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We address the non-Markovian character of quantum maps describing the interaction of a qubit with a random
classical field. In particular, we evaluate trace- and capacity-based non-Markovianity measures for two relevant
classes of environments showing non-Gaussian fluctuations, described respectively by random telegraph noise
and colored noise with spectra of the the form 1/f α . We analyze the dynamics of both the trace distance and
the quantum capacity, and show that the behavior of non-Markovianity based on both measures is qualitatively
similar. Our results show that environments with a spectrum that contains a relevant low-frequency contribution
are generally non-Markovian. We also find that the non-Markovianity of colored environments decreases when
the number of fluctuators realizing the environment increases.
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I. INTRODUCTION

The unavoidable interaction of a quantum system with
its environment usually destroys its coherence and quantum-
ness [1,2]. The fragile quantum information encoded in an
open quantum system is lost due to the presence of the envi-
ronment that continuously monitors the system. Nevertheless,
in some cases the lost information can be partly restored due to
non-negligible correlations between system and environment.
We refer to the systems in which such recoherence phenomena
occur as non-Markovian open quantum systems. The dynamics
of open quantum systems has been often described using the
Born-Markov approximation leading to a master equation
of the Lindblad form [3]. This approximation, however,
neglecting system-bath-induced memory effects, does not lead
to a correct description of the dynamics of many relevant
systems in quantum optics and solid-state physics, and cannot
be used in certain quantum information processing scenar-
ios [4–9]. In addition, in the spirit of reservoir engineering, one
can induce non-Markovianity to improve quantum protocols
such as quantum metrology and quantum key distribution [10–
14].

The concept of non-Markovianity is not uniquely defined
in the literature. Several measures have been proposed in
recent years [14–20] and, in general, these measures do not
coincide in detecting non-Markovianity. In this paper we focus
on two measures of non-Markovianity: the Breuer-Laine-Piilo
(BLP) measure [16] based on state distinguishability, and the
Bylicka-Chruściński-Maniscalco (BCM) measure [14] based
on entanglement-assisted and/or quantum capacities. In the
first case the characteristic trait of non-Markovianity is a
back flow of information, i.e., a partial increase in state
distinguishability, while in the second case memory effects
are identified with a regrowth of channel capacities.

It is known that for single qubit dephasing channels, as those
considered in the following, the Markovian or non-Markovian
character of the dynamical map coincides for all measures.
Therefore, it is sufficient to study one of them. In this paper
we focus on both the BLP measure and the BCM measure as
we are interested not only in understanding information back
flow but also in investigating under which conditions qubit

channels subject to random classical noise may be exploited
for reliably transmitting quantum and classical information.
Moreover, the BCM measure provides us with a rigorous
information theoretical description of memory effects by
linking the amount of information on the system to the amount
of information on the environment, and therefore allowing us
to properly define the concept of information flow.

We focus on non-Markovianity arising in classical envi-
ronments exhibiting non-Gaussian fluctuations, i.e., described
by random non-Gaussian fields. In particular, we address the
influence of this class of environments on the dynamics of a
qubit. As a matter of fact, little attention has been paid to non-
Markovianity in classical environments; most of the existing
studies are devoted to time-independent random fields or to
Gaussian dynamic noise [21–24]. On the other hand, stochastic
processes characterized by non-Gaussian fluctuations are very
common in nature and have received large attention [25–28].
A stochastic process is non-Gaussian if it cannot be fully
characterized by the mean and variance. As a consequence, the
mere knowledge of the spectrum is not sufficient to describe
the process, and the very structure of environment plays a role
in determining its influence on the coherence properties of
quantum systems [29].

