states. Optimal symmetric telecloning has
been in fact already proposed in �6� using a shared state
produced by a particular SU�m ,1� interaction. Also a proto-
col performing optimal 1→2 asymmetric telecloning of co-
herent states has been already suggested in Ref. �18�, where
the shared state is produced by a suitable bilinear Hamil-
tonian which generates a SU�2, 1� evolution operator. Here
we consider the general 1→m telecloning of Gaussian pure
states in which the shared entanglement is realized by a ge-
neric coherent state of SU�m ,1�. First recall that a single-
mode pure Gaussian state can be always written as

��,�� = Sb���Db����0� , �23�

where Sb���=exp	 1
2��b†�2− 1

2�*b2
 and Db���=exp	�b†

−�*b
 are the squeezing and displacement operators, respec-
tively, whereas b is the mode to be cloned. We emphasize
that our goal is to create m clones of state �in= �� ,���� ,�� in
a nonuniversal fashion; i.e., the information that we clone is
encoded only in the coherent amplitude �. In other words,
we consider the knowledge of the squeezing parameter � as a
part of the protocol, as in the case of the local cloning of
Gaussian pure states �27�. The telecloning protocol is sche-
matically depicted in Fig. 2. As a shared entangled state we
consider the following �28�:

��m� = Sa0
��*� � Sa1

��� � ¯ � Sam
�����m� . �24�

After the preparation of the state ��m�, a joint measure-
ment is made on modes a0 and b, which corresponds to mea-
suring the complex photocurrent Z=b+a0

† �double-
homodyne detection�, as in the teleportation protocol. The
measurement is described by the positive-operator-valued
measure �POVM� 	��z�
z�C, acting on the mode a0, whose
elements are given by

��z� = �−1Da0
�z��in

T Da0

† �z� = �−1Sa0
��*�Da0

�z��Da0
��*��0�

��0�Da0

† ��*�Da0

† �z��Sa0

† ��*� , �25�

where z is the measurement outcome, z�=z cosh r
+e−i�z*sinh r, �=rei�, and T denotes transposition. The prob-
ability distribution of the outcomes is given by

P�z� = Tr0…m���m���m���z� �
h=1

m

Ih�
=

1

��1 + N0�
exp�−

�z� + �*�2

1 + N0
� , �26�

Ih being the identity operator acting on mode ah. The condi-
tional state of the remaining modes then reads

�z =
1

P�z�
Tr0���m���m���z� �

h=1

m

Ih�
= �

h=1

m

Sah
����Ch�z�* + ����Ch�z�* + ���Sah

† ��� , �27�

where �Ch�z�*+��� denotes a coherent state �of the usual
Heisenberg Weyl group� with amplitude Ch�z�*+��. After the
measurement, the conditional state should be transformed by
a further unitary operation, depending on the outcome of the
measurement. In our case, this is a m-mode product displace-
ment Uz= �h=1

m Dh
T�z�. This is a local transformation, which

generalizes to m modes the procedure already used in the
original CV teleportation protocol. The overall state is ob-
tained by averaging over the possible outcomes,

�1,…,m = �
C

d2z P�z��z,

where �z=Uz�zUz
†. Thus, the partial traces �h

=Tr1,…,h−1,h+1,…,m��1,…,m� read as follows:

�h = Sh�����
C

d2z P�z���Ch + z�*�Ch − 1��

���Ch + z�*�Ch − 1���Sh
†��� . �28�

Upon a changing in the integration variable we obtain the
following expression for the clones:

�h = Sh�����
C

d2w
1

�nh
exp�−

�w − ��2

nh
��w��w��Sh

†��� ,

�29�

where we defined

FIG. 2. Schematic diagram of the telecloning scheme. After the
preparation of the state ��m�, a conditional measurement is made on
the mode a0, which corresponds to the joint measurement of the
sum and difference quadratures on two modes: mode a0 itself and
another reference mode b, which is excited in a pure Gaussian state
�� ,��, to be teleported and cloned. The result z of the measurement
is classically sent to the parties who want to prepare approximate
clones, where suitable displacement operations �see text� on modes
a1 , … , am are performed. We indicated with 	 and  the mean
thermal photons in generation and propagation, whereas � takes
into account the nonunit efficiency in the detection stage. The ef-
fective propagation times �0 and �c �see Sec. V� are related to the
losses during propagation.
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nh = ��N0 + 1 − �Nh�2. �30�

