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Abstract
We address nonlocality of bipartite continuous variable systems in the
presence of dissipation and noise. Three nonlocality tests have been
considered, based on the measurement of displaced parity, field quadrature
and pseudospin operator, respectively. Nonlocality of twin-beams has been
investigated, as well as that of their non-Gaussian counterparts obtained by
inconclusive subtraction of photons. Our results indicate that (i) nonlocality
of twin-beams is degraded but not destroyed by noise; (ii) photon
subtraction enhances nonlocality in the presence of noise, especially in the
low-energy regime.

Keywords: nonlocality, Bell inequalities, entanglement, conditional
measurements

1. Introduction

Nonlocality, i.e. the existence of correlations which cannot
be explained by any local hidden variable model, is perhaps
the most debated implication of quantum mechanics. During
the last decade other aspects of nonlocality, in addition to
generating nonlocal correlations, have been discovered: for
example, the possibility of teleporting and effectively encoding
quantum information, as well as the ability to perform certain
computations exponentially faster than any classical device.

Realistic implementations of quantum information
protocols require the investigation of nonlocality in a noisy
environment. In particular, the robustness of nonlocality
should be addressed, as well as the design of protocols to
preserve and possibly enhance nonlocality in the presence of
noise.

The evolution of nonlocality for a twin-beam state of
radiation (TWB) in a thermal environment was studied in [1]
by means of the displaced parity test [2], whereas in [3] its
nonlocality was investigated using the pseudospin operators [4]
when only dissipation occurs.

In [5] we have suggested a conditional measurement
scheme on TWB leading to a non-Gaussian entangled mixed
state, which improves the fidelity of teleportation of coherent
states. This process, named inconclusive photon subtraction

(IPS), is based on mixing each mode of the TWB with the
vacuum in an unbalanced beam splitter and then performing
inconclusive photodetection on both modes, i.e. revealing the
reflected beams without discriminating the number of detected
photons. IPS states have the following properties: they
improve the teleportation fidelity for coherent states [5] and
show enhanced nonlocal correlations in the phase space [6] in
ideal conditions, namely in the absence of noise. Motivated
by these results and by the recent experimental generation of
IPS states [7], in this paper we extend the previous studies on
the TWB and consider the nonlocality of the IPS state in the
presence of noise.

The paper is structured as follows. In section 2 we
address the evolution of TWBs in a noisy channel where both
dissipation and thermal noise are present, whereas in section 3
we briefly review the IPS process. In sections 4, 5 and 6
we investigate the nonlocality of TWB and IPS by means
of three different tests: displaced parity, homodyne detection
(field-quadrature) and pseudospin test, respectively. Finally,
section 7 closes the paper with some concluding remarks.

2. Dynamics of TWB in noisy channels

The so called twin-beam state of radiation (TWB), i.e. |�〉〉 =√
1 − λ2

∑
k λk|k〉 ⊗ |k〉 with λ = tanh r , r being the TWB
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squeezing parameter, is usually obtained by parametric down-
conversion of the vacuum, |�〉〉 = exp{r(a†b† − ab)}|0〉, a
and b being field operators. It is described by the Gaussian
Wigner function

W0(α, β) = exp{−2 Ã0(|α|2 + |β|2) + 2B̃0(αβ + α∗β∗)}
4π2

√
Det[σ0]

,

(1)
with

Ã0 = A0

16
√

Det[σ0]
, B̃0 = B0

16
√

Det[σ0]
, (2)

where A0 ≡ A0(r) = cosh(2r), B0 ≡ B0(r) = sinh(2r) and
σ0 is the covariance matrix

σ0 = 1
4

(
A01I2 B0σ3

B0σ3 A01I2

)

, (3)

1I2 being the 2 × 2 identity matrix and σ3 = Diag(1,−1).
Using a more compact form, equation (1) can also be rewritten
as

W0(X) = exp
{− 1

2 XTσ−1
0 X

}

4π2
√

Det[σ0]
, (4)

with X = (x1, y1, x2, y2)
T, α = x1 + iy1 and β = x2 + iy2,

and (· · ·)T denoting the transposition operation.
When the two modes of the TWB interact with a noisy

environment, namely in the presence of dissipation and thermal
noise, the evolution of the Wigner function (1) is described by
the following Fokker–Planck equation [8–10]:

∂t Wt(X) = 1
2

(
∂T

X I�X + ∂T
XI�σ∞∂X

)
Wt(X), (5)

with ∂X = (∂x1 , ∂y1, ∂x2 , ∂y2)
T. The damping matrix reads

I� = ⊕2
k=1 �k1I2, whereas the asymptotic covariance matrix

is given by

σ∞ =
2⊕

k=1

σ(k)
∞ =

(
σ

(1)∞ 0
0 σ

(2)∞

)

, (6)

where 0 is the 2 × 2 null matrix and

σ(k)
∞ = 1

4

(
1 + 2Nk 0

0 1 + 2Nk

)

. (7)

�k , Nk denote the damping rate and the average number of
thermal photons of channel k, respectively. σ∞ represents
the covariance matrix of the environment and, in turn, the
asymptotic covariance matrix of the evolved TWB. Since
the environment is itself excited in a Gaussian state, the
evolution induced by (5) preserves the Gaussian form (4). The
covariance matrix at time t reads as follows [10, 11]:

σt = G
1/2
t σ0G

1/2
t + (1I − Gt)σ∞, (8)

where Gt = ⊕2
k=1 e−�k t 1I2. The covariance matrix σt can also

be written as

σt = 1
4

(
At(�1, N1)1I2 Bt(�1)σ3

Bt(�2)σ3 At(�2, N2)1I2

)

(9)

with

At(�k, Nk) = A0e−�k t + (1 − e−�k t )(1 + 2Nk ),

Bt(�k) = B0e−�k t .
(10)

Let us now consider channels with the same damping rate
� but different number of thermal photons, N1 and N2: using
the density matrix formalism, the state corresponding to the
covariance matrix (9) has the following form:

�t = S2(ξ )µ1 ⊗ µ2S†
2(ξ ), (11)

where µk is the thermal state

µk = 1

1 + Mk

(
Mk

1 + Mk

)a†
k ak

(12)

ak , k = 1, 2 being the mode operators. The average numbers
of photons are given by

M1 = 1
4

[√
A2

+ − 16Bt − (2 − A−)

]

, (13)

M2 = 1
4

[√
A2

+ − 16Bt − (2 + A−)

]

, (14)

A± = A1,t ± A2,t , Ak,t ≡ At(�, Nk) and Bt = Bt(�). In
equation (11) S2(ξ ) = exp{ξa†

1a†
2 − ξ ∗a1a2} denotes the two-

mode squeezing operator, with parameter ξ ∈ C

|ξ | = sinh−1
(√

A+

2(A2
+ − 16Bt )1/2

− 1

2

)

, (15)

arg[ξ ] = π/2. (16)

Equation (11) says that the quantum state of a TWB, after
propagating in a noisy channel, is the same as a state obtained
by parametric down-conversion from a noisy background [11].
Their properties, and in particular entanglement and
nonlocality, can be addressed in a unified way using
equation (11) or, equivalently, equations (9) and (10).

Finally, if we assume �1 = �2 = � and N1 = N2 = N ,
then the covariance matrix (9) becomes formally identical
to (3) and the corresponding Wigner function reads

Wt(α, β) = exp{−2 Ãt(|α|2 + |β|2) + 2B̃t (αβ + α∗β∗)}
4π2

√
Det[σt ]

,

(17)
with

Ãt = At(�, N)

16
√

Det[σt ]
, B̃t = Bt(�)

16
√

Det[σt ]
, (18)

whereas the density matrix, mutatis mutandis, is still given by
equation (11).

3. De-Gaussification and noise

When thermal noise and dissipation affect the propagation of
an entangled state, its nonlocal properties are reduced and,
finally, destroyed [9, 10, 12]. Therefore, it is of interest to
look for some technique in order to preserve, at least in part,
such correlations, or to enhance the nonlocality of the state
which will face the lossy transmission line. Since it has been
shown that the de-Gaussification of a TWB can enhance its
entanglement in the ideal case and since non-Gaussian states
can be produced using the current technology [7], in this and
the following sections we will investigate whether or not this
process can also be useful in the presence of noise.
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Figure 1. Scheme of the IPS process: the two modes of a bipartite
state |�〉〉ab are mixed with the vacuum at two unbalanced beam
splitters (BSs) and the reflected modes are revealed by avalanche
photodetectors (APDs) with quantum efficiency η. When the APDs
jointly click one has the IPS state.

