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1. INTRODUCTION

Fluctuations of some environmental parameter, such
as small variations of the refraction index or small dis-
placement induced by weak forces, may lead to a small
change in the optical path of a light beam, which can be
detected by means of an interferometer measuring the
induced phase shift of the radiation field. A figure of
merit that one can use to characterize the performances
of the interferometer is its sensitivity. In general there
are different sources of noise which can limit sensitivity
and one of these is due to the detection stage (photon-
counting statistics errors), depending on the measure-
ment process and on its quantum efficiency. On the
other hand, the sensitivity is ultimately limited by the
“standard quantum limit” (SQL), which is somehow
related to the Heisenberg uncertainty relation.

The issue of optimizing interferometry has been
addressed by several authors. Caves has shown [1, 2]
that the main contribution affecting sensitivity is given
by the photon-counting statistics error, which can be
reduced by “squeezing” the field modes before they
enter the interferometer, leading to an improvement of
the sensitivity [3]. In turn, the main problem becomes
to find out the optimal input states which allow for the
most accurate phase shift measurement when the num-
ber of detected photon at the output of the interferome-
ter is fixed and the detection quantum efficiency is
given [4] or when the interferometer is subjected to
some mechanical noise [5]. More generally, phase shift
estimation can be addressed by means of information
theory considerations using Bayesian analysis [6, 7] or
can be seen as a binary decision problem [8]. Indeed,
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phase estimation is not only related to optical interfer-
ometers, but also to matter

 

-

 

wave interferometers [9],
such as neutron-based interferometers [6]. Interferom-
etry with path-entangled quantum states (of photons or
atoms) has been recently investigated in order to pro-
vide unbiased phase estimation with enhanced sensitiv-
ity [10, 11].

In this paper we revisit the dynamics of the Mach–
Zehnder (MZ) interferometer using a suitable phase-
space description when the two-mode input state is
Gaussian and, in particular, when the input states are
two squeezed coherent states. In this way we are able to
present a rigorous optimization of sensitivity over the
different input state parameters. We find the optimal
working regime of the interferometer versus the
squeezing phases and further optimize it with respect to
the total squeezing fraction. Moreover, we investigate
how squeezing should be distributed between the input
states in order to obtain the best performances taking
also in account the quantum efficiency at the detection
stage. Overall, we obtain a rigorous optimization of the
performances of the interferometer, which does not rely
on specific assumptions of the amount of impinged
energy or squeezing.

The paper is structured as follows: in Section 2 the
dynamics of the MZ interferometer is analyzed and its
optimal working regime is found out in the case of
squeezed input states. The sensitivity of the interferom-
eter is introduced in Section 3 and then investigated for
both the cases of ideal (Section 3.1) and real detection
(Section 3.2). Some concluding remarks are finally
drawn in Section 4.
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2. MACH–ZEHNDER INTERFEROMETER 
DYNAMICS

The scheme of the MZ interferometer sketched in
Fig. 1. Here we consider the evolution through the MZ
of a bipartite Gaussian state 

 

in

 

 described by the char-
acteristic function
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The symplectic matrices associated with the bal-
anced BSs, the mirrors and the phase shifter are given
by
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 being the 2 
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2 identity and null matrices,
respectively. Since the evolution through the interfer-
ometer preserves the Gaussian character of the input,
after the characteristic function associated to the state
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 after the second BS reads as follows:
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By writing the output covariance matrix as
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), we can write the character-
istic function in complex notation as follows:
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The detection stage of the interferometer consists of

measuring the difference photocurrent  = 
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 between the outputs modes. Assuming photode-
tectors with equal quantum efficiency on the two
modes, we have the mean value
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where Ntot =  +  and

(15)

Since the displacement operator on mode h can be writ-
ten as
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3. SENSITIVITY

Let us assume two squeezed states as input states,
i.e., in = |ψin〉〉〈〈ψin |, with |ψin〉〉 = |α, ξ〉s ⊗ |γ, ζ〉p,
where, e.g., |α, ξ〉 = D(α)S(ξ)|0〉, D(α) and S(ξ) being
the displacement and the squeezing operator, respec-
tively, and the subscript “s” and “p” refer to “signal”
and “probe” as well, as in Fig. 1. In the following we
suppress these subscripts, being clear from the context
what is the signal and what the probe. The covariance
matrix of the two mode input state reads [see Eq. (1)]:
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For the sake of simplicity and without loss of general-
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3.1. Ideal Detection

First of all, we assume a perfect detection at the
interferometer outputs, i.e., η = 1. In this case the sen-
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1(Ntot, βtot, βζ) of the interferometer is
defined as
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where  is given in Eq. (15). In general, the analytic
expression of Eq. (26) is quite cumbersome, so we do
not report it explicitly, but we address the results
obtained in some specific case. First of all, we optimize
the relative phase between the two squeezed states in
order to minimize the sensitivity (26). In Fig. 2 we plot
the sensitivity 
1 of the MZ interferometer for the input
state |α, ξ〉 ⊗ |β, ζ〉 as a function of the phase shift φ and
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different values of the squeezing phase θ. We can see
that the minimum of the sensitivity is achieved for φ =
π/2 and θ = 0, i.e., the signal and the probe should be
squeezed in the same direction (see also Fig. 3). From
now on, we will assume φ = π/2 and θ = 0 as working