From expression �29� one immediately recognizes that the
clones are given by thermal states �th�nh�, with mean photon
number nh, displaced and squeezed by the amounts � and �
respectively—i.e.,

�h = Sh���Dh����th�nh�Dh
†���Sh

†��� . �31�

As a consequence, we see that the protocol acts like a proper
covariant Gaussian cloning machine �27� and that the noise
introduced by the cloning process is entirely quantified by
the thermal photons nh, which in turn depend only on the
value of the mean photon numbers Nh of the shared state.
The fidelity Fh between the hth clone and the initial state
�� ,�� does not depend on the latter and is given by

Fh =
1

1 + nh
. �32�

The expression of the clones in Eq. �31� says that they can
either be equal to or different from each other, depending on
the values of the nh’s. In other words, a remarkable feature of
this scheme is that it is suitable to realize both symmetric,
when n2= ¯ =nm=n, and asymmetric cloning, n2� ¯ �nm.
This arises as a consequence of the possible asymmetry of
the state that supports the telecloning. To our knowledge, this
is the first example of a completely asymmetric 1→m clon-
ing machine for continuous variable systems.

Concerning the symmetric cloning one has that this
scheme saturates the bound given in Ref. �13�, hence ensur-
ing the optimality of the protocol. In fact, the minimum
added noise for a symmetric 1→m cloner of coherent states
is given by n= �m−1� /m, which in our case can be attained
by setting N1= ¯ =Nm=Nopt, where

Nopt =
1

m�m − 1�
. �33�

It follows that the fidelity is optimal—namely, F=m / �2m
−1�. It is not surprising that this result is the same as the one
obtained in Ref. �6�. In fact, as already mentioned, the latter
uses as support a specific SU�m ,1� coherent state, generated
with a particular interaction built from single-mode squeez-
ers and beam splitters. Our calculation extends this result to
any SU�m ,1� coherent state used to support the telecloning
protocol.

Asymmetric cloning

Consider now the case of asymmetric cloning. In this case
one deals with a true quantum-information distributor, in
which the information encoded in an original state may be
distributed asymmetrically between many parties according
to the particular task one desires to attain. In this scenario, a
particularly relevant question concerns the maximum fidelity
achievable by one party—say, F1—once the fidelities
Fj�j=2,… ,m� of the other ones are fixed. Thanks to Eq. �32�
we see that this is equivalent to the issue of finding the mini-
mum noise n1 introduced by the cloning process for fixed
nj’s �nj�1�. The optimization has to be performed under the

constraint given by Eq. �2�, which allows to write n1 as a
function of the nj’s and of the total mean photon number N0
�the sums run for j=2,… ,m�:

n1 = ��N0 + 1 − �N0 − �
j

��N0 + 1 − �nj�2�2
. �34�

The minimum noise n1
min is then found setting N0 such that

�N0 + 1��m − 1��m − 2� − 2�N0 + 1�m − 1��
j

�nj + �
j

nj

+ �
j

�nj�2
− 1 = 0. �35�

For m=2 one obtains that the optimal choice for N0 is given
by N0

opt=n2+1/4n2. It follows that the minimum noise n1
min

allowed by our telecloning protocol for fixed n2 is given by
n1

min=1/4n2. Hence we recover the result of Ref. �18� for the
fidelities:

F1
max =

4�1 − F2�
4 − 3F2

. �36�

Notice that if one requires F2=1, then F1=0; that is, no
information is left to prepare a nontrivial clone on mode a1.
We remark that the result in Eq. �36� shows that the protocol
introduced above, besides reaching the optimal bound in the
symmetric case, is optimal also in the case of asymmetric
1→2 cloning �15�. Coming back to the general case we see
from Eqs. �34� and �35� that for m�3 the minimum noise n1
is given by

n1
min =

1

�m − 2�2��
j

�nj

− ��m − 1���
j

�nj�2
− �m − 2��

j

nj − �m − 2���2
,

�37�

and it is attained for the following optimal choice of N0:

N0
opt =

1

�m − 1�2�m − 2�2��m − 1��
j

�nj

− ��m − 1���
j

�nj�2
− �m − 2��

j

nj − �m − 2���2

− 1. �38�

Substituting Eq. �37� into Eq. �32� one then obtains the maxi-
mum fidelity F1

max achievable for Fj fixed. Summarizing, if
one fixes the fidelities Fj �for j=2,… ,m�, then the thermal
photons nj are given by Eq. �32�, which in turn individuates
the mean photon numbers Nj and N1 of the state that supports
the telecloning via Eqs. �30�, �37�, and �38�. This choice
guarantees that the fidelity F1 is the maximum achievable
with the telecloning protocol described above, thus providing
the optimal trade-off between the qualities of the different
clones.

