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We identify and discuss nonlinear phase noise arising in Kerr self-phase modulation of a coherent light pulse
propagating through an attenuating medium with third-order nonlinearity in a dispersion-free setting. This phe-
nomenon, accompanying the standard unitary Kerr transformation of the optical field, is described with high
accuracy as Gaussian phase diffusion with parameters given by closed expressions in terms of system properties.
We show that the irreversibility of the nonlinear phase noise ultimately limits the ability to transmit classical
information in the phase variable over a lossy single-mode bosonic channel with Kerr-type nonlinearity.
Our model can be also used to estimate the amount of squeezing attainable through self-phase modulation
in a Kerr medium with distributed attenuation. © 2018 Optical Society of America
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1. INTRODUCTION

Third-order nonlinearity in optical media makes the effective
refractive index dependent on light intensity. One of the con-
sequences of this phenomenon, known as the Kerr effect, is self-
phase modulation, which consists of an intensity-dependent
contribution to the phase shift acquired by a light beam propa-
gating trough the medium. In the single-mode description,
such propagation can be described by a nonlinear oscillator
with 1 degree of freedom [1–3]. The quantum version of this
model exhibits a wealth of nonclassical effects, such as squeez-
ing [4] and generation of Schrödinger cat states [5]. However,
their experimental realization requires suppression of the
accompanying decoherence mechanisms with a prominent role
played by photon loss. While it is feasible to experimentally
produce squeezed states using third-order nonlinearity in
optical fibers [6–8], Schrödinger cat states turn out to be much
more elusive owing to higher nonlinearities necessary for gen-
eration and greater susceptibility to losses [9].

In parallel, optical nonlinearities have been recognized as a
key factor limiting the information capacity of fiber optical
communication links [10–13]. To date, most studies in this
area have used the classical description of electromagnetic fields
in terms of complex amplitudes governed by deterministic
equations of motion. In this approach, noise appears as a result
of signal amplification, averaging over signals transmitted

through other channels in a multiplexed system or the
functioning of the detection stage. The performance of
conventional optical detection is limited by the shot noise,
which is a manifestation of quantum fluctuations in measured
electromagnetic fields [14]. However, if the propagation of
electromagnetic fields is both nonlinear and lossy, quantum
fluctuations in the optical medium undergo a nonunitary trans-
formation, which may result in additional noise that would not
emerge in a classical description. This eventuality motivates a
full quantum mechanical study of nonlinear effects in optical
signal propagation.

The purpose of the present paper is to analyze a single-mode
model for self-phase modulation of a coherent light pulse
propagating through a lossy nonlinear dispersion-free medium.
Our central objective will be to identify and characterize quan-
titatively excess noise, which occurs as a result of nonlinear
transformation of quantum fluctuations in the course of lossy
propagation and cannot be compensated at the output with the
help of a reversible unitary transformation. Specifically, we
show that lossy Kerr propagation can be mathematically
decomposed into a sequence of three distinct processes that
are formally applied to the input coherent state one after
another. This decomposition is represented pictorially in
Fig. 1. The first process is standard attenuation, which lowers
the complex amplitude of the input coherent state. The last one
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is unitary Kerr evolution, which would have occurred in the
absence of loss. The intermediary process we will focus our
attention on arises solely as a result of a nontrivial interplay
between the Kerr nonlinearity and the optical loss. We demon-
strate that it has the form of nonlinear phase noise, which can be
approximated with high accuracy by a Gaussian distribution for
the additive random phase. We provide closed analytical expres-
sions for parameters that characterize the properties of this
decoherence mechanism.

The derived effective description of the nonlinear phase
noise is employed to discuss its impact on the transmission
of classical information in the phase variable. We choose con-
tinuous phase modulation with constant intensity as the encod-
ing format [15] and characterize accessible information using
the Holevo quantity [16–18], which takes into account the
most general quantum mechanical measurement strategies at
the channel output, including compensation of reversible non-
linear effects. It is shown that, for the propagation over a lossy
Kerr medium, the Holevo quantity exhibits a maximum in the
signal intensity, and that the nonlinear phase noise renders the
phase variable useless for information encoding at high signal
powers. Consequently, this effect can be expected to substan-
tially alter the ultimate communication capacity of an optical
channel compared with the linear case, which has been ana-
lyzed rigorously in recent years [19]. As another application
of the presented description, we study generation of squeezing
using the Kerr effect and derive a simple estimate for the impact
of distributed loss in the squeezing medium on the output
quadrature variance.