In this paper we focus on two relevant classes of non-
Gaussian noise: the random telegraph noise (RTN) with
a Lorentzian spectrum and the family of low-frequency
noise with 1/f α spectrum. The RTN is generated from
a bistable fluctuator flipping between two values with a
switching rate ξ . RTN allows one to model environmental
noise appearing in many semiconducting and superconducting
nanodevices [30–35]. Noises with 1/f α spectra are found
when the environment can be described as a collection of Nf

random bistable fluctuators, with Nf ! 1. It affects solid-state
devices, superconducting qubits, and magnetic systems [36–
41]. The dynamical map of a qubit interacting with these kind
of environments describes pure dephasing. In this case the
channel is degradable and the entanglement-assisted capacity
coincides with the quantum channel capacity, hence we
will consider only the latter one in the rest of the paper.
Moreover, a simple analytical expression for the dynamics
of both the trace distance and the quantum capacity exists,
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allowing us to analyze in detail the non-Markovian dynamics
as a function of the noise parameters. Our results show that
the two measures display a qualitatively similar behavior,
leading to a consistent assessment of non-Markovianity.
We also find that environments with a spectrum dominated
by low-frequency contribution are generally non-Markovian
and that the non-Markovianity of colored environments is
progressively destroyed when the number of fluctuators
realizing the environment increases. These results confirm
that non-Markovianity may represent a resource for quantum
information processing. Indeed, we found that, in dephasing
channels, back flow of information corresponds to revivals
of quantum correlations [29]. Finally, upon assuming that
the channel is reset after each use, we discuss how reliable
transmission of information through a noisy quantum channel
may be achieved, even in presence of classical non-Gaussian
noise, for properly engineered structured environments.

In principle, one could quantify non-Markovianity of classi-
cal random fields using the definition of non-Markovianity for
classical stochastic processes, i.e., in terms of the Kolmogorov
hierarchy of the n-point joint probability distributions. In
turn, it has been proved [42,43] that there are clear dif-
ferences between the classical and the quantum notion of
non-Markovianity. In this paper, since we are interested in
the effects of non-Markovianity on the quantum information
carrier rather than in addressing the fundamental properties
of the environment, we have explicitly chosen to assess non-
Markovianity of classical noise in terms of quantum measures
of non-Markovianity for the quantum channels induced on
qubit systems. This approach allows us to assess classical
environments in terms of their effects on quantum systems
and, possibly, engineer their structure.

This paper is organized as follows. In Sec. II we introduce
the BLP and BCM measures of non-Markovianity. In Sec. III
we describe in some details the physical model employed
throughout the paper. In Sec. IV we show our results on the
dynamics of the non-Markovianity measures. Section V closes
the paper with concluding remarks.

II. NON-MARKOVIANITY MEASURES

In this section we review two measures of non-
Markovianity: the BLP measure [16], based on the trace
distance, and the BCM measure, based on the quantum
capacity [14].

A. BLP measure

The underlying idea behind the BLP measure is that
Markovian processes tend to reduce the distinguishability
between any two states of the open system, while non-
Markovian processes are characterized by a partial regrowth
of distinguishability on at least a subset of states. The loss
of distinguishability is interpreted as an irreversible loss of
information on the system while restored distinguishability
reflects a partial, and often temporary, increase of information
about the system. Since the trace distance is related to the
probability of successfully distinguishing two quantum states
ρ1 and ρ2, it seems natural to use this quantity to describe
memory effects and non-Markovianity. The trace distance is

defined as:

D(ρ1,ρ2) = 1
2 Tr|ρ1 − ρ2|, (1)

where |A| =
√

A†A. The trace distance defines a metric on
the space of density matrices and 0 < D < 1. Any completely
positive and trace-preserving map $(t) is a contraction for this
metric:

D($(t)ρ1,$(t)ρ2) < D(ρ1,ρ2). (2)

The flux of information is then defined as:

σ (t,ρ1,2(0)) = d

dt
D(ρ1,ρ2), (3)

where ρ1,2(0) denotes the density matrix of the initial states.
A loss in distinguishability is linked to a negative information
flux σ (t,ρ1,2(0)) < 0, while positive flux describes an increas-
ing distinguishability between two quantum states. The BLP
measure of non-Markovianity quantifies the total amount of
information back flow into the system:

NBLP = max
ρ1,2(0)