As an example, consider the fully asymmetric 1→3 tele-
cloning and fix the couple of fidelities F2 and F3. Specializ-
ing the formulas above we have that, choosing the state ��3�
such that
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N1 =� 1

F2
− 1� 1

F3
− 1� −

1

2
,

N2�3� = �� 1

F3�2�
− 1 − �N1�2

, �39�

then the fidelity of the first clone is the maximal allowed by
our scheme, in the formula

F1
max = �1 + �� 1

F2
− 1 +� 1

F3
− 1

−�2�2� 1

F2
− 1� 1

F3
− 1� − 1��2�−1

.

�40�

Notice that F1
max in Eq. �40� is valid iff the fixed fidelities F2

and F3 satisfy the relation F2�4�1−F3� / �4−3F3�, which co-
incides with the optimal relation given by Eq. �36�. In other
words, the optimal bound imposed by quantum mechanics to
1→2 telecloning is automatically incorporated into the
bound �40� for 1→3 telecloning of our scheme. When F2
=F3=3/5 �that is, the bound for an optimal symmetric 1
→3 cloner� we have that F1

max=3/5, as one may expect from
the discussion above concerning the symmetric cloning case.
Remarkably, when F2=F3=2/3 �that is, the bound for an
optimal symmetric 1→2 cloner� one has that F1

max=1/3
�0. This means that, even if two optimal clones have been
produced, there still remains some quantum information to
produce a nontrivial third clone. A similar situation occurs
for the case of cloning with discrete variables, as pointed out
in Ref. �29�.

Similar results occur for the generic m case. In fact, it can
be immediately shown by inspection that substituting nj
= �m−1� /m �that is, the bound for the noise introduced by an
optimal symmetric 1→m cloner� in Eq. �37� one obtains
n1

min= �m−1� /m. Hence optimal symmetric cloning is recov-
ered. Similarly, substituting nj = �m−2� / �m−1� �that is, the
bound for the noise introduced by an optimal symmetric 1
→ �m−1� cloner� in Eq. �37� one obtains n1

min= �m−1� / �m
−2�, from which a fidelity F1

max= �m−2� / �2m−3��0 fol-
lows. This confirms that the production of �m−1� optimal
clones still leaves some quantum information disposal to
produce an additional nontrivial clone. An explanation for
this effect may be individuated recalling that for large m the
optimal cloner coincides with an optimal measurement on
the original state followed by m reconstruction �13�. As a
consequence, one may expect that the production �recon-
struction� of �m−1� optimal clones leaves information �i.e.,
the measurement result� for the reconstruction of other ones.

A question strictly related to the one faced above, and
probably more significant from an information distribution
viewpoint, is the following. Suppose that one wants to dis-
tribute the information encoded in the original state by fixing
the ratio between the noise that affects all the m clones, and
not by fixing the fidelities of �m−1� clones. More specifi-
cally, suppose that one wants to give the minimum noise to,
say, the first clone �nj �n1 for every j=2,… ,m�. Now fix the

noise that affects the other clones by fixing their ratio qj with
respect to the first one—that is, nj =qjn1. Then, which is the
minimum noise n1

min allowed by our protocol for fixed qj?
Solving Eq. �37� for n1, one may find the following closed
expression for n1

min as a function of qj:

n1
min =

m − 1

1 + �
j

�qj�2
− �m − 1�1 + �

j

qj� . �41�

The state ��m� that provides this optimal result is simply
given by setting the N1 and Nj’s obtained by substituting
back nj

min=qjn1
min into Eqs. �30� and �38�.

As a final remark we point out that a general bound for
the fidelities in a fully asymmetric 1→m cloning of coherent
states has not yet been derived when m�3. As a conse-
quence, we cannot judge if the telecloning process intro-
duced above is in general optimal or not for m�3. Never-
theless, there are valuable indications for its optimality—i.e.,
the fact that it is optimal in the case of m=2, and, as we have
already pointed out, it is optimal for any m in the symmetric
case. In addition, as already mentioned, our telecloning pro-
tocol allows us to built a nontrivial additional clone when
�m−1� optimal ones have been produced.