This paper is organized as follows. In Section 2, we intro-
duce the theoretical model for the nonlinear propagation. In
Section 3, we derive the effective description for the excess
noise generated in the model. Based on this description,

we demonstrate in Section 4 how the excess noise has an impact
on the accessible information for the phase variable. In
Section 5, we discuss the generation of squeezed states using
a lossy Kerr medium and derive a simple estimate for the
attainable reduction of quadrature noise in the case of distrib-
uted attenuation. Finally, Section 6 closes the paper with some
concluding remarks.

2. LOSSY NONLINEAR PROPAGATION

In a single-mode model describing dispersion-free propagation
of an optical pulse in a lossy Kerr medium along a direction z,
the evolution of the system is given by the master equation

d ϱ̂
dz

! iμ"n̂2; ϱ̂#z$% &
α
2
#2â ϱ̂#z$â† − n̂ ϱ̂#z$ − ϱ̂#z$n̂$; (1)

with the mode creation and annihilation operators â† and â,
respectively, the photon number operator n̂ ! â†â, the nonlin-
earity strength μ, and the parameter α characterizing linear
losses. The form of Eq. (1) follows the approach used in
previous works to analyze the spatial propagation of light in
nonlinear media [20,21], which can also include loss and
decoherence mechanisms [22] analogously to the standard
time-domain description. A more complete model should
include other effects occurring in nonlinear media, such as
guided acoustic wave Brillouin scattering and Raman scatter-
ing. Beyond the single-mode description considered here,
one would need to take into account, e.g., modulation insta-
bility and cross-phase modulation, which severely affects the
performance of wavelength-division multiplexed systems.

In order to separate reversible phenomena, we will carry out
the analysis in the interaction picture defined by the nonlinear
Hamiltonian μn̂2 of the Kerr interaction and represent the field
density operator ϱ̂#z$ as

ϱ̂#z$ ! exp#iμzn̂2$ϱ̂ 0#z$ exp#−iμzn̂2$: (2)

One should note the opposite sign in the exponent of the evo-
lution operator compared with the standard Heisenberg picture
in the time domain, as the formalism is now applied to propa-
gation along a spatial dimension. The master equation for the
transformed density operator ϱ̂ 0#z$ reads

d ϱ̂ 0

dz
!

α
2
#2â 0#z$ϱ̂ 0#z$"â 0#z$%† − n̂ϱ̂ 0#z$ − ϱ̂ 0#z$n̂$; (3)

with the distance-dependent annihilation operator in the
interaction picture â 0#z$ ! exp#−iμzn̂2$â exp#iμzn̂2$ and the
photon number operator n̂ invariant with respect to the trans-
formation. We assume that the input state is a coherent state
with a complex amplitude ζ0, ϱ̂#0$ ! jζ0ihζ0j, given in the
Fock basis by a superposition:

jζ0i ! e−n∕2
X∞

n!0

ζn0ffiffiffiffi
n!

p jni: (4)

We will use n ! jζ0j2 to denote the mean photon number in
the input coherent state. The propagation equations for the
above model can be solved analytically [2,3]. In order to deter-
mine the elements of the field density matrix after a propaga-
tion distance z in the Fock basis ϱ̂ 0

mn#z$ ! hmjϱ̂ 0#z$jni, one
can use an ansatz:

σ

Re

Im

1

3

2

φ0

ζ0

Fig. 1. Decomposition of noisy propagation of a coherent light
pulse in a lossy Kerr medium into a sequence of three processes.
Process 1 is linear attenuation of the input complex amplitude ζ0
by a factor

ffiffiffi
τ

p
, where τ is the power transmission of the medium.

Process 2 is nonlinear phase noise, which shifts the phase by ϕ0

and introduces Gaussian phase diffusion characterized by variance
σ2. Finally, process 3 is unitary Kerr evolution, which would have
occurred in the absence of attenuation, applied to the output of
process 2.
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ϱ 0
mn#z$ !

ζm0 #ζ'0$nffiffiffiffiffiffiffiffi
m!n!

p e−#m&n$αz∕2cm−n#z$: (5)

The factor cj#z$ depends only on the difference j ! m − n
between the matrix element indices. It is easy to verify that
the above ansatz, after inserting into Eq. (3), yields a closed
first-order differential equation for cj#z$, which can be solved
by standard means. For completeness, we present the detailed
derivation in Appendix A.

It will be convenient to characterize the medium with two
dimensionless parameters. The first one is the transmission
τ ! exp#−αz$, which specifies the fraction of optical energy
τn retained in the field at the channel output. The second
one is the ratio ϰ ! μ∕α describing the strength of the non-
linear interaction with respect to attenuation. Note that ϰ is an
intensive parameter characterizing the bulk medium itself,
while τ depends on the channel length. Using this parameter-
ization, the solution of the master equation can be written com-
pactly as

ϱ 0
mn#z$ ! hmj

ffiffiffi
τ

p
ζ0ih

ffiffiffi
τ

p
ζ0jni exp"−nf τ##m − n$ϰ$%: (6)

The product of the first two terms hmj
ffiffiffi
τ

p
ζ0ih

ffiffiffi
τ

p
ζ0jni de-

scribes a coherent state with an attenuated amplitude
ffiffiffi
τ

p
ζ0.