∫

σ>0
ds σ (s,ρ1,2(0)), (4)

where the maximization is over all pairs of initial states and the
integration is over all time intervals where the flux is positive.
Whenever NBLP > 0 the dynamics is non-Markovian. It is pos-
sible to show that all divisible maps are Markovian according
to this measure, but the converse is not true in general [44].
Generally, calculating NBLP is a difficult task, because of the
maximization procedure involved. Nevertheless, maximizing
pairs have been found for certain classes of noisy channels,
such as the dephasing channel we are going to deal with. As
we will review in Sec. III, indeed, the dephasing dynamics of
the qubit is described by the following map

ρ(t) = 1 + &(t)
2

ρ(0) + 1 − &(t)
2

σzρ(0),σz, (5)

i.e., ρij (t) = ρij (0)&(t), with &(t) the dephasing function.
Notice that in Eq. (5) dephasing is induced by a classical
stochastic process. It follows that the coefficient &(t) is a
real quantity that can assume positive and negative values
between ±1. For the sake of clarity we notice here the
difference between this model and the spin-boson model
describing pure dephasing arising from the interaction with a
quantum environment [45,46]. In the latter case the dynamics
of the coherences is given by ρij (t) = ρij (0) exp[−f (t)], with
f (t) ! 0, and therefore the dephasing function is always
positive.

For a qubit interacting with a classical random field, as in
Eq. (5), the optimal pair in Eq. (4) that maximizes the increase
of the trace distance has been found [47]. In the following, we
use the name optimal trace distance for the expression of the
trace distance in Eq. (1) computed for the optimal pair. Thus,
the study of BLP non-Markovianity can be reduced to the
analysis of the optimal trace distance. In our case this quantity
reads:

D(t) = |&(t)|, (6)

which is the absolute value of the dephasing function &(t).
Once the expression of D(t) is known it is possible to write
the information flux (3) and then numerically compute the
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non-Markovianity as the integral of the information flux over
the time intervals in which it is positive.

B. BCM measure

The second measure that we will use, introduced by
Bylicka, Chruściński, and Maniscalco, is based on the channel
capacities [14]. As mentioned above, we focus here on the
quantum channel capacity as, in our case, it coincides with
the entanglement-assisted capacity. Generally, the quantum
capacity bounds the rate at which quantum information can
be reliably transmitted through a noisy quantum channel $(t).
Dephasing is a degradable channel and thus the single-use
quantum capacity may be written as

CQ($(t)) = sup
ρ

Ic(ρ,$(t)) (7)

where Ic represents the coherent information:

Ic(ρ,$(t)) = S($(t)ρ) − S(ρ,$(t)), (8)

where S(ρ) = −Tr[ρ ln ρ] is the Von-Neumann entropy of the
state ρ and S(ρ,$(t)) the entropy exchange [48]. The superior
should be taken over all the possible states of the information
carrier. The latter quantity measures the change in the entropy
of the environment. It is worth stressing that, contrarily to trace
distance, the coherent information describes how the entropy
of both the system and the environment change. Hence this
quantity is more apt to capture the concept of information flow
between system and environment. More explicitly, coherent
information is, in fact, quantifying the flow of information
between the system and the environment, while the trace
distance is quantifying only the loss of information that we
have on the system without any indication on whether this
information is acquired by another agent (and may come back).
The fact that the two measures agree confirms, at least for
dephasing channels, that the trace distance may be considered
a measure of the flow of information from the system to the
environment.

Strictly speaking, Eq. (7) describes the quantum capacity
only for memoryless degradable channels [49–51] and thus it
seems unsuitable to address quantum channels arising from
the interaction with a classical environment exhibiting long-
lasting time correlations. However, we are interested in the
effects of memory during the propagation of the information
carriers, rather than memory effects among subsequent uses
of the channel, and thus the expression in (7) fits nicely for
our purposes. Of course, memory effects among uses should be
eventually addressed in view of realistic implementations. Our
results should be considered as a first step toward a complete
analysis of this class of channels, including both types of
memory effects [52].