(This figure is in colour only in the electronic version)

The de-Gaussification of a TWB can be achieved by
subtracting photons from both modes [5, 13, 14]. In [5] we
referred to this process as inconclusive photon subtraction
(IPS) and showed that the resulting state, the IPS state, can
be used to enhance the teleportation fidelity of coherent states
for a wide range of the experimental parameters. Moreover,
in [6], we have shown that, in the absence of any noise during
the transmission stage, the IPS state has nonlocal correlations
larger than those of the TWB irrespective of the IPS quantum
efficiency (see also [15, 16]).

First of all we briefly recall the IPS process, whose
scheme is sketched in figure 1. The two modes, a and b,
of the TWB are mixed with the vacuum (modes c and d,
respectively) at two unbalanced beam splitters (BSs) with
equal transmissivities; the modes c and d are then revealed
by avalanche photodetectors (APDs) with equal efficiencies,
which can only discriminate the presence of radiation from
the vacuum: the IPS state is obtained when the two detectors
jointly click. The mixing with the vacuum at a beam splitter
with transmissivity T followed by the on/off detection with
quantum efficiency η is equivalent to mixing with an effective
transmissivity τ [5]

τ ≡ τ(T , η) = 1 − η(1 − T ), (19)

followed by an ideal (i.e. efficiency equal to 1) on/off detection.
Using the Wigner formalism, when the input state arriving at
the two beam splitters is the TWB W0(α, β) of equation (1),
the state produced by the IPS process reads as follows
(see [6] for the details about the calculation and about the de-
Gaussification map for the density matrix and Wigner function
in the case of a TWB):

W (IPS)
0 (α, β) = 1

π2 p11(r, τ)

4∑

k=1

Ck(r, τ)W (k)
r,τ (α, β), (20)

where

p11(r, τ) =
4∑

k=1

Ck(r, τ)

(b − fk)(b − gk) − (2B̃0τ + hk)2
(21)

is the probability of a click in both the APDs. In equations (20)
and (21) we introduced

W (k)
r,τ (α, β) = exp{−(b − fk)|α|2 − (b − gk)|β|2

+ (2B̃0τ + hk)(αβ + α∗β∗)}, (22)

and defined

Ck(r, τ) = Ck√
Det[σ0][xk yk − 4B̃2

0 (1 − τ)2]
, (23)

where C1 = 1, C2 = C3 = −2, C4 = 4; xk ≡ xk(r, τ), and
yk ≡ yk(r, τ) are given by

x1 = x3 = y1 = y1 = a

x2 = x4 = y3 = y4 = a + 2

with a ≡ a(r, τ) = 2[ Ã0(1 − τ) + τ ], b ≡ b(r, τ) =
2[ Ã0τ + (1 − τ)]. Finally, fk , gk , and hk depend on r and
τ as follows

fk = Nk[xk B̃2
0 + 4B̃2

0 (1 − Ã0)(1 − τ) + yk(1 − Ã0)
2], (24)

gk = Nk[xk(1 − Ã0)
2 + 4B̃2

0 (1 − Ã0)(1 − τ) + yk B̃2
0 ], (25)

hk = Nk{(xk + yk)B̃0(1 − Ã0)

+ 2B̃0[B̃2
0 + (1 − Ã0)

2](1 − τ)}, (26)

Nk ≡ Nk(r, τ) = 4τ(1 − τ)

xk yk − 4B̃2
0 (1 − τ)2

. (27)

The state corresponding to equation (20) is no longer a
Gaussian state and its nonlocal properties, in ideal conditions,
were studied in [6].