Because unitary Kerr evolution has been included in the trans-
formation to the interaction picture in Eq. (2), the last factor
exp"−nf τ##m − n$ϰ$% appearing on the right-hand side of
Eq. (6) only contains effects arising from the combination
of the Kerr nonlinearity and loss. The complex function in
the exponent is given explicitly by

f τ#ϰ$ ! 1 − τ −
1 − τ1−2iϰ

1 − 2iϰ
: (7)

In Fig. 2 we depict the Husimi Q function for the state
ϱ̂ 0#z$ with an increasing mean photon number. The dimen-
sionless nonlinearity for the example had been chosen as

ϰ ! 5 × 10−6. It can be related to parameters of actual fiber
optic links as ϰ ! γNLℏω0∕#αT $, where γNL is the fiber
third-order nonlinearity, ℏω0 is the energy of a single photon
at the carrier frequency ω0, and T is the pulse duration.
Combinations of these parameters that give the exemplary
value of ϰ for two common types of optical fiber have
been collected in Table 1. The channel transmission has taken
τ ! 10−8, which corresponds to 400 km of a standard SMF-28
fiber. Two effects are clearly seen: the overall phase of the state
is shifted, and the state becomes spread on a circle. The spread-
ing becomes stronger with increasing pulse intensity. It should
be emphasized that this spreading does not arise from the
reversible deformation of quadrature fluctuations by the uni-
tary Kerr self-modulation. These effects are excluded in the
density matrix in the interaction picture ϱ̂ 0#z$; furthermore,
they can be estimated to be negligible in the presented numeri-
cal examples: for a nonlinear strength of ϰ ! 5 × 10−6, a chan-
nel transmission of τ ! 10−8 and a mean photon number at the
output of τn ! 60 at the input, the relative change in quad-
rature fluctuations calculated using the approach presented in
Section 5 can be characterized using the squeezing parameter r
to remain below 2r ≈ 2.2 × 10−2.

3. NONLINEAR PHASE NOISE

Let us now derive effective parameters that describe features
seen in Fig. 2. The starting point will be the inspection of
the real and imaginary parts of the function f τ#ϰ$ defined
in Eq. (7), shown in Fig. 3 for transmissions τ ! 10−8 and τ !
0.8 as a function of the dimensionless nonlinearity ϰ. As seen in
Fig. 3(a), for τ ≪ 1 the real part Re f τ#ϰ$ has the form of a dip
centered around ϰ ! 0. Using Eq. (7), this dip can be mod-
elled by an inverted Lorentzian proportional to 1∕#1& 4ϰ2$,
whose width is of the order of 1. The relevant range of the
argument of f τ in Eq. (6) is defined by the range of the
Fock basis indices m and n for which the product of the scalar
products hmj

ffiffiffi
τ

p
ζ0ih

ffiffiffi
τ

p
ζ0jni substantially differs from zero.

Because jhmj
ffiffiffi
τ

p
ζ0ij2 is a Poissonian distribution in the

integer variable m with an average τn and hence standard
deviation

ffiffiffiffiffi
τn

p
, this condition will be met for jm − nj ≲

ffiffiffiffiffi
τn

p
.

Consequently, the argument of the function f τ has the order of
magnitude ϰjm − nj ≲ ϰ

ffiffiffiffiffi
τn

p
. If the product ϰ

ffiffiffiffiffi
τn

p
≪ 1,

which is the case for the numerical example shown in the pre-
ceding section, it is justified to expand the function f τ#ϰ$ up to
the second order in ϰ, which gives

f τ#ϰ$ ≈ −2i#1 − τ& τ log τ$ϰ & "4 − 2τ − 2τ#1 − log τ$2%ϰ2:
(8)

After the above approximation, the exponent multiplying
Fock basis elements of the coherent state density matrix in
Eq. (6) contains terms linear and quadratic in m − n with,
respectively, imaginary and real multiplicative constants. It is
easily verified by a direct calculation that such a density oper-
ator can be equivalently written as a statistical mixture of
coherent states with a fixed mean photon number and the
phase averaged using a Gaussian distribution with a mean
ϕ0 and a standard deviation σ:

(a) (b)

(c) (d)

Fig. 2. Husimi Q function of the output state emerging from
a lossy nonlinear medium with transmission τ ! 10−8 and nonlinear-
ity ϰ ! 5 × 10−6, shown for the output mean photon number
(a) τn ! 1, (b) τn ! 3, (c) τn ! 15, and (d) τn ! 60. A coherent
state with a real amplitude

ffiffiffi
n

p
has been assumed at the input.