As a consequence of the quantum data-processing in-
equality, the quantum capacity of divisible channels is a
monotonically decreasing function of time. The BCM measure
is therefore based on the nonmonotonic behavior of CQ($(t)):

NBCM =
∫

dCQ($(t))
dt

>0

d CQ($(t))
dt

dt. (9)

Non-Markovianity corresponds to NBCM > 0. Even if this
measure does not explicitly involve a maximization procedure,

an optimization is required in the computation of the quantum
capacity (7). In the case of a dephasing channel, however, the
analytical expression for CQ($(t)) is known [53]:

CQ(t) = 1 − H2

(
1 − &(t)

2

)
, (10)

with H2(p) = −p ln p − (1 − p) ln(1 − p) the Shannon bi-
nary entropy. As we will see in the following, the operational
interpretation of the quantum capacity allows us to use NBCM to
assess if and how non-Markovianity can be seen as a resource
for quantum communication and information processing.

Both the BLP and the BCM measure consistently detect
non-Markovianity in the case of a dephasing channel. It is easy
to show that in both cases the dynamics is non-Markovian in
the following two regimes:

d&(t)
dt

< 0 and &(t) < 0,

d&(t)
dt

> 0 and &(t) > 0,

(11)

where &(t) is the real coefficient appearing in Eq. (5)

III. PHYSICAL MODEL

In order to characterize the non-Markovian features of a
noisy channel one has to probe its influence on an information
carrier. Here we focus attention on the simplest quantum probe,
i.e., a qubit, and infer the properties of the channel by analyzing
the decoherence process induced on the qubit. We model
the classical environment as a random field described by a
stochastic process c(t). In order to model the colored noisy
channel we do not make the usual assumption of a Gaussian
process, while we only assume the stationarity property.

Let us consider a generic qubit described by the state vector

|ψ0〉 = α|0〉 + β|1〉, (12)

satisfying the condition |α|2 + |β|2 = 1. We assume that the
evolution of the qubit is governed by the Hamiltonian

H (t) = ε σz + ν c(t)σz, (13)

where ε is the energy splitting between the two levels of
the qubit, ν is a coupling constant, and σz is the Pauli
matrix. The system-environment interaction of Eq. (13) de-
scribes a nondissipative dephasing channel, and it is suitable
to portray situations where the typical frequencies of the
environment are smaller than the natural frequency of the
qubit.

Different expressions for c(t) may be employed, corre-
sponding to different kinds of classical noise. In the next
sections, we briefly review the dynamics of the generic qubit
state (12) in environments characterized by RTN and colored
noise spectra of the form 1

f α . Then, in Sec. IV we will employ
these results to explicitly evaluate the non-Markovianity of the
corresponding channels.

A. Random telegraph noise

Random telegraph noise is very common in nature.
It appears in semiconductor, metal, and superconducting

012114-3



BENEDETTI, PARIS, AND MANISCALCO PHYSICAL REVIEW A 89, 012114 (2014)

devices [30–35]. The source of random telegraph noise is a
bistable fluctuator, which is a quantity which flips between two
values with a switching rate, such as a resistance switching
between two discrete values, charges jumping between two
different locations, or electrons that flip their spin. In order to
describe a RTN, the quantity c(t) in Eq. (13) flips randomly
between values ±1 with a switching rate ξ . This noise
is characterized by an exponential decaying autocorrelation
function C(t,t0) and a Lorentzian spectrum S(ω):

C(t,t0) = e−2ξ |t−t0|, (14)

S(ω) ∝ 4ξ

4ξ 2 + ω2
. (15)

Hereafter we use dimensionless quantities. In particular we
introduce the dimensionless time τ ≡ νt and switching rate
γ ≡ ξ/ν. The dynamics of the global system is described in the
interaction picture by the evolution operator U (τ ) = e−iϕ(τ )σz

where

ϕ(τ ) =
∫ τ

0
c(s)ds

is the RTN phase [54]. The qubit density matrix is obtained as
the average of the evolved density operator over the process,
i.e., over the RTN phase:

ρ(τ,γ ) = 〈U (τ )ρ0U
†(τ )〉ϕ(τ ) (16)

where ρ0 = |ψ0〉〈ψ0|. The qubit density matrix thus has the
expression:

ρ(τ,γ ) =
( |α|2 αβ∗ G(τ,γ )

α∗β G(τ,γ ) |β|2

)
, (17)

where the z∗ denotes the conjugate of the complex number z.
The coefficient G(τ,γ ) = 〈e2iϕ(τ )〉 corresponds to the function
&(t) in Eq. (5), and is given by:

G(τ,γ ) = e−γ τ

(
cosh δτ + γ sinh δτ

δ

)
, (18)

with δ =
√

γ 2 − 4.