Here we are interested in the case when the IPS process
is performed on a TWB evolved in a noisy environment with
both the channels having the same damping rate and thermal
noise. The Wigner function of the state arriving at the beam
splitters is now given by equation (17), and the output state
is still described by equation (20), but with the following
substitutions:

Ã0 → Ãt , B̃0 → B̃t , σ0 → σt . (28)

We will denote with W (IPS)
�,N (α, β) the Wigner function of this

degraded IPS state.
In the next sections we will analyse the nonlocality of

the IPS state in the presence of noise by means of the CHSH
version of Bell’s inequalities for three different kinds of
measurement.

4. Nonlocality in the phase space

Parity is a dichotomic variable and thus can be used to establish
Bell-like inequalities [17]. The displaced parity operator for
two modes is defined as [2]

�̂(α, β) = Da(α)(−1)a† a D†
a(α) ⊗ Db(β)(−1)b†b D†

b(β),

(29)
where α, β ∈ C, a and b are mode operators and Da(α) =
exp{αa† − α∗a} and Db(β) are single-mode displacement
operators. Since the two-mode Wigner function W (α, β) can
be expressed as [11]

W (α, β) = 4

π2
�(α, β), (30)

�(α, β) being the expectation value of �̂(α, β), the
nonlocality revealed through measurement of �̂(α, β) is also
known as nonlocality in the phase space. The quantity involved
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Figure 2. Plots of the Bell parameters BDP for the TWB (top) and
IPS (bottom); we set J = 1.6 × 10−3 and τ = 0.9999. The dashed
lines refer to the absence of noise (�t = N = 0), whereas, for both
the plots, the solid lines are BDP with �t = 0.01 and, from top to
bottom, N = 0, 0.05,0.1, and 0.2. In the ideal case the maxima are
B(TWB)

DP = 2.32 and B(IPS)

DP = 2.43, respectively.

in such inequalities, named the Bell parameter, can be written
as follows:

BDP = �(α1, β1)+�(α2, β1)+�(α1, β2)−�(α2, β2), (31)

which, for local theories, satisfies |BDP| � 2.
Following [2], one can choose a particular set of displaced

parity operators, arriving at the following combination [6]:

BDP(J ) = �(
√
J ,−√

J ) + �(−3
√
J ,−√

J )

+ �(
√
J , 3

√
J ) − �(−3

√
J , 3

√
J ), (32)

which, for the TWB, gives a maximum BDP = 2.32, greater
than the value 2.19 obtained in [2]. Notice that, even in
the infinite squeezing limit, the violation is never maximal,
i.e. |BDP| < 2

√
2 [18].

In [6] we studied equation (32) for both the TWB and
the IPS state in an ideal scenario, namely in the absence of
dissipation and noise; we showed that, using IPS, the maximum
violation is achieved for τ → 1 and for values of r smaller than
for the TWB.

Now, by means of equation (20) and substitutions (28),
we can study how noise affects BDP. The results are shown in
figure 2: as one may expect, the overall effect of noise is to
reduce the violation of the Bell inequality. When dissipation
alone is present (N = 0), the maximum of violation is achieved
using the IPS for values of r smaller than for the TWB, as in the
ideal case. On the other hand, one can see that the presence
of thermal noise mainly affects the IPS results. In fact, for
�t = 0.01 and N = 0.2, one has |B(TWB)

DP | > 2 for a range of r
values, whereas |B(IPS)

DP | falls below the threshold for violation.
We conclude that, considering the displaced parity test in

the presence of noise, the IPS is quite robust if the thermal noise
is below a threshold value (depending on the environmental
parameters) and for small values of the TWB parameter r .
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Figure 3. Plots of the Bell parameter BHD for the IPS states for two
different values of the homodyne detection efficiency: ηH = 1 (top),
and ηH = 0.9 (bottom). We set τ = 0.99. The dashed lines refer to
the absence of noise (�t = N = 0), whereas, for both the plots, the
solid lines are BHD with �t = 0.05 and, from top to bottom,
N = 0, 0.05, 0.1 and 0.2.

5. Nonlocality and homodyne detection

In principle there are two approaches to test the Bell
inequalities for the bipartite state: either one can employ some
test for continuous variable systems, such as that described in
section 4, or one can convert the problem to Bell’s inequality
tests on two qubits by mapping the two modes into two-qubit
systems. In this and the following section we will consider this
latter case.