Nonlinear phase noise is clearly seen to increase with the pulse
intensity.
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X∞

m;n!0

jmihnjhmjζihζjni exp
"
i#m − n$ϕ0 − #m − n$2

σ2

2

#

!
Z

∞

−∞
dϕ

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−#ϕ−ϕ0$2∕2σ2 jeiϕζiheiϕζj: (9)

For clarity, we have denoted here ζ !
ffiffiffi
τ

p
ζ0. Using the explicit

expression for the Fock state density matrix elements from
Eq. (6) with the approximation given in Eq. (8) enables us
to identify the parameters of the Gaussian distribution as

ϕ0 ! 2ϰn#1 − τ& τ log τ$; (10)

σ2 ! 4ϰ2n"2 − τ − τ#1 − log τ$2%: (11)

It is seen that the linear term in the expansion shown in Eq. (8)
generates a phase shift ϕ0, and the quadratic term is responsible
for the phase noise characterized by the variance σ2. While the

phase shift ϕ0 can be pre-compensated at the channel input, the
phase noise clearly affects the ability to encode information in
the phase variable. We will discuss quantitatively this phenome-
non in Section 4.

As a side remark, let us note that the validity of the expan-
sion in Eq. (8) can be extended beyond the regime discussed
above. This is because the function f τ#ϰ$ appears in the
exponent in Eq. (6) multiplied by the input intensity n.
If this product is large compared with 1, the exponential factor
effectively suppresses the respective off-diagonal elements
of the density matrix regardless of its specific form. In
Fig. 3(b) we plot the real and imaginary parts of f τ#ϰ$ for τ !
0.8 compared with the corresponding quadratic expansion.
Because the asymptotic value for jϰj ≫ 1 is f τ#ϰ$ ≈ 1 − τ,
the rule of thumb for the quadratic expansion to hold using
the above reasoning is #1 − τ$n ≫ 1. The accuracy of this
approximation can be assessed by comparing the infidelity

1 − F ! 1 − Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ̂ 0
p

ϱ̂ 0
G

ffiffiffiffi
ϱ̂ 0

pq
between the actual density ma-

trix ϱ̂ 0 and its approximation ϱ̂ 0
G introduced in Eq. (9) with

parameters of the Gaussian phase noise given in Eqs. (10)
and (11). The infidelity is shown in Fig. 4 for τ ! 0.8 as a
function of the mean output photon number τn and the
strength of the nonlinear interaction ϰ. It is seen that the de-
parture from the Gaussian approximation in the parameter
space is localized in the region of high ϰ and moderate output
mean photon numbers τn and works very well for higher
pulse intensities. Note that the upper limit for the range of
ϰ in Fig. 4 has been taken well above realistic values for optical

Table 1. Exemplary Combinations of Optical Fiber and Pulse Parameters that Give the Value of the Dimensionless
Nonlinearity Parameter ϰ ! 5 × 10−6

Fiber Wavelength Attenuation Nonlinearity Photon Energy Pulse Duration
Type [nm] α !km−1" γNL !km−1 W−1" ℏω0 [ J] T [fs]

SMF-28 1310 0.074 1 15.2 × 10−20 410
SMF-28 1550 0.046 1 12.8 × 10−20 560
HB1500 1550 0.46 3 12.8 × 10−20 170

(a)

(b)

Fig. 3. Real and the imaginary parts of the function f τ#ϰ$ defined
in Eq. (7) for a transmission of (a) τ ! 10−8 and (b) τ ! 0.8.

Fig. 4. Infidelity 1 − F between the actual density matrix ϱ̂ 0 and its
approximation ϱ̂ 0

G based on the Gaussian phase diffusion model for
the transmission τ ! 0.8 as a function of the output mean photon
number τn and the dimensionless nonlinearity ϰ.
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fibers. Notice also the small values of the infidelity 1 − F,
ensuring that the physical properties of the phase diffused state
are close to those of the state subject to lossy nonlinear propa-
gation [23–25].