V. TELECLONING IN A NOISY ENVIRONMENT

The protocol described in the previous section is referred
to the case of the ideal generation and propagation of the
states ��m� as well as to double-homodyne detection with
unit quantum efficiency. In order to take into account the
possible losses and noise in the various steps, it is useful to
reformulate the whole protocol in the phase space. Consider
the characteristic function associated with the states
��m� :���m����=exp	− 1

2�T�m�
. The covariance matrix
�m given in Eq. �9� can be written accordingly to the follow-
ing bipartite structure:

�m =  A C

CT B
� , �42�

where A is a 2�2 matrix corresponding to mode a0, while B
and C are 2m�2m and 2�2m matrices, respectively. Con-
sider now a generic Gaussian POVM, acting on modes a0
and b, defined by a covariance matrix M and a vector of first
moments X—i.e., ��M ,X����=exp	− 1

2�TM�− i�TX
. The
case of the ideal double-homodyne measurement, introduced
above, corresponds to

M = P�inP, X = PX̄ + Z , �43�

where �in and X̄ are the covariance matrix and the vector of
first moments of the input state �mode b�, whereas Z
= 	Re�z� , Im�z�
 is the measurement result �we recall that P
=Diag�1,−1��. Then, the state conditioned to the result Z is
given by a Gaussian state with covariance matrix �35�.

�c = B − CT�A + M�−1C �44�

and vector of displacements H=CT�A+M�−1X. The protocol
is now completed with the proper generalized local displace-
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ment introduced in the previous section—i.e., Uz
= �h=1

m Dh
T�z�. Averaging over all possible outcomes we finally

obtain the following expression for the covariance matrix of
the Gaussian state at the output �30�:

� = B + JTP�A + M�PJ − JTPC − CTPJ, �45�

where J is given by the 2�2m matrix J= �1 ,… ,1�.
As already pointed out in Sec. III, if we consider a real-

istic scenario for the application of the telecloning protocol,
we must take into account that the generation and propaga-
tion of the states ��m� are affected by thermal background
and losses. In particular, concerning propagation we can con-
sider that modes a1 ,… ,am propagate in noisy channels char-
acterized by the same losses �c. We may then define an ef-
fective propagation time �c=�ct equal for all the clones,
while the effective propagation time �0=�0t for mode a0 is
left different from �c. Consider in fact a scenario in which
one has two distant locations �see Fig. 2�: the sending sta-
tion, where the double-homodyne measurement is per-
formed, and the receiving station, where the clones are even-
tually retrieved. The distance between the two stations can be
viewed as a total effective propagation time �T which can be
written as �T=�0+�c. Then, the choice made above corre-
sponds to the possibility of choosing at will, for a given �T,
which modes �a1 ,… ,am or a0� will be affected by the un-
avoidable noise that separates the sending and receiving sta-
tions and to which extent. With a slight abuse of language,

we may say that one can choose whether to put the source of
the entangled state ��m� near the sending station ��T=�c�,
near the receiving one ��T=�0�, or somewhere in between. A
similar strategy has been pursued in �31� to optimize the CV
teleportation protocol in a noisy environment. In the follow-
ing, we will see how to determine both the optimal location
and the optimal ��m� for a given amount of noise. For the
sake of simplicity, the thermal photons  will be taken equal
in all the noisy channels. As is natural to expect, in the gen-
eration process all the modes will be also considered to be
affected by the same amount of noise, characterized by 	
mean thermal photons. As a consequence, the matrix �m in
Eq. �42� should be substituted by �see, e.g., Ref. �2�� its noisy
counterpart

�m,n = G1/2�m,thG
1/2 + �1 − G���,m, �46�

where we have used Eq. �12� and defined

G = e−�01� j=1
m e−�c1, ��,m =  +

1

2
�12m. �47�

Performing the calculation explicitly, upon defining �c=e−�c,
�0=e−�0, �=+ 1

2 , and �=1+2	, we obtain

�m,n =  Ã C̃

C̃T B̃
� , �48�

where Ã=���0N0+ �� /���1−�0�1�, C̃=���0�cC, and

B̃ = ��
�cN1 +

�

�
�1 − �c�1 �cB1,2 ¯ �cB1,m

�cB1,2 �cN2 +
�

�
�1 − �c�1 � �

� � � �cBm−1,m

�cB1,m ¯ �cBm−1,m �cNm +
�

�
�1 − �c�1

� . �49�

A nonunit efficiency � in the detection stage corresponds to
have the covariance matrix of the double-homodyne detec-

tion given by M̃=P�inP+ 1
2�1 �where �= �1−�� /��. Finally,

considering an initial coherent state �32� and recalling Eq.