B. Colored noise

Power-law frequency noise characterized by 1/f α spectrum
is a ubiquitous noise in nature [36]. It can be found in
nanoscale electronic devices where it manifests as charge
fluctuations [37,38] and in Josephson circuits due to fluctuating
background charges and flux [39–41]. Typical values of
the coefficient α range between 0.5 and 2. 1/f α noise
arises when the environment is described as a collection of
bistable fluctuators [29]. Every fluctuator has an unknown
switching rate, taken from the ensemble {γi ,pα(γi)}, where
the probability distribution is:

pα(γ ) =






1
γ ln(γ2/γ1) α = 1

α−1
γ α

[
(γ1γ2)α−1

γ α−1
2 −γ α−1

1

]
α (= 1.

(19)

The coefficient c(t) in Hamiltonian (13) is a linear superpo-
sition of Nf random bistable fluctuators, c(t) =

∑Nf

i ci(t),

where every ci(t) describes a stochastic telegraphic process
with a Lorentzian spectrum. Following Ref. [29], we can
write the global noise phase as the product of RTN phases,
ϕ(τ ) =

∏Nf

i ϕi(τ ). The evolution operator in the interaction
picture is written as U (τ ) = e−iϕ(τ )σz . The qubit density
matrix is obtained as an average of the global density matrix
U (τ )ρ0U

†(τ ) over the total noise phase and the switching
rates:

ρ(τ ) =
∫ γ2

γ1

ρ(τ,γ ) pα(γ ) dγ , (20)

where now ρ(τ,γ ) has the same expression as in Eq. (16) but
the average is over the global phase, γ1 and γ2 are the smallest
and the biggest switching rate considered. The qubit density
matrix can thus be written as:

ρ(τ ) =
(

|α|2 αβ∗ 0(τ,α,Nf )
α∗β 0(τ,α,Nf ) |β|2

)
. (21)

where

0(τ,α,Nf ) =
[∫ γ 2

γ1

G(τ,γ ) pα(γ ) dγ

]Nf

. (22)

Also in this case the dephasing factor 0(τ,α,Nf ) in Eq. (21)
corresponds to the coefficient &(t) in Eq. (5).

IV. NON-MARKOVIANITY OF NON-GAUSSIAN
NOISY CHANNELS

The trace distance as well as the quantum capacity depends
only on the dephasing factor in the density matrices in Eqs. (17)
and (21). Thus their behavior, even if quantitatively different,
is qualitatively the same. It immediately follows that also
NBLP and NBCM depend only on the dephasing factor and
are characterized by the same behavior. For any given values
of the interaction time, NBLP and NBCM are functions of noise
parameters describing the channels. In the case of RTN, there
is a single parameter, i.e., the switching rate γ , whereas for
colored noise with 1/f α spectra the tunable parameters are the
exponent α and the number of fluctuators.

In this section we study the non-Markovian character of
qubits subjected to RTN and colored noise. In the spirit of
reservoir engineering this allows one to single out the values
of noise parameters minimizing dephasing and/or leading to
to environment-induced recoherence, i.e., non-Markovianity.
Similarly, we will see how the study of the behavior of the
quantum capacity as a function of time reveals the existence
of specific channel lengths (interaction times) permitting a
reliable transmission of information even in presence of
high levels of noise. Finally, we will conclude our analysis
with the characterization of non-Markovianity of classical
environments acting on two-qubit states and show that the
non-Markovianity is quantitatively the same as the single-qubit
case for both measures.