4. PHASE SHIFT KEYING

Nonlinear phase noise analyzed in the preceding section is a
nondeterministic phenomenon that cannot be compensated
at the channel output in contrast with unitary Kerr transforma-
tion. This affects the ability to transmit classical information in
the phase variable, which is routinely used in keying constella-
tions for fiber optic communication, such as quadriphase shift
keying [26]. Without phase noise, the amount of information
that can be transmitted by modulating the phase of a light pulse
grows with its intensity. Fixing intensity defines a ring in the
complex amplitude plane, which, with increasing radius, can
accommodate more coherent states whose distinguishability
is limited by the shot noise. This picture changes dramatically
when channel nonlinearities induce phase noise. As seen in
Eq. (11), the variance of the phase noise grows linearly with
the input field intensity, which may actually obliterate informa-
tion keyed in the phase.

We will analyze quantitatively the above phenomenon by
considering a keying constellation, which consists of coherent
states jeiφζ0i continuously distributed on a circle with a uni-
form distribution pφ ! 1∕2π [15], as shown in Fig. 5(a). As a
measure of accessible information, we will take the Holevo
quantity χ, which takes into account the most general measure-
ment strategies permitted in quantum mechanics [16–18]. The
Holevo quantity is given as a difference between the von
Neumann entropy S#ϱ̂$ ! −Tr#ϱ̂ log ϱ̂$ of the average state
emerging from the channel and the average entropy of individ-
ual states, and it is given in our case by

χ ! S
$Z

2π

0
dφpφϱ̂ 0

φ

%
−
Z

2π

0
dφpφS#ϱ̂ 0

φ$: (12)

Because the von Neumann entropy is invariant with respect to
unitary transformations, we can exclude from our calculations
the unitary Kerr process and take as ϱ̂ 0

φ phase-diffused states
given by Eq. (9) for ζ !

ffiffiffi
τ

p
eiφζ0. The phase-averaged state

appearing in the first term of Eq. (12) as the argument of
the von Neumann entropy is a statistical mixture of Fock states
with a Poissonian distribution characterized by the mean τn.
Consequently, the classical Shannon entropy of this distribu-
tion yields the value of the first term in Eq. (12) irrespectively
of the phase noise. The second term in Eq. (12) is simply given
by the von Neumann entropy of any individual output state
S#ϱ̂ 0

φ$, which does not depend on the specific value of φ.
In Fig. 5(b), we depict the Holevo quantity as a function of

the mean photon number in the output pulse for several values
of the dimensionless nonlinearity parameter ϰ. In the case of a
linear channel, when ϰ ! 0, the Holevo quantity grows mono-
tonically with the signal intensity. However, in the nonlinear
case, the Holevo quantity exhibits a maximum, which can
be understood as an interplay between two effects. For low
intensities, the nonlinear phase noise has minute impact,
and increasing the mean photon number allows us to encode
more information in the phase variable thanks to the lower

extent of the shot noise relative to the circumference of the ring.
For high intensities, the nonlinear phase noise makes coherent
states diffused on the ring, as seen in Figs. 2(c) and 2(d), which
effectively scrambles any information encoded in the phase var-
iable. In general, one can consider an input ensemble of coher-
ent states, which modulated both the intensity and the phase
parameters. The quantification of the attainable transmission
rate needs to take into account the nontrivial dependence of
the information capacity of the phase variable on the signal
intensity.

Let us stress that the nonlinear phase noise is irreversible,
and it cannot be compensated at the channel output. Its origin
can be understood intuitively as follows. The amplitude of the
coherent pulse entering the nonlinear medium exhibits vac-
uum-level fluctuations. The nonlinearity deforms these fluctu-
ations in a nontrivial manner, which for short distances can be
visualized as squeezing one field quadrature at the cost of
expanding the conjugate one [27]. In the lossless case, variances
of these quadratures saturate the Heisenberg uncertainty rela-
tion, which indicates that the state remains pure, and the trans-
formation is reversible. However, in the case of distributed
attenuation, the propagating field exchanges fluctuations with

(a)

(b)

Fig. 5. (a) Continuous phase shift keying. Information is encoded
in the phase φ of a constellation of coherent states with constant in-
tensity uniformly distributed on a circle. (b) Holevo quantity for the
continuous phase shift keying constellation as a function of the output
mean photon number τn for several values of the nonlinearity ϰ.
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the environment. The contribution to field fluctuations ac-
quired that way is given at the vacuum level, which introduces
excess noise [28–30] that makes the state no longer Heisenberg-
limited. Because the effect of losses is to lower the mean photon
number of the Poissonian statistics of the pulse, and the Kerr
nonlinearity affects only the off-diagonal elements of the density
matrix in the Fock basis that characterize phase coherence, this
mixedness occurs for the phase variable.

5. KERR SQUEEZING IN A LOSSY MEDIUM

The Kerr effect in optical fibers can be used to generate
squeezed states of light, which exhibit quadrature fluctuations
reduced below the shot noise level [4,6–8]. We will now use the
effective description of self-phase modulation in a lossy nonlin-
ear medium developed in preceding sections to analyze the
attainable degree of squeezing in the presence of distributed
attenuation.