�45�, we have M̃= 1
2 �1+��1, whereas the covariance matrix

of the m output modes now reads

�n = B̃ + JTP�Ã + M̃�PJ − JTPC̃ − C̃TPJ, �50�

which in turn gives the following covariance matrix for the
hth clone:

�h,n =  1

Fh
−

1

2
�1 . �51�

In the equation above, Fh represents the fidelity between the
hth clone and the original coherent state:

Fh = �Det��h,n +
1

2
1��−1/2

= �1 +
�

2
+ 2� + ���0N0 +

1

2

−
�

�
� + �cNh +

1

2
−

�

�
� − 2��0�cNh�N0 + 1���−1

.

�52�
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Optimization of the symmetric protocol

In order to clarify the implication of formula �52�, let us
focus our attention on the case of symmetric cloning �recall
that in this case N1= ¯ =Nm=N�. Upon defining x=� /�
− 1

2 , �T=e−�T =�0�c, and the function

f�N,�0;x,�T� =
�T

�0
�N − x� + �0�mN − x� − 2��TN�mN + 1� ,

�53�

the fidelity reads as follows:

F = ��f�N,�0;x,�T� + 2� + 1 +
�

2
�−1

. �54�

Our aim is now to optimize, for a fixed amount of noise, the
shared state ��m� and the location of its source between the
sending and receiving stations. Namely, one has to find N
and �0 which maximize the fidelity F for �T , � , � , � fixed.
This, in turn, means to minimize f�N ,�0 ;x ,�T� for fixed �T

and x. The domain where to perform the minimization is the
region N�0 and �T��0�1. We will see that the possibility
of varying �0 will be revealed to be crucial in order to adapt
the ideal cloning protocol, presented in Sec. IV, to a noisy
environment.

Calculating the stationary points of f�N ,�0 ;x ,�T� one
finds

s1 = �N =
x

1 − x�m − 1�
,�0 =� �Tx

x + 1
� ,

s2 = �N =
x

m�1 + x�m − 1��
,�0 =��T�1 + mx�

mx
� . �55�

The points s1 and s2 belong to the domain for 	�T�x / �x
+1� ,x�1/ �m−1�
 and for 	�T�mx / �mx+1� , ∀x
, respec-
tively. By evaluating the Hessian matrix associated with
f�N ,�0 ;x ,�T�, it follows that both s1 and s2 are not extremal

points. As a consequence one has to look for the minimum of
f�N ,�0 ;x ,�T� along the boundary of the minimization do-
main. Three local minima are found in the three regions pa-
rametrized by �0=�T, �0=1, and N→�, whereas the fourth
extremum is a maximum. In particular, in the first region the
minimum is attained for

N = �−
�T

m�T − 1
, �T � 1/m ,

1

m�m�T − 1�
, �T � 1/m .� �56�

Concerning the second and third regions, one finds that the
minima are located at

N = −
�T

m��T − m�
�57�

and at

�0 =��T

m
, �58�

respectively. By evaluating the value of f�N ,�0 ;x ,�T� in the
minima, one eventually attains the global maximum Fmax of
the fidelity. A summary of the results is given in Table I,
where we have reintroduced the effective propagation times
�T , �0 and defined the following quantities:

Fa =
2m

− 2 − 4	 + m	� + 2�2 +  + 	 + �	 − �e−�T�

,

�59�

Fb = 2	� + 2�2 +  + 	� − 2�1 +  + 	�e−�T
−1, �60�

Fc = �2 +
�

2
+ 2 −�e−�T

m
�1 +  + 	 + m� − 	���−1

.

