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We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show
how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the
position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol
which is secure against Gaussian individual attacks based on optimal 1 → 2 asymmetric cloning machines for
arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties,
and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a
clear indication of the potential impact of non-Markovian effects in QKD.
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I. INTRODUCTION

Quantum key distribution (QKD) is a fundamental area of
quantum technology [1]. The aim of any QKD protocol is to
allow two parties, the sender Alice and the receiver Bob, to
exchange a secret key using quantum and/or classical channels,
avoiding a possible eavesdropper (Eve) from acquiring infor-
mation on the key. Discrete-variable QKD protocols are based
on transmission and measurements of single- or entangled-
photon states, and therefore are limited by the efficiency
of single-photon generation and detection. On the contrary,
continuous-variable (CV) QKD [2] is a potentially high-bit-
rate technique for at least two reasons. On the one hand, the key
is encoded into continuous-spectrum quantum observables as
the quadrature components of a light field, and thus the number
of bits per pulse can be high. On the other hand, it employs a
homodyne detection technique based on standard photodiodes,
which are much faster than the avalanche photodiodes used in
photon-counting discrete QKD schemes. Different proposals
for CV QKD have been put forward, either based on single-
mode coherent [3,4] and squeezed [5–11] signals or Einstein-
Podolsy-Rosen (EPR) correlated beams [12,13]. Experimental
demonstrations have been reported for coherent [3,4,14–16],
squeezed [10], and EPR beams-based [13] protocols, and
unconditional security proofs have also been investigated
[17,18].

The coherent-state protocol is perhaps the most interesting
for practical applications. In this case, Alice encodes a key into
amplitudes of pure coherent states and sends them through a
quantum channel to Bob, who randomly chooses a coding
quadrature basis in which to measure them via homodyne
detection. Binary data is extracted from the homodyne
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sample using bit-slice reconciliation methods and privacy
amplification [19].

The unavoidable losses occurring along the channel must
be taken into account for the realistic description of QKD
protocols and for the analysis of their security. In fact, it has
been shown that losses can be exploited by eavesdroppers to
hide themselves and acquire information about the key [3].
Security of the protocol is defined, e.g., ensuring that the
information of Alice and Bob about the key is higher than the
one acquired by Eve (direct or reverse reconciliation). Lossy
channels considered so far are Markovian, i.e., characterized
by a constant damping rate along the transmission line. This
is usually an approximation and, in practice, channels may
show non-Markovian losses, i.e., a damping rate which is
not uniform along the line, being dependent on the spectral
structure of the environment coupled to the propagating
mode [20,21]. Moreover, the increasing success of reservoir
engineering techniques paves the way for the realization of
optical channels in which the losses due to the interaction with
the environment can be appropriately manipulated. Recently
non-Markovian signatures in semiconductor quantum wires
have been experimentally observed [22].

Non-Markovian effects in CV systems have indeed been
analyzed in some detail in recent years [23], with focus on the
dynamics of purity, entanglement [24–26], and more general
quantum correlations [27] in either independent or common
baths.

In this paper, we address the effects of non-Markovian
channel losses on the performance of a CV QKD protocol.
In particular, we focus on a specific coherent-state protocol
showing how the non-Markovian features may be exploited
to enhance security, i.e., to reduce the information available
for Eve and/or to detect her presence and position along the
transmission line. In our scheme, a suitable engineering of
the channel decay rate allows us to obtain secure QKD for
arbitrarily low values of the overall transmission line. We also
show that the same result cannot be obtained with ordinary
Markovian channels characterized by uniform losses.
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The best eavesdropping strategy in Markovian channels
depends on the chosen reconciliation scheme by Alice and
Bob [28]. Direct reconciliation-based protocols are known
to be secure for channel losses not exceeding 50%, while
with reverse reconciliation protocols, security is in principle
achieved for any amount of loss [4]. Assuming that this is
also the best strategy in the non-Markovian case, we show that
our proposal enhances security independent of the choice of
reconciliation method.