In order to describe the output field emerging from the
medium, we will take the phase diffused state evaluated using
the Gaussian phase noise profile derived in Eq. (9):

ϱ̂ 0
G !

Z
∞

−∞
dϕ

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ϕ2∕2σ2 jeiϕζiheiϕζj: (13)

For notational simplicity, we have chosen the phase distribution
to be centered at ϕ ! 0. We will also assume that the
coherent amplitude ζ is real and positive, ζ ! jζj. These
two conditions can be satisfied by an appropriate choice of
the input coherent state ζ0. The actual output state is obtained
from ϱ̂ 0

G via the unitary Kerr transformation, which yields
exp#iμzn̂2$ϱ̂ 0

G exp#−iμzn̂2$. It will be most convenient to treat
the unitary Kerr process exp#iμzn̂2$ in the Heisenberg picture,
in which the propagation equation for the annihilation operator
reads

d â
dz

! −iμ"n̂2; â#z$% ! iμ"2â†#z$â#z$ & 1%â#z$: (14)

Solving this equation allows us to express â#z$ and â†#z$ in
terms of â#0$ and â†#0$. Expectation values involving the latter
pair of operators should be taken over the ensemble of coherent
states given in Eq. (13). For each individual pure state jeiϕζi in
the ensemble, it will be convenient to use a substitution,

â#z$ ! eiμz#2ζ2&1$eiϕ"ζ & b̂#z$%; (15)

which shifts the reference frame to a location in which the ini-
tial mean field amplitude at z ! 0 is zeroed. This displacement
maps the coherent state jeiϕζi onto the vacuum state j0i, which
should be used to calculate expectation values of expressions
involving operators b̂#0$ and b̂†#0$. The overall phase factor
eiμz#2ζ2&1$ has been introduced to simplify subsequent formu-
las. The resulting propagation equation for the operator b̂#z$
reads

d b̂
dz

! 2iμζ2"b̂#z$ & b̂†#z$%; (16)

where on the right-hand side we retained only terms linear in
b̂#z$ and b̂†#z$. This is justified because b̂#z$ and b̂†#z$ de-
scribe only small fluctuations around the field amplitude,
which has been subtracted by the substitution in Eq. (15).

The solution of the linearized differential equation for b̂#z$
is given by

b̂#z$ ! #1& 2iμzζ2$b̂#0$ & 2iμzζ2b̂†#0$: (17)

We will now introduce operators for two orthogonal quadra-
tures of the output field defined as

q̂ ! e−iμz#2ζ2&1$â#z$ & h:c: ! eiϕ"ζ & b̂#z$% & h:c:; (18)

p̂! −ie−iμz#2ζ2&1$â#z$& h:c:! −ieiϕ"ζ& b̂#z$%& h:c:; (19)

where h.c. denotes Hermitian conjugated terms. Calculating
statistical properties of output field quadratures involves per-
forming two averages. The first one is the quantum mechanical
expectation value for expressions involving b̂#z$ and b̂†#z$.
These operators can be expressed using Eq. (17) by b̂#0$
and b̂†#0$, which should be taken acting on the vacuum state.
The results are

hq̂i ! 2ζhcos ϕi; hp̂i ! 2ζhsin ϕi (20)

in the first order and

hq̂2i ! 1& 4ζ2hcos2ϕi − 4μzζ2hsin 2ϕi& #4μzζ2$2hsin2 ϕi;
(21)

hp̂2i ! 1& 4ζ2hsin2ϕi& 4μzζ2hsin 2ϕi& #4μzζ2$2hcos2 ϕi
(22)

in the second order. The expectation value of the symmetrically
ordered product of the quadratures q̂ and p̂ reads

&
1

2
#q̂ p̂&p̂ q̂$

'
! 2ζ2hsin 2ϕi& 4μzζ2hcos 2ϕi

−8#μtζ2$2hsin 2ϕi: (23)

The second average is over the random phase shift ϕ with a
probability distribution exp"−ϕ2∕#2σ2$%∕

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
. Because the

distribution function is even, we have hsin ϕi ! hsin 2ϕi ! 0,
and the remaining averages can be determined from the expect-
ation values

hcos ϕi ! e−σ2∕2; hcos 2ϕi ! e−2σ2 : (24)