�61�

TABLE I. Values of the optimized Nopt and �0
opt for fixed values of �T and x. The value reached by the

fidelity Fmax for these optimal choices is given in the last column.

x �T �0
opt Nopt Fmax

∀x 0��T� ln m �T 1

m�me−�T −1�
Fa

− 1
2 �x�0 �T� ln m 1

2 ��T+ln m� N→� Fc

0�x�
1

m−1 ln m��T� ln� �1+x�2

mx2 � 1
2 ��T+ln m� N→� Fc

�T� ln
�1+x�2

mx2

�T e−�T

1−me−�T

Fb

x�
1

m−1
�T� ln m �T e−�T

1−me−�T

Fb

MULTIMODE ENTANGLEMENT AND TELECLONING IN A … PHYSICAL REVIEW A 72, 032312 �2005�

032312-9



An inspection of Table I shows very interesting features
of the telecloning protocol in presence of noise. It is imme-
diately recognized that the optimal value Nopt is significantly
different from the optimal value in the ideal case �Eq. �33��.
As a matter of fact Nopt is divergent in some cases. Remark-
ably, in the optimization of N and �0 the homodyne detection
efficiency � plays no role, whereas the thermal noises  and
	 introduce a dependence on x—i.e., only on their ratio. Fur-
thermore, one may note that what we have called the best
location of the source �that is �0

opt� is never given by the
simple choices �0=0 or �0=�T /2. In order to clarify this
point let us first consider the case �0=0, which can be physi-
cally implemented by homodyning mode a0 immediately af-
ter the generation of ��m� and then letting the other modes
propagate to the receiving station where they are eventually
displaced. An immediate calculation shows that in this case
the fidelity �54� is maximized for Nopt=1/m�me�T −1� and is
given by

Fmax��0 = 0�

=
2 m

2 e�T�1 + m� − 	� + 2 	� − m�� + 2�2 +  + 	��
.

�62�

Concerning the case �0=�T /2, whose physical implementa-
tion simply means to put the source of ��m� in the middle of
the transmission line, one has that the fidelity is maximized
for Nopt=1/m�m−1� and reads

Fmax��0 = �T/2�

=
2 m

m�4 + � + 4 � − 2e−�T/2�1 + 2 	 + 2 m� − 	��
.

�63�

Notice that only in this case the optimization over N leads to

the same ��m� as in the ideal case �see Eq. �33��. A compari-
son of the last two instances with the optimal one shows how
significantly the choice of �0 affects the value of the clones’
fidelity. In Figs. 3, 4, and 5 we compared the two fidelities
given in Eqs. �62� and �63� with the one given in Table I �see
captions for details�. We clearly see that the optimized fidel-
ity is much larger then the other two, thus providing a clon-
ing beyond the classical limit for higher propagation times
�T. As is apparent from Fig. 5 we have Fb�

1
2 ∀ �T. Indeed, it

can be shown analytically that Fb�
1
2 in any regime for

which Fmax=Fb.
Besides what we pointed out above, the most striking fea-

ture of the proposed telecloning protocol is that it saturates
the bound for optimal cloning even in the presence of losses,
for propagation times �T� ln m, hence divergent as the num-
ber of modes increases. More specifically, consider the first
row in Table I and set =	=�=0. Then, one has that for
�T� ln m the maximum fidelity is given by Fmax=m / �2m
−1�. That is, the optimal fidelity for a symmetric cloning can
still be attained, carefully choosing N and �0. Such a result
cannot be achieved letting the input state propagate directly
to the receiving station and then cloning it locally �30�. Thus,
in the context of our protocol the entangled resource signifi-
cantly enhances the capacity of distributing quantum infor-
mation. This is due to the fact that the transmission through
a lossy channel of an unknown coherent state irreversibly
degrades the information encoded in it, thus avoiding the
local construction of optimal clones at the receiving station.
On the other hand, multimode entanglement is robust against
this type of noise and, even if decreased along the transmis-
sion line, it is still sufficient to provide optimal cloning. Ac-
tually, there is no need of an infinite amount of entanglement
to perform an optimal telecloning process.

As concerns the case of higher transmission times—i.e.,
�T� ln m—the fidelity reads �again for =	=�=0�

FIG. 3. Comparison of the fidelities given in Eqs. �62� �dotted line� and �63� �dashed line� with the one given in Table I �solid line�. As
an example, we have chosen the following parameters: =0.03, 	=0.01, and �=0.02 �x=1/51�. The plots are referred to the case m=2, 5,
and 10, and the vertical line corresponds to �T=ln 2, �T=ln 5, and �T=ln 10, respectively. Accordingly to Table I, the optimal fidelity is given
by Eqs. �59� and �61� at the left and right of the vertical lines, respectively.