A. Random telegraph noise

The first step to compute the BLP and BCM non-
Markovianity measures is the evaluation of the optimal trace
distance and the quantum capacity, respectively. From Eqs. (6)
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and (10), we can write:

D(τ,γ ) = |G(τ,γ )|, (23)

CQ(τ,γ ) = 1 − H2

(
1 − G(τ,γ )

2

)
, (24)

with G(τ,γ ) given by Eq. (18). Two different regimes naturally
arise: for γ < 2 both the trace distance and the quantum
capacity display damped oscillations, i.e., the dynamics is
non-Markovian, whereas for γ ! 2 they decay monotonically,
i.e., the dynamics is Markovian. In fact, the non-Markovianity
measures NBLP and NBCM correspond to the integrals, over
their range of positivity, of the quantities

σBLP = d

dτ
D(τ,γ ) = −γ |G(τ,γ )|

+ sgn [G(τ,γ )] (γ cosh δτ + δ sinh δτ ) e−γ τ

= − 4 e−γ τ sinh δτ

δ
if γ ! 2

σBCM = d

dτ
CQ(τ,γ ) = − 4

ln 2
sinh δτ

δ
arctanh G(τ,γ ) (25)

respectively, where G(τ,γ ) is given in Eq.(18). As it is apparent
from their expressions, and from the fact that G(τ,γ ) ! 0 for
γ ! 2, both the σ ’s are negative definite for γ ! 2, such that
both the measures NBLP and NBCM vanish for γ ! 2. On the
other hand, both the σ ’s show an oscillatory behavior as a
function of time, which includes positive values, for any values
of γ < 2.

Using Eq. (25) one finds the extrema of the functions
D(τ,γ ) and CQ(γ ,τ ) and thus the regions where they are
increasing function of time. Maxima are located at τk =
kπ/

√
4 − γ 2 and minima (where the two functions vanish) at

τk − τ ∗, with τ ∗ = (4 − γ 2)−
1
2 arctanh[γ (4 − γ 2)

1
2 ]. We thus

obtain

NBLP =
∞∑

k=1

D(γ ,τk) =
[

exp

(
πγ

√
4 − γ 2

)

− 1

]−1

(26)

NBCM =
∞∑

k=1

CQ(γ ,τk). (27)

In the upper panel of Fig. 1 we show the trace
distance dynamics in the non-Markovian regime γ < 2 for
three specific values of γ . We notice that the smaller is γ , the
higher are the revivals of the trace distance, and thus the more
enhanced is the non-Markovian character of the dynamics. A
similar behavior occurs for the quantum capacity. Indeed, one
can see from the lower panel of Fig. 1 that both NBLP and NBCM
increase for decreasing values of γ . From a physical point of
view this reflects the fact that small values of γ correspond
to non-negligible and long-living environmental correlations,
as described by the autocorrelation function of Eq. (14), and
therefore to more pronounced memory effects. The lower panel
of Fig. 1 also shows that NBCM decays faster than NBLP as a
function of γ . On the other hand, as mentioned above, the
threshold between the Markovian and non-Markovian regime
is the same for both measures and corresponds to γ = 2, for

1 2 3 4 5 6
τ0.0

0.2

0.4

0.6

0.8

1.0
D

0.5 1.0 1.5 2.0
γ

10 11

10 8

10 5

0.01

10

N BCM

N BLP

FIG. 1. (Color online) Non-Markovianity of RTN channels. The
upper panel shows the trace distance as a function of time for three
different values of the switching rate: γ = 1 (solid black line), γ =
0.1 (dashed red line), and γ = 0.01 (dotted blue line). The lower panel
is a log plot of both BLP and BCM non-Markovianity measures as a
function of γ .

which both measures vanish. More precisely, for γ ! 2 both
the measures are identically zero since the time derivatives of
both the trace distance and the quantum capacity are negative
definite, meaning that information permanently leaks away
from the system.

B. Colored 1/ f α noise

For the sake of conciseness we focus initially on the
behavior of trace distance, as the dynamics of the quantum
capacity is qualitatively similar. For colored noise with
spectrum 1/f α , the optimal trace distance is:

D(τ,α,Nf ) = |0(τ,α,Nf )|. (28)

This quantity cannot be evaluated analytically since the
integral in Eq. (22) is not analytically solvable. We computed
it numerically upon assuming that the range of integration
in Eq. (22) includes rates belonging to the interval [γ1,γ2] =
[10−4,104].