This paper is structured as follows. In the next section,
we briefly review the coherent-state protocol in a Markovian
channel and describe the eavesdropping strategy based on
1 → 2 asymmetric optimal cloning machines. In Sec. III we
introduce a relevant class of non-Markovian channels and
generalize the protocol to this case, whereas in Sec. IV,
we describe in detail our proposal to enhance security and
show how it is possible to detect the eavesdropper by a
post-communication comparison of a part of the data sent
by Alice to Bob. In Sec. V we discuss how to optimize
the decay properties of the channel for a specific type of
structured environment. In Sec. VI we analyze the effects
of finite resolution in the detection stage. Finally, Sec. VII
is devoted to extending our analysis to the case of channels
with excess noise and/or to reverse reconciliation protocols.
Section VIII closes the paper with some concluding remarks.

II. QKD USING COHERENT STATES

In QKD with coherent states [3], Alice draws pairs of
independent real random numbers (xA, pA) from two Gaussian
distributions with zero mean and the same variance, and
then generates the coherent states |αA〉 = |xA + ipA〉, which
are finally sent to Bob through a quantum channel. The
propagation along the channel is, in general, noisy and
losses are described as the interaction of the light mode
with an environment made of an ensemble of independent
harmonic oscillators at temperature T under the Born-Markov
approximation [29]. The evolution is thus governed by a master
equation in the Lindblad form,

"̇ = γ (N + 1)(2a"a† − a†a" − "a†a)

+ γN (2a†"a − aa†" − "aa†), (1)

where γ > 0 is the damping rate and N ! 0 is the mean
number of thermal photons of the bath at the signal frequency,
i.e., the temperature parameter of the bath. The coherent state
sent by Alice evolves into a displaced thermal state of the form

|αA〉〈αA| → D(α
√
ηM )ν(µ/2)D†(α

√
ηM ), (2)

where D(β) = exp{βa† − β∗a} is the displacement operator,

ηM ≡ ηM (t) = e−2γ t (3)

is the total channel transmission,

µ ≡ µ(t) = 2N [1 − ηM (t)] (4)

is the total added excess noise, and ν(x) is a thermal state of
thermal parameter x. We denote by τ ≡ L (hitherto c = 1) the
total transmission time (channel length). After the propagation,
Bob receives the states (2) and arbitrarily decides to measure
one of two orthogonal quadratures. Since the key is encoded in

the mean value of the signal sent by Alice, he needs to rescale
the measured observables by an amount equal to ηM (τ )−1/2,
thus also amplifying the noise. For the sake of clarity, we begin
our analysis discussing the particular but fundamental case of
N = 0, i.e., a damping channel without added excess noise µ,
and we focus on the situation in which the key is extracted
via the direct reconciliation method. The generalization to
channels with thermal excess noise and reverse reconciliation
will be discussed in Sec. VII.

Under the above hypothesis, the best eavesdropping attack
is obtained using a passive asymmetric 1 → 2 cloning machine
[28,30–32]: this process can be modeled with Eve intercepting
the signal with a beam splitter of transmissivity ηE at position
LE = tE along the line. We assume that Eve has perfect
knowledge of relevant properties of the quantum channel, i.e.,
the length τ and the loss rate γ , and that she can tune, with
arbitrary precision, both the value of the transmissivity ηE and
the attack time tE . The reflected part of the beam is stored by
Eve, whereas the other part is sent to Bob through a lossless
channel. Under these conditions, the best strategy is to attack
immediately (tE = 0) with a beam splitter of transmissivity
ηE = ηM (τ ) [3] equal to the overall transmissivity of the
channel. In this way, Eve is introducing the same amount of
losses as the overall line: Bob will receive the same state
as in the absence of any attack, and the eavesdropper is
not detectable. If, however, ηM (τ ) ! 1/2, then, even if not
detected, Eve cannot achieve the same information as Bob
about the secret key, and the protocol is secure under direct
reconciliation [3].