FIG. 4. Comparison of the fidelities given in Eqs. �62� �dotted line� and �63� �dashed line� with the one given in Table I �solid line�. As
an example of the case �	, we have chosen the following parameters: =0.05, 	=0.2, and �=0.05 �x=−3/28�. The plots are referred to
the case m=2, 3, and 5, and the vertical line corresponds to �T=ln 2, �T=ln 3, and �T=ln 5, respectively. Accordingly to Table I, the optimal
fidelity is given by Eqs. �59� and �61� at the left and right of the vertical lines, respectively.
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Fmax = 2 −�e−�T

m
�−1

. �64�

Equation �64� shows that the fidelity is always greater then
the classical bound F= 1

2 , which in turn means that the state
used to support the protocol is entangled for any �T. This is
reminiscent of the result already pointed out in Sec. III,
where the full inseparability has been proved for any �T for
m=2 �notice that �0=�T /2 in case of Sec. III�. Here, we
proved that the same conclusion is valid for any m.

Another interesting feature in the case �T� ln m is that
Fmax does not depend on �T if =	. Indeed, it turns out that
for =0 and 	�0 it is better to let the entangled resource
propagate �up to �T=ln m� instead of using it immediately
after the generation. This effect may be naively understood
by considering that the entangled state generated for 	�0 is
mixed and, as consequence, the propagation in a purely dis-
sipative environment acts like a sort of purification process
on it. As is apparent from Eq. �59� this effect is present
whenever �	 �see also Fig. 4�.

Finally, a comment is needed concerning the scaling of
the fidelity with respect to the number of modes, m. We have
already pointed out that for the case =	=�=0 the fidelity
remains optimal for times �T diverging with the number of
modes. However, when thermal noise is added � ,	 ,��0�
the fidelity goes below the classical value F= 1

2 for times �T
that become smaller as m increases, as is apparent from Figs.
3, 4, and 5. Indeed, this is consistent with the fact that the
optimal fidelity itself approaches the classical value F= 1

2 as
m increases. Hence, even a small amount of thermal noise is
enough to cancel the benefits due to quantum entanglement.

VI. CONCLUSIONS

In this paper we have dealt with the properties and appli-
cations of a class of multimode states of radiation, the coher-
ent states of group SU�m ,1�, which represent a potential
resource for multiparty quantum communication, as recent
theoretical and experimental investigation have shown. In
particular, the common structure of these multimode states
allowed us to consider a 1→m telecloning scheme in which
a generic coherent state of SU�m ,1� plays the role of en-
tangled resource. Exploiting the possible asymmetry of
SU�m ,1� coherent states we have suggested the first ex-
ample, in the framework of CV systems, of a fully asymmet-
ric 1→m cloning and have found the optimal relation, within
our scheme, between the different fidelities of the clones. In
particular, we have shown that when �m−1� optimal clones
are produced �accordingly to the general bound imposed by
quantum mechanics�, there still remains some quantum in-
formation at our disposal. In fact, our protocol is able to use
the remaining information to realize a nontrivial mth clone.
Our asymmetric scheme is aimed at the distribution of quan-
tum information among many parties �33� and may find ap-
plications for quantum cryptographic purposes �34�.

In view of possible applications of our protocol in realis-
tic situations, we have considered the effects of noise in the
various stages of the protocol—i.e., the presence of thermal
photons in the generation process, thermal noise and losses
during propagation, and nonunit efficiency in the detection.
We have derived the fidelities of the clones as a function of
the noise parameters, which in turn allowed for adaptive
modification of the protocol to face the detrimental effects of
noise. In particular, we have shown that the optimal en-
tangled resource in the presence of noise is significantly dif-
ferent from the one in the ideal case. Also the location of the
source plays a prominent role. In fact, we have demonstrated
that the optimal location is neither in the middle between the
sender and receiver nor at the sender station. A striking fea-
ture of the optimized protocol is that, even in the presence of
losses along the propagation line, the clones’ fidelity remains
maximal, a result which is not achievable by means of direct
transmission followed by local cloning. This happens for
propagation times that diverge as the number of modes in-
creases. We then conclude that our optimized telecloning
protocol is robust against noise.
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