The optimal trace distance for a generic number of
fluctuators may be written in terms of the same quantity for a
single fluctuator as follows

D(τ,α,Nf ) = D(τ,α,1)Nf . (29)

We thus first analyze the non-Markovianity of a colored
environment generated by a single random fluctuator. For a
fixed value of α and Nf = 1 the trace distance is always
a nonmonotonic function of time, as illustrated in Fig. 2.
Therefore, contrarily to the case of RTN, the dynamics is
always non-Markovian for a single fluctuator. However, one
can still identify two regimes depending on the value of α.

For, α ! 1 the optimal trace distance is characterized by
pronounced oscillations in time between zero and a maximum
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FIG. 2. (Color online) Non-Markovianity of colored channels.
The upper panel shows the trace distance for a qubit subject to 1/f α

noise generated by a single random fluctuator for different values of
α ! 1: α = 1 (solid black line), α = 1.3 (dotted red line), α = 1.5
(dashed blue line), and α = 2 (dot-dashed green line). The lower
panel shows the same quantity for values of α < 1: α = 0.5 (solid
black line), α = 0.6 (dotted red line), α = 0.8 (dashed blue line), and
α = 0.9 (dot-dashed green line).

value, which depends upon the value of α. The larger is
α, the larger are the local maxima. For α = 1 higher and
lower maxima alternate periodically at times τ = π/2. As α
increases, the height of the alternating peaks increases until
it becomes uniform, as shown in Fig. 2(a). For α < 1, D is
still nonmonotonic, but the oscillations are less noticeable
and the optimal trace distance never vanishes. This case
is illustrated in Fig. 2(b). Generally, as α decreases, the
amplitude of the oscillations in the trace distance decreases,
both in the α < 1 and in the α ! 1 region of parameter space.
Non-Markovianity is thus stronger for systems interacting with
environments with a dominant low-frequency component in
the frequency spectrum. By changing the range of integration
in Eq. (22), we can analyze the contribution of small and large
switching rates on non-Markovianity. In particular, in Fig. 3
we compare the behavior of the trace distance for two mutually
exclusive ranges of integration, namely for γ ∈ [10−4,2] and
γ ∈ [2,104]. In the first case we integrate only over small
values of the switching rates, and the trace distance exhibits
revivals, revealing the presence of information back flow. In
the second case the integration is performed over big values
of γ and, as a result, D(t,α,1) decays monotonically. This
behavior is consistent with the results obtained for the RTN
channel: memory effects are dominant for low switching rates,
i.e., longer correlation times. Thus non-Markovianity is a
distinctive trait of low-frequency noise spectrum.

We now consider the more realistic case of a larger
number of fluctuators. From Eq. (29), and remembering that
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0.8

1.0
D

FIG. 3. (Color online) Non-Markovianity of colored channels.
The plot shows the trace distance as a function of time for α = 1.
The two curves refer two different ranges of integration in Eq. (22):
[10−4,2] (green solid line) and [2,104](blue dashed line).

0 " D " 1, one sees immediately that the overall effect of
having a large number of fluctuators is to decrease the value of
the optimal trace distance. As a consequence, oscillations in
the trace distance are damped and may disappear, depending
also on the value of α, leading to a monotonic decay. This
behavior is illustrated in Fig. 4, where NBLP and NBCM are
plotted as a function of the numbers of fluctuators and for
three different exemplary values of α. The figure clearly
shows that for smaller values of α, i.e., in the α < 1 regime,
a small number of fluctuators is sufficient to completely
wash out memory effects. For increasingly larger values of
α, non-Markovianity persists also for Nf ≈ 100. Generally,
increasing the number of fluctuators brings the system towards
a Markovian dynamics. Summarizing, non-Markovianity is
typical of environments with a small number of fluctuators
and a noise spectrum dominated by low frequencies.