III. COHERENT-STATE PROTOCOL IN
NON-MARKOVIAN CHANNELS

Markovian evolutions are approximate dynamical models
for channel losses, and more realistic situations can be
described with master equations derived without the Markov
assumption. For example, the inclusion of the nonresonant
coupling to phonons in the description of propagation in
fused silica fibers leads to delayed nonlinearity due to the
non-Markovian phonon bath, in addition to spontaneous and
thermal noise [21]. In the following, we consider the non-
Markovian master equation (NME)

"̇ = γ (t) (2aρa† − a†aρ − ρa†a), (5)

which corresponds to a model in which the light mode interacts
weakly with a structured bosonic reservoir at zero temperature.
The functional form of the coefficient γ (t) depends on the
spectral structure of the environment in which the system
is embedded. In the weak-coupling regime, and for times
larger than the typical reservoir correlation time scale τR ,
the coefficient tends to the Markovian constant value, i.e.,
γ (t) → γM . By changing the reservoir spectral properties, one
may engineer the functional form of γ (t) as well as modify
the value of τR . It is worth noticing that the key feature in our
scheme is the inhomogeneity in the rate of loss γ . This can
also be achieved by a suitably engineered position-dependent
coupling to the reservoir along the optical channel, since
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γ (x) = γ (ct). In the non-Markovian (NM) channel (5), an
initial coherent state evolves as

|αA〉 → |αAe−)(t)/2〉 = |αA
√
ηNM〉 ,

where ηNM (t) = e−)(t) is the channel transmissivity, with
)(t) = 2

∫ t

0 γ (s)ds. This channel does not introduce excess
noise and therefore can be considered the non-Markovian
analog of (1) with N = 0. However, because of the time
dependence of the coefficient γ (t), we have, in general,
)(t) (∝ t , i.e., the damping is not uniform as in the Markovian
case. The eavesdropping strategy described above works in
the same way if we let Eve know the analytic form of the
decay rate γ (t). In this case, the best strategy is still to attack
at the beginning of the channel and to choose properly the
beam-splitter transmissivity to have ηE = ηNM (τ ). In this way,
her presence is still nondetectable and the results about the
security of the channel reported in [3,4] still hold.

IV. SECURITY AND EAVESDROPPING DETECTION IN
NON-MARKOVIAN DAMPING CHANNELS

One of the main assumptions in QKD is that everything
that Alice communicates to Bob using public channels is also
known by Eve. This means that, in order to detect a possible
eavesdropper, Alice needs to perform independently a certain
operation during the transmission, leading to different results
at Bob’s side when Eve is present or not. In our protocol, Alice
still encodes the key into coherent signals, but now she can act
on the channel length by adding a delay *t at the first stage
of the signal propagation, as depicted in Fig. 1. For the sake
of simplicity, although we have only one physical channel,
we will refer to the two possible choices as two channels with
the same time-dependent loss rateγ (t) but different length. The
key signal is always sent through the ordinary channel of length
τ , but now Alice may also send a reference coherent state |α0〉
by choosing randomly, with the same probability, between the
ordinary and the longer channel of length τ + *t . As we will
see, although this is not changing the optimal eavesdropping
strategy, it allows detection of Eve in NM channels.

Let us start by considering the situation of a clean channel
(no eavesdropper) and focus on the results of the quadrature
measurements for the reference state. Fifty percent of the time,

NM
channel

Alice
lossless channel

Eve

Bob
ηE

τ

∆t
tE

xA, pA

FIG. 1. Schematic diagram of the QKD protocol in a NM channel
with the relevant elements of Eve’s attack scheme. The solid channel
line refers to the NM channel, and the dashed line refers to the
lossless channel used by Eve. Without the eavesdropper, the channel
is non-Markovian throughout its whole length.