It will be convenient to use in subsequent formulas a squeezing
parameter r defined through a relation sinh r ! 2μzζ2. Let us
now consider quadrature fluctuations around the mean value
given by Δq̂ ! q̂ − hq̂i and Δp̂ ! p̂ − hp̂i. Their variances
are explicitly given by

h#Δq̂$2i ! 1& 2#1 − e−σ2$2ζ2&2#1 − e−2σ2$sinh2 r; (25)

h#Δp̂$2i ! 1& 2#1 − e−2σ2$ζ2&2#1& e−2σ2$sinh2 r; (26)

and the symmetrically ordered covariance reads
&
1

2
#Δq̂Δp̂& Δp̂Δq̂$

'
! 2e−2σ2 sinh r: (27)

Let us now identify the angle θ for which a general quadrature
given by x̂θ ! q̂ cos θ& p̂ sin θ exhibits the strongest squeez-
ing. It easy to verify that, in the absence of phase noise, when
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σ ! 0, the minimum quadrature variance is obtained for
tan θ0 ! −e−r and equals h#Δx̂θ0$

2i ! e−2r . When phase noise
is included in the calculation, the optimal quadrature angle is
given by

tan 2θ ! −
sinh r

sinh2 r & ζ2#eσ2 − 1$
; (28)

and the corresponding variance reads

h#Δx̂θ$2i ! 1& 2ζ2#1 − e−σ2$ & 2 sinh2 r

−2e−2σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 r & "sinh2 r & ζ2#eσ2 − 1$%2

q
: (29)

Let us recall that, in our representation of lossy Kerr self-phase
modulation, the input coherent amplitude ζ0 enters the above
expression through ζ2 ! τn and hence sinh r ! 2μzτn, while
σ2 is given by Eq. (11). In Fig. 6 we depict attainable squeezing
for several values of the transmission τ assuming n ! 108. The
abscissa is parameterized with the nonlinear interaction
strength μ defining the actual value of sinh r. It is seen that,
for strong nonlinearity, the squeezing is limited by the phase
noise induced by the interplay between the self-phase modu-
lation and losses.

The effective limit on attainable squeezing can be estimated
using the following simple calculation. When exponents e−σ2

and e−2σ2 in Eqs. (25)–(27) are expanded up to the first order
in σ2, the dominant effect of phase noise is the addition of an
excess noise term #Δp$2exc ! 4σ2ζ2 to the variance of p̂. All
other terms including σ2 can be neglected, as they involve fac-
tors sinh r or sinh2 r that are small compared to ζ2. This excess
noise can be written as #Δp$2exc ! 4 g#τ$ sinh2 r, where

g#τ$ !
2 − τ − τ#1 − log τ$2

τ#log τ$2
≈
1

3
#1 − τ$; (30)

and the second approximate form is valid for the transmission τ
close to one. For low attenuation, the optimal quadrature angle
stays close to θ0; hence, the minimum quadrature variance can
be approximated by

h#Δx̂θ0$
2i ! e−2r & #Δp$2exc sin2 θ0

! e−2r & g#τ$#1 − e−2r$ tanh r: (31)

For substantial squeezing, when r ≫ 1, we have
#1 − e−2r$ tanh r ≈ 1; consequently, the second term simplifies
to g#τ$ ≈ #1 − τ$∕3. This value defines the minimum quadra-
ture variance in the presence of loss. It is noteworthy that it
differs by a simple factor 1/3 compared with the scenario when
attenuation physically occurs after the squeezing transforma-
tion. In realistic nonlinear media, one needs to include other
effects, such as guided acoustic wave Brillouin scattering and
Raman scattering, which have a more severe effect on the
attainable squeezing [31].

6. CONCLUSIONS

We have presented a theoretical model for the propagation of
coherent states in a lossy medium with third-order nonlinearity
in a dispersion-free setting. Within this model, we have identi-
fied nonlinear phase noise emerging from the interplay between
optical loss and the Kerr nonlinearity. This excess noise is non-
unitary and cannot be compensated at the output. It has been
shown that, for a broad range of system parameters, an effective
description of this excess noise is given by a Gaussian distribu-
tion introducing also a nonlinear phase shift for the input state.
While the phase shift can be taken into account at the prepa-
ration stage, the Gaussian phase diffusion process is nonunitary
and cannot be compensated. Identification of the nonlinear
phase noise allows us to formally decompose the description
of propagation in a lossy nonlinear medium into a sequence
of three distinct processes, namely, standard attenuation fol-
lowed by Gaussian phase diffusion and then unitary Kerr evo-
lution. The presented decomposition is valid for coherent states.
It can be generalized to arbitrary states of the electromagnetic
field using the Glauber–Sudarshan P quasiprobability distribu-
tion for the density operator [32,33], but it should be kept in
mind that the effective transformation of individual coherent
states in this representation depends in a nontrivial manner
on their amplitudes through the parameters of the Gaussian
phase diffusion process. As a side note, the quadratic approxi-
mation used in the derivation of the nonlinear phase noise
parameters is reminiscent of certain simplified models of
decoherence in quantum mechanics [34], which can be tested
also in spatial propagation of optical fields through dense, multi-
ple-scattering, random media [35].