Let us now analyze the behavior of the quantum channel
capacity. In Fig. 5 we consider as an example the case of ten
random fluctuators and different values of α. As expected,
CQ(τ,α,Nf ) is an increasing function of α. It has revivals
at time multiples of π/2. As the number of fluctuators is
increased the peaks become narrower and smaller, and the
CQ(τ,α,Nf ) is zero almost everywhere. The quantum capacity
is thus very sensitive to the channel length or, equivalently,

20 40 60 80 100
N f

1

2

3

4

5

6
N

FIG. 4. (Color online) Non-Markovianity of colored channels.
The plot shows the non-Markovianity measures as a function of the
number of fluctuators. The plot shows NBLP (solid lines) and NBCM

(dashed lines) as a function of the number of fluctuators for different
values of α. The three pairs of lines (from top to bottom) refer to
α = 1.0 (black), α = 1.5 (red), and α = 2 (blue).
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FIG. 5. (Color online) Non-Markovianity of colored channels.
The plot shows the quantum capacity for a qubit subject to 1/f α

noise generated by ten random fluctuators for different values of α:
α = 1 (solid black line), α = 1.5 (dashed red line), α = 2 (dotted
blue line), and α = 2.5 (dot-dashed green line).

to the time during which the qubit is subjected to noise. In
more detail: only certain lengths of the channel, corresponding
to nonzero values of CQ(τ,α,Nf ), allow for reliable trans-
mission of quantum information. This characteristic lengths
depend on the specific parameters of the noise. Besides, the
range of nonzero values of CQ(τ,α,Nf ), decreases as Nf

increases, making robust quantum communication a more
challenging task. As mentioned above, these conclusions
hold upon assuming that the channel is reset after each use,
i.e., focusing on memory effects during the propagation and
neglecting memory effects among subsequent uses of the
channel.

C. Two-qubits non-Markovianity

We conclude this section by addressing the non-
Markovianity of RTN and colored environments acting inde-
pendently on two dephasing qubits. The dynamics is governed
by the Hamiltonian

H (t) = H1(t) ⊗ I2 + I1 ⊗ H2(t), (30)

where H1(2)(t) is the single qubit Hamiltonian in Eq. (13) and
I1(2) is the identity operator in the Hilbert space of the first
(second) qubit. If we focus on the BLP measure, numerical
maximization should be performed to find the maximizing
initial pair of states. In both the case of RTN and colored
noise, the maximizing pair corresponds to the two orthogonal
factorized states |++〉 and |−−〉. We have numerically
confirmed that the optimal trace distance in this case also takes
the form: D = |&(t)|. The BCM non-Markovianity measure
is straightforward to calculate as the quantum capacity, it is

additive for degradable channels as the one here considered,
namely C2q ($(t)) = 2CQ($(t)), where the subscript 2q stands
for two qubits. It follows that the non-Markovian dynamics of
two qubits subjected to independent RTN or colored noise
is simply related to the single-qubit non-Markovianity, and
therefore it is quantitatively the same.

V. CONCLUSIONS

We have addressed open quantum systems made of one
or two qubits interacting with a classical random field and
evaluated the non-Markovianity of the corresponding noisy
maps. In particular, we focused on environments showing
non-Gaussian fluctuations, as those described by random
telegraph noise and colored noise with spectra of the the
form 1/f α . Upon analyzing the dynamics of both the trace
distance and the quantum or entanglement assisted capacity
we have shown that the behavior of non-Markovianity based
on both measures is qualitatively similar. Besides, we have
shown that environments with a spectrum dominated by low-
frequency contribution are generally non-Markovian, and that
non-Markovianity of colored environments decreases when
the number of fluctuators realizing the environment increases.

Overall, our results confirm that non-Markovianity may
represent a resource for quantum information processing. In
particular, our results show that non-Markovian features are
indeed connected to the revivals of quantum correlations. In
fact, if we compare our results with those in Ref. [29], we find
that whenever the environment is non-Markovian, revivals of
quantum correlations are present, while they decay monotoni-
cally for a Markovian environment. In other words, our results
confirm that non-Markovianity cannot be considered as a mere
label to identify different kinds of dynamics. Rather, it may be
exploited for a better control of quantum channels, and to better
preserve quantum correlations for quantum communication
protocols and quantum information processing.
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