Bob is receiving the state |α0e
−)(τ )/2〉 when it is sent through

the ordinary line, whereas the rest of the copies evolve into
|α0e

−)(τ+*t)/2〉. Since Bob is not aware of which channel
has been chosen by Alice, his quadrature measurements must
be independent from this choice. Therefore he measures
quadratures scaled according to the total ordinary channel
losses e−)(τ )/2. After the completion of the session, Alice
informs Bob about which channel each reference state has
been sent through. Bob can now distinguish among the two
sets of states and study the statistics of the two measurement
distributions. It is easy to show that these distributions are
Gaussian with the same width, but they differ in the mean
value by an amount

δxNE = |α0(1 − e−[)(τ+*t)−)(τ )]/2)| * |α0γ (τ )*t | , (6)

where we assumed that *t is small compared to the variation
of γ (t). Moreover the difference in mean value increases as
the amplitude α0 increases. The situation changes when Eve is
attacking the line. Because she also cannot distinguish between
the reference signals and the key ones, as well as between the
choice of channel by Alice, she has to treat every state the
same. She then keeps unchanged the attacking time tE and
the beam-splitter transmissivity

√
ηE . If she attacks at tE , the

transmissivity must be chosen in a way that

e−)(tE )/2√ηE = e−)(τ )/2,

so as to be undetectable when the ordinary channel is used. If
Alice uses the longer channel, Eve’s attack time is forcefully
shifted to tE + *t . The same calculation as before for the
difference in the mean values of the quadrature measurement
distribution at Bob’s side leads to

δxE = |α0(1 − e−[)(tE+*t)−)(tE )]/2)| * |α0γ (tE)*t |. (7)

Because of the time dependence of the loss rate γ (t), the
quantities in Eqs. (6) and (7) are, in general, different.
Therefore, if after the communication Alice and Bob perform
a check of the mean values of the distributions using a
public channel, they are able to detect the presence of Eve
whenever γ (tE) (= γ (τ ). This condition cannot be satisfied in
a Markovian channel.

For non-Markovian channels that also introduce thermal
noise [33], the added noise is time dependent and thus, besides
the mean values, the widths of the distributions at Bob’s side
are also different in the presence or absence of an eavesdropper.
In turn, this may be exploited to further enhance security via
checking the sample variances (see Sec. VII).

V. CHANNEL OPTIMIZATION

Our proposal is based on the fact that, in a non-Markovian
channel, )(t + s) (= )(t) + )(s) for generic t,s ! 0. The lack
of the semigroup property immediately implies that the integral
expression

∫ t+*t

t
γ (s)ds for fixed*t is not a constant function

of t . Therefore, the two quantities in Eqs. (6) and (7) do
not coincide, and the only way Eve can avoid detection is to
attack the channel when γ (tE) * γ (τ ). As a consequence, it is
crucial to engineer appropriately the environment surrounding
the channel to obtain the desired decay properties. We do
not discuss here possible specific realizations of the protocol;
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FIG. 2. (Color online) Normalized decay rates (see text) as a
function of time. Red lines correspond to ωc/ω0 = 0.5 and black
lines to ωc/ω0 = 3.0. Also, solid lines correspond to ωc = 0.5 and
dashed lines to ωc = 3.0.

however, as a concrete example, we consider here the decay
rate evaluated for an Ohmic reservoir with Lorentz-Drude
cutoff [34], i.e.,

γ (t) = γM [1 − e−ωct cosω0t − (ωc/ω0)e−ωct sinω0t], (8)

where ω0 is the mode frequency, ωc is the cut-off frequency of
the environment spectrum, and γM is the asymptotic decay rate.
The reservoir correlation time is here identified with τR = ω−1