The Wigner function W (IPS)
0 (α, β) given in equation (20)

is no longer positive-definite and thus it can be used to test
the violation of Bell’s inequalities by means of homodyne
detection, i.e. measuring the quadratures xϑ and xϕ of the two
IPS modes a and b, respectively, as proposed in [15, 16]. In this
case, one can dichotomize the measured quadratures assuming
as outcome +1 when x � 0, and −1 otherwise. The nonlocality
of W (IPS)

0 (α, β) in ideal conditions has been studied in [6],
where we also discussed the effect of the homodyne detection
efficiency ηH.

Let us now focus our attention on W (IPS)
�,N (α, β), namely

the state produced when the IPS process is applied to the TWB
evolved through the noisy channel. After the dichotomization
of the homodyne outputs, one obtains the following Bell
parameter:

BHD = E(ϑ1, ϕ1)+ E(ϑ1, ϕ2)+ E(ϑ2, ϕ1)− E(ϑ2, ϕ2), (33)

where ϑk and ϕk are the phases of the two homodyne
measurements at modes a and b, respectively, and

E(ϑh, ϕk) =
∫

R2
dxϑh dxϕk sgn[xϑh xϕk ]P(xϑh , xϕk ), (34)
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Figure 4. Plots of the Bell parameter BPS in the ideal case
(�t = N = 0): the dashed line refers to the TWB, whereas the solid
lines refer to the IPS with, from top to bottom,
τ = 0.9999,0.99, 0.9 and 0.8. There is a threshold value for r
below which IPS gives a higher violation than TWB. Note that there
is also a region of small values of r for which the IPS state violates
the Bell inequality while the TWB does not. The dash–dotted line is
the maximal violation value 2

√
2.

P(xϑh , xϕk ) being the joint probability of obtaining the two
outcomes xϑh and xϕk [16]. As usual, violation of Bell’s
inequality is achieved when |BHD| > 2.

In figure 3 we plot BHD for ϑ1 = 0, ϑ2 = π/2, ϕ1 = −π/4
and ϕ2 = π/4: as for the ideal case [6, 16], the Bell inequality
is violated for a suitable choice of the squeezing parameter r .
Obviously, the presence of noise reduces the violation, but we
can see that the effect of thermal noise is not so large as in
the case of the displaced parity test addressed in section 4 (see
figure 2).

Notice that the high efficiencies of this kind of detectors
allow a loophole-free test of hidden variable theories [19],
though the violations obtained are quite small. This is due
to the intrinsic information loss of the binning process, which
is used to convert the continuous homodyne data in dichotomic
results [20].

6. Nonlocality and pseudospin test

Another way to map a two-mode continuous variable system
into a two-qubit system is by means of the pseudospin test: this
consists in measuring three single-mode Hermitian operators
Sk satisfying the Pauli matrix algebra [Sh, Sk] = 2iεhkl Sl ,
S2

k = I, h, k, l = 1, 2, 3, and εhkl is the totally antisymmetric
tensor with ε123 = +1 [3, 4]. For the sake of clarity, we will
refer to S1, S2 and S3 as Sx , Sy and Sz, respectively. In this
way one can write the following correlation function:

E(a, b) = 〈(a · S)(b · S)〉, (35)

where a and b are unit vectors such that

a · S = cos ϑa Sz + sin ϑa(e
iϕa S− + e−iϕa S+),

b · S = cos ϑb Sz + sin ϑb(eiϕb S− + e−iϕb S+),
(36)

with S± = 1
2 (Sx ± iSy). In the following, without loss of

generality, we set ϕk = 0. Finally, the Bell parameter reads

BPS = E(a1, b1) + E(a1, b2) + E(a2, b1) − E(a2, b2), (37)

corresponding to the CHSH Bell inequality |BPS| � 2. In
order to study equation (37) we should choose a specific