We also demonstrated that the nonlinear phase noise
severely impairs the ability to encode classical information in
the phase variable. Specifically, we considered phase shift keying
using a continuous constellation of coherent states distributed
on a ring with a fixed intensity. In the case of nonzero nonlin-
earity, the Holevo quantity, used as a measure of accessible
information, exhibits a maximum for a finite input mean
photon number. This is because, for input coherent states
with a sufficiently high mean photon number, the phase
becomes completely scrambled due to increasing diffusion.
Consequently, when designing an optimal input ensemble
of coherent states in both phase and intensity variables for
transmission of classical information, the contribution from
the high intensity region should approach that of a Poisson

Fig. 6. Attainable squeezing h#Δx̂θ$2i for the input mean photon
number n ! 108 and several different values of the transmission τ as a
function of the dimensionless nonlinear coefficient ϰ. For conven-
ience, the abscissa is parameterized with sinh r ! 2ϰ#− log τ$τn.
Dashed horizontal lines correspond to the estimate #1 − τ$∕3.
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channel [36]. It would be also interesting to investigate the
ultimate quantum limit on the classical capacity of an optical
channel with nonlinear phase noise, generalizing recently
results obtained for linear Gaussian models [19]. Finally, we
investigated the interplay between nonlinearity and losses in
the generation of squeezed states utilizing a Kerr medium.
We showed that the nonlinear phase noise can be used to
estimate the attainable squeezing in the presence of distributed
attenuation.

One should note that, in the context of optical communi-
cation, nonlinear transformation of spontaneous emission con-
tributed by signal amplification is known to introduce excess
phase noise [37,38]. This effect arises in the classical propaga-
tion model of electromagnetic fields. Our analysis incorporates
fully quantum fluctuations contributed by both the input field
and the loss mechanism, which are not taken into account in
classical propagation equations. Hence, nonlinear phase noise
discussed here appears even without signal amplification built
into the optical link. Furthermore, when considering accessible
information, we assumed that the reversible effects of the non-
linear propagation have been compensated by applying an
appropriate unitary transformation at the channel output.
Our quantum mechanical model can be extended to include
amplifier noise using methods developed in [2].

APPENDIX A: SOLUTION OF THE MASTER
EQUATION

In this appendix, we present a detailed calculation of the factor
cj#z$ used in the ansatz in Eq. (5). With the transformed
operator â 0#z$ ! exp#−iμzn̂2$â exp#iμzn̂2$ and the number
operator n̂ the master equation,

d ϱ̂ 0

dz
!

α
2
#2â 0#z$ϱ̂ 0#z$"â 0#z$%† − n̂ϱ̂ 0#z$ − ϱ̂ 0#z$n̂$; (A1)

can be reduced to a differential equation for the matrix
elements of the density matrix, which then reads

dϱ 0
m;n

dz
!

α
2

"
2ρ 0

m&1;n&1#z$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#m& 1$#n& 1$

p
e2iμz#m−n$

− ρ 0
m;n#z$#m& n$

#
: (A2)

Inserting the ansatz given in Eq. (5) into Eq. (A2) yields a
differential equation for the factor cj#z$ with j ! m − n, which
can be written as

dcj
dz

! αne−αz e2iμzjcj#z$: (A3)

This first-order differential equation is solved by standard
separation of variables, which yields

cj#z$ ! exp

$
−

nα
α − 2iμj

e−αz e2iμzj & A0

%

! exp

$
−

nτ
1 − 2iϰj

τ−2iϰj & A0

%
; (A4)

where A0 is the integration constant and in the last step we used
τ ! e−αz , ϰ ! μ∕α and e2iμzj ! e−2iϰj log τ ! τ−2iϰj. Inserting
this solution into the ansatz in Eq. (5) yields

ϱ 0
mn#z$ !

( ffiffiffi
τ

p
ζ0
)
m
( ffiffiffi

τ
p

ζ'0
)
n

ffiffiffiffiffiffiffiffi
m!n!

p exp

$
−

nτ1−2iϰ#m−n$

1 − 2iϰ#m − n$
& A0

%
:

(A5)
The constant A0 can be obtained from the initial condition
ϱ 0
mn#0$ ! e−nζm0 #ζ'0$n∕

ffiffiffiffiffiffiffiffi
m!n!

p
, which yields Eq. (6) with the

function f τ#ϰ$ given by Eq. (7).
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