regime. Figure 4 refers to the minimum value  ≡

(Ntot, βtot), where

(27)

of the sensitivity as a function of βtot and different val-
ues of the total number of photons Ntot: we find that
squeezing the input states is always convenient, at least
in the ideal case, even if the improvement of the sensi-
tivity actually depends on the ratio βξ/βζ. This is inves-
tigated in Fig. 5, where the optimal squeezing probe
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.
On the other hand, as βtot approaches 1, the squeezing
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Let us now address the dependence of the sensitivity
on the total number of photons Ntot. In the absence of
any squeezing, i.e., βtot = 0, Eq. (26) reduces to
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ing statistics limit due to the unavoidable fluctuations in
number of output photons [1]. As pointed out in [2], by
using the “squeezing'' resource, one can reduce the
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Fig. 2. Plot of the sensitivity 
1 of the MZ interferometer
for the input state |α, ξ〉 ⊗ |β, ζ〉 with α = 1, β = 0, and ξ =
0.7, ζ = 0.5eiθ (dashed lines), or ξ = 0.5, ζ = 0.7eiθ (solid
lines), as a function of the MZ phase shift φ and different
values of θ, from bottom to top: θ = 0, π/4, π/2, and 3π/4.
The vertical dash-dotted line is φ = π/2.
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Fig. 3. Plot of the sensitivity 
1 of the MZ interferometer

with φ = π/2 for the input state |α, ξ〉 ⊗ |β, |ζ|eiθ〉 as a func-
tion of θ. We put α = 1, β = 0, and, from top to bottom: ξ =
0.5, and ζ = 0.7eiθ; ξ = 0.5, and ζ = 0.5eiθ; ξ = 0.7, and ζ =
0.5eiθ. The vertical dash-dotted line is θ = π/2.
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counting-photon error. This is explicitly shown in
Figs. 6 and 7 in the case of low- and high-energy
regimes, respectively. When Ntot � 1 (low-energy

regime), we have  ∝ ( )–1. We do not report
the analytic expression of the sensitivity in this limit
since it is quite cumbersome. However, one finds that
squeezing the input states gives a better sensitivity then

PC (see Fig. 6). In the limit Ntot � 1 (high-energy
regime) we have

(29)

In Fig. 7 we plot  as a function of Ntot and differ-
ent values of the total squeezing fraction; it is evident

that  ∝ ( )–1.

3.2. Real Detectors

So far, we have addressed the case in which the effi-
ciency of the detectors are taken as equal to 1. Indeed,
if the detectors are affected by losses (nonunit quantum
efficiency), the sensitivity of the interferometer
becomes worse (i.e., its actual value becomes larger
than the ideal case). This can be easily seen writing the
nonideal sensitivity 
η ≡ 
η(Ntot, βtot, βζ) as follows:

(30)
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1 is the same as in Eq. (26). If βtot = 0 we have
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Fig. 6. (Low-energy regime) Bilogarithmic plot of the min-

imum (i.e., optimized with respect to βζ) sensitivity 
as a function of Ntot for different values of the total squeez-
ing fraction, from top to bottom (solid lines): βtot = 0.1, 0.9,

and 0.99. The dashed line refers to  = ( )–1.
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Fig. 7. (High-energy regime) Bilogarithmic plot of the min-

imum (i.e., optimized with respect to βζ) sensitivity 
as a function of Ntot for different values of the total squeez-
ing fraction, from top to bottom (solid lines): βtot = 0.01, 0.1,

and 0.9. The dashed line refers to  = (Ntot)
–1.
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imum (i.e., optimized with respect to βζ) sensitivity 
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behavior (Ntot)–1/2 is evident. Notice that the asymptotic
value (32) does not depend on the total squeezing frac-
tion (even if one should have βtot ≠ 0) but only on βζ.
Even if in the presence of a nonunit quantum efficiency,
one loses the dependence (Ntot)–1 given in Eq. (29), it is
possible to choose the squeezing fraction βζ in Eq. (32)

in order to have a better sensitivity (a smaller value)
than the one in Eq. (31). In particular, in Fig. 10, where
we plot the difference

(35)

as a function of Ntot for different values of η and βtot =
0.8, we can see that “squeezing'' the input is always
convenient in optimal conditions, namely, after the
minimization of sensitivity; in fact in this case one has
always ∆η(Ntot, βtot) < 0, i.e.,

(Ntot, βtot) < 
η(Ntot, 0, 0).

This result does not change if we vary the total
squeezing fraction, as one can conclude from Fig. 11.

4. CONCLUDING REMARKS
By means of a suitable phase-space description, we

have optimized the sensitivity of the MZ interferometer
when the input states are two squeezed coherent states.
The working regime of the interferometer has been
optimized at fixed input energy versus the squeezing
phases and amplitudes, as well as the distribution of
squeezing in the two input signals. Our analysis has
been carried out without particular assumptions on the
input states total energy or squeezing. For ideal detec-
tion we have found the known result that the squeezing
resource allows to beat the shot-noise limit; for non-
unit detection efficiency, we have shown that for fixed
input energy one can always optimize the squeezing
fraction between the input states in order to enhance the
sensitivity with respect to the case of no squeezing.
However, in these last cases one cannot go beyond the
shot-noise limit. 
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