c .
In Fig. 2 we show the behavior of the normalized decay rate

γ (t)/γM for different values of light and cut-off frequencies
ω0 and ωc. The red lines are evaluated for the same ratio,
ωc/ω0 = 0.5, and differ for the value of ωc = 0.5 (solid
line) and ωc = 3.0 (dashed line). The black lines instead
correspond to the ratio ωc/ω0 = 5.0, and also differ for the
value of ωc = 0.5 (solid line) and ωc = 3.0 (dashed line).
Decay rates of this second class (regime ωc > ω0) are exactly
what is needed for our scheme to work, because the relation
γ (tE) < γ (τ ) holds for any allowed value of the attack time
tE , and Eve has in principle no way to hide herself from the
security protocol. Moreover, since for ωc > ω0 the function
γ (t) is invertible, Alice and Bob can also find the exact
position of the eavesdropper along the line. On the other hand,
decay functions corresponding to red lines in Fig. 2 exhibit
oscillations before approaching the stationary value and thus
they are not invertible. In this case, Eve may find several places,
or “hiding locations,” at the beginning of the line where she
can perform the attack while avoiding detection, i.e., when
γ (tE) = γM .

VI. EFFECTS OF IMPERFECT DETECTION

Our detection method relies on checking whether the
distributions of homodyne data from the two channels of
different lengths are shifted by each other by an amount δxNE

rather than δxE . The ability to detect an eavesdropper thus
depends on the precision and the resolution of quadrature
measurements made by Bob. A finite precision implies that
Bob would not be able to discriminate the results when

|α0*t[γ (t∗E) − γ (τ )]| < ε,

with ε a threshold depending on the precision. In practice, this
means that whenever Eve places the attack at tE > t∗E , she is

not revealed by our method. According to Ref. [3], the channel
is then secure when

)(tE) ! − log 2ηNM,

with ηNM = exp{−)(τ )} being the overall transmission of the
non-Markovian channel. In other words, security is ensured if
the overall transmission is larger than

ηNM ! 1
2 exp{−)(t∗E)} ≡ ηth.

For any given ε, we can make t∗E in principle arbitrarily close
to τ by a suitable engineering of the environment spectrum.
In turn, this allows one to decrease the threshold and make
the channel secure for arbitrarily low values of the overall
transmission ηNM . Notice also that, being tE is of the order
of the reservoir correlation time scale τR , if τR + τ , then the
amount of losses accumulated before the attack is negligible
compared to the overall losses, and the advantage given by our
protocol cannot be appreciated. In order to obtain a consistent
improvement, we need τR to be of the order of the total
transmission time τ .

VII. EXTENSION OF THE PROTOCOL TO CHANNELS
WITH EXCESS NOISE AND TO REVERSE

RECONCILIATION

The extension of our proposal to non-Markovian channels
with added excess noise and/or to reverse reconciliation
protocols is straightforward if we keep in mind the main
idea behind our protocol, that is, to force a discrepancy
on some result at Bob’s side when the eavesdropper is
present. This discrepancy is implemented through the random
transmission of the reference states |α0〉 along two different
lines characterized by a difference in the overall loss η and, in
the present case, also in the added excess noise µ. For the sake
of concreteness, and in order to make the discussion as clear
as possible, we refer in the following to the case considered
in [28], where different kinds of eavesdropping attacks in
protocols using coherent states and reverse reconciliation have
been investigated and compared.

Our prototype of a non-Markovian channel with added
excess noise is described by the following master equation:

"̇ = [.(t) + γ (t)](2a"a† − a†a" − "a†a) (9)

+ [.(t) − γ (t)](2a†"a − aa†" − "aa†), (10)

characterized by a time-dependent loss rate γ (t) and a time-
dependent excess-noise density .(t). In the presence of this
channel of length τ , a pure coherent state will evolve into a
displaced thermal state, as in Eq. (2). In terms of mean values
of first and second quadrature moments, we have

X̄(τ ) =
√
η(τ )X̄(0), σ (τ ) = [µ(τ ) + 1]σ (0), (11)

where µ(τ ) =
∫ τ

0 .(s)ds is the added excess noise, η(τ ) =
exp

{
−)(τ )

}
is the channel transmission with )(τ ) =∫ τ

0 γ (s)ds, and σ (0) = I/2 is the covariance matrix of a
coherent state, with I being the 2 × 2 identity matrix.