0 0.5 1 1.5 2 2.5 3

1.9
2

2.1
2.2
2.3
2.4
2.5
2.6

PS

Figure 5. Plots of the Bell parameter BPS for �t = 0.01: the dashed
line refers to the TWB, whereas the solid lines refer to the IPS with,
from top to bottom, τ = 0.9999, 0.99, 0.9 and 0.8. The same
comments as in figure 4 still hold.

representation of the pseudospin operators; note that, as
pointed out in [21, 22], the violation of Bell inequalities
for continuous variable systems depends on, besides the
orientational parameters, the chosen representation, since
different Sk leads to different expectation values of BPS. Here
we consider the pseudospin operators corresponding to the
Wigner functions [21]

Wx (α) = 1

π
sgn

[
Re[α]

]
, Wz(α) = − 1

2 δ(2)(α), (38)

Wy(α) = − 1

2π
δ
(

Re[α]
)P 1

Im[α]
, (39)

where P denotes the Cauchy principal value. Thanks to (38)
one obtains

ETWB(a, b) = cos ϑa cos ϑb

+
2 sin ϑa sin ϑb

π
arctan

[
sinh(2r)

]
, (40)

for the TWB, and for the IPS

EIPS(a, b) =
4∑

k=1

Ck(r, τ)

p11(r, τ)

[
cos ϑa cos ϑb

4

+
2 sin ϑa sin ϑb

πAk
arctan

(
2B̃0τ + hk√Ak

)]

(41)

where Ak = (b − fk)(b − gk)− (2B̃0τ + hk)
2, and all the other

quantities have been defined in section 3.
In figure 4 we plot BPS for the TWB and IPS in the

ideal case, namely in the absence of dissipation and thermal
noise. For all the figures we set ϑa1 = 0, ϑa2 = π/2, and
ϑb1 = −ϑb2 = π/4. As usual, the IPS leads to better results
for small values of r . Whereas B(TWB)

PS → 2
√

2 as r → ∞,
B(IPS)

PS has a maximum and then falls below the threshold of
two as r increases. It is interesting to note that there is a region
of small values of r for which B(TWB)

PS � 2 < B(IPS)

PS , i.e. the
IPS process can increase the nonlocal properties of a TWB
which does not violate the Bell inequality for the pseudospin
test in such a way that the resulting state violates it. This fact is
also present in the case of the displaced parity test described in
section 4, but using the pseudospin test the effect is enhanced.
Notice that the maximum violations for the IPS occur for an
experimentally achievable range of values of r .

In figure 5 we consider the presence of the dissipation
alone and vary τ . We can see that IPS is effective also when the
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Figure 6. Plots of the Bell parameter BPS for different values of �t
and in the absence of thermal noise (N = 0): the dashed lines refer
to the TWB, whereas the solid ones refer to the IPS with
τ = 0.9999; for both the TWB and IPS we set, from top to bottom,
�t = 0, 0.01, 0.05 and 0.1. The dash–dotted line is the maximal
violation value 2

√
2.
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Figure 7. Plots of the Bell parameter BPS for �t = 0.01 and
different values of N : the dashed lines refer to the TWB, whereas
the solid ones refer to the IPS with τ = 0.9999; for both the TWB
and IPS we set, from top to bottom, N = 0, 0.01, 0.1 and 0.2.

effective transmissivity τ is not very high. We take into account
the effect of dissipation and thermal noise in figures 6 and 7:
we can conclude that IPS is quite robust with respect to these
sources of noise and, moreover, one can think of employing
IPS as a useful resource in order to reduce the effect of noise.

7. Concluding remarks

We have addressed three different nonlocality tests, namely,
displaced parity, homodyne detection and pseudospin tests,
on TWBs and IPS states in the presence of noise. We have
shown that the IPS process on TWBs enhances nonlocality both
in ideal cases and also when noise (dissipation and thermal
noise) affects the propagation. As in the ideal situation, the
enhancement is achieved when the TWB energy is not too high
(small squeezing parameter r ), the threshold being dependent
on the environmental parameters. Moreover, in the case of the

pseudospin test, we have seen that there is a region of small r
for which the TWB itself does not violate the Bell inequality,
whereas after the IPS process it does.

We conclude that the enhanced nonlocality in the presence
of noise makes the IPS states a useful resource for continuous
variable quantum information processing.
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