We start analyzing the situation in the absence of any
eavesdropper. In this case, Alice sends the key states along
the channel of length τ , while the reference coherent states
|α0〉 may be randomly sent along the normal channel or the
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channel

Alice
channel

NM

cloning Bob

Eve

asymm.

∆t

τ

tE

xA, pA

FIG. 3. Schematic diagram of the QKD protocol in a NM channel
with excess noise. During the attack, Eve simulates both the noise
and the damping by means of an active asymmetric cloning machine.

longer one of length τ + *t . A straightforward calculation
shows that, in the absence of Eve, at Bob’s side there will be a
discrepancy on the mean value and variance of the quadrature
measurements for the reference states, whose amount is given
by

δxNE = |α0(1 − e−[)(τ+*t)−)(τ )]/2)| * |α0γ (τ )*t |, (12a)

*xNE * |.(τ )|
η(τ )

*t, (12b)

respectively.
Let us consider what happens in the presence of an

eavesdropper attacking at a certain time tE . It is worth stressing
that, whatever attack is performed, the net effect can now be
modeled as an active asymmetric cloning machine, in order
to simulate the effect of both the damping and the noise
(see Fig. 3). If Alice now switches between the channels,
it will result in a different discrepancy at Bob’s side when
Eve attacks, and the new discrepancies on mean values and
variance read

δxE = |α0(1 − e−[)(tE+*t)−)(τ )]/2)| * |α0γ (tE)*t |, (13a)

*xE * |.(tE)|
η(τ )

*t, (13b)

respectively. Therefore our result works for general kinds
of eavesdropping attacks in protocols using coherent states,
provided that the non-Markovian channel does not contain
“hiding locations” where γ (tE) * γ (τ ). If Eve attacks at these
hiding locations, indeed, she can always hide her presence.
Nevertheless, even in the case of an eavesdropping attack
at the hiding locations, our scheme may always be used
to enhance the security of coherent-state protocols based
on direct or reverse reconciliation. This can be proved by

focusing once more on the main effect of the channel switching
performed by Alice, that is, to force Eve to attack in the hiding
locations. If the non-Markovian channel is suitably designed
and engineered, it is possible to shift Eve’s attacks at times
tE - 0. In this way, the signal is already partially damped
and decohered when arriving at the eavesdropper’s location,
thus forcing Eve to reduce the interference with the commu-
nication and, therefore, reduce its added noise (reducing µ)
and losses (increasing η). If we consider, as a peculiar
example, the optimal individual Gaussian attack for the reverse
reconciliation reported in Ref. [28], this constraint corresponds
to an increase of the conditional variance between Eve’s and
Bob’s data, thus resulting in a decrease of the correlations.

VIII. CONCLUSION

We have analyzed continuous-variable QKD with coherent
states in the presence of non-Markovian effects along the
transmission line and suggested a method to improve security
based on the nonuniform time dependence of the losses. In
particular, we focused on a coherent-state QKD protocol,
which is secure against Gaussian individual attacks based on
optimal 1 → 2 cloning machines.

Our method ensures security for arbitrarily low transmis-
sivity of the channel and allows one to detect the presence
and the position of the eavesdropper upon both a suitable
engineering of the channel decay properties and the use of
an additional reference coherent signal. The eavesdropper
can manage to hide her presence by reducing the extracted
amount of information, but the legitimate users can reduce to
zero her information by tuning the reservoir correlation time.
Our scheme to reveal an eavesdropper is based on a specific
non-Markovian property, and it cannot be implemented in
ordinary Markovian channels characterized by uniform losses.
In addition, since it is based on channel properties rather than
on specific features of the distribution scheme, we foresee its
application to other CV QKD protocols, such as those based
on squeezed or entangled states.

Our results pave the way for future investigations on
security against even more general non-Markovian attacks,
and give a clear indication of the potential impact of non-
Markovian effects in QKD.
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