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Nonlocality of two-mode states of light is addressed by means of Clauser-Horne-Shimony-Holt �CHSH�
inequality based on displaced on/off photodetection. Effects due to nonunit quantum efficiency and nonzero
dark counts are taken into account. Nonlocality of both balanced and unbalanced superpositions of few photon-
number states, as well as that of multiphoton twin beams, is investigated. We find that unbalanced superposi-
tions show larger nonlocality than balanced ones when noise affects the photodetection process. De-
Gaussification by means of �inconclusive� photon subtraction is shown to enhance nonlocality of twin beams
in the low-energy regime. We also show that when the measurement is described by a positive operator-valued
measure, rather than a set of projectors, the maximum achievable value of the Bell parameter in the CHSH
inequality is decreased, and is no longer given by the Cirel’son bound.
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I. INTRODUCTION

Quantum entanglement for both discrete and continuous
variable systems has been extensively analyzed, also reveal-
ing its subtle relations with other quantum-mechanical fea-
tures such as nonlocality. Indeed, it has been pointed out that
the concept of entanglement coincides with nonlocality only
for the simple case of bipartite pure states. As soon as we
deal with mixed states, entangled states can be found which
do not show properties of nonlocality while, not unexpect-
edly, the converse is always true �1�. In addition, the amount
of nonlocality, i.e., the amount of violation of a suitable Bell
inequality, crucially depends on the nonlocality test adopted
in the analysis, ranging from no violation to maximal viola-
tion for the same �entangled� quantum state.

In this paper we address nonlocality of different kinds of
two-mode states of light by means of displaced on/off pho-
todetection taking into account the effects of nonunit quan-
tum efficiency and dark counts. This kind of measurement
was proposed in Ref. �2�, where, in particular, it was pointed
out that the correlation functions violating the Bell inequali-
ties �in the ideal case� involve the joint two-mode Q func-
tion. The reason to pay a particular attention to on/off tests of
nonlocality is twofold. On one hand, it has been shown that
violation of Bell inequalities may be quite pronounced for
some relevant state of light in the ideal case �2�. On the other
hand, and more importantly, on/off tests may be effectively
implemented with currently technology. In this framework, it
is of interest to take into account the effects of experimental
imperfections, e.g., nonunit quantum efficiency and nonzero
dark counts �3�, and to investigate the nonlocality properties
of physically realizable entangled states. Indeed, realistic
implementations of quantum information protocols require

the investigation of nonlocality properties of quantum states
in a noisy environment. In particular, the robustness of non-
locality should be addressed, as well as the design of proto-
cols to preserve and possibly enhance nonlocality in the pres-
ence of noise.

The paper is structured as follows: in the next section we
describe in some detail the nonlocality test we use through-
out the paper, while in Sec. III we analyze nonlocality of
superpositions, both balanced �Bell states� and unbalanced,
involving zero- and one-photon states. In Sec. IV we address
the nonlocality of superpositions containing two-photon
states, whereas Sec. V is focused on multiphoton twin-beam
state. In Sec. VI we analyze the effect of dark counts on the
violation of Clauser-Horne-Shimony-Holt �CHSH� inequal-
ity, whereas in Sec. VII we address inconclusive photon sub-
traction �IPS� as a method to enhance nonlocality of twin
beam. Section VIII is devoted to a more detailed analysis of
the choice of parametrization leading to violation of in-
equalities, whereas, in Sec. IX we show how a nonlocality
test based on POVM measurement cannot yield the maximal
violation of inequalities expressed by the Cirel’son bound.
Finally, Sec. X closes the paper with some concluding
remarks.

II. CORRELATION FUNCTIONS AND BELL PARAMETER

The nonlocality test we are going to analyze is schemati-
cally depicted in Fig. 1: two modes of the radiation field, a
and b, are excited in a given �entangled� two-mode state
described by the density matrix �, and then are locally dis-
placed by an amount � and �, respectively. Finally, the two
modes are revealed by on/off photodetectors, i.e., detectors
which have no output when no photon is detected and a fixed
output when one or more photons are detected. The action of
an on/off detector is described by the following two-value
positive operator-valued measure �POVM� ��0,�,D ,�1,�,D�
�4�:
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�
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k��k
 , �1a�

�1,�,D = I − �0,�,D, �1b�

� being the quantum efficiency and D the mean number of
dark counts, i.e., of clicks with vacuum input. In writing Eq.
�1� we have considered a thermal background as the origin of
dark counts. An analogous expression may be written for a
Poissonian background �see the Appendix�. For small values
of the mean number D of dark counts �as it generally hap-
pens at optical frequencies� the two kinds of background are
indistinguishable.

Overall, taking into account the displacement, the mea-
surement on both modes a and b is described by the POVM
�we are assuming the same quantum efficiency and dark
counts for both the photodetectors�,

�hk
��,D���,�� = �h

��,D���� � �k
��,D���� , �2�

where h, k=0, 1, and �h
��,D��z�
D�z��h,�,DD†�z�, D�z�

=exp�za†−z*a� being the displacement operator and z�C a
complex parameter.

In order to analyze the nonlocality of the state �, we
introduce the following correlation function:

E�,D��,�� = �
h,k=0

1

�− �h+k��hk
��,D���,���

= 1 + 4I�,D��,�� − 2�G�,D��� + Y�,D���� , �3�

where

I�,D��,�� = ��00
��,D���,��� , �4a�

G�,D��� = ��0
��,D���� � I� , �4b�

Y�,D��� = �I � �0
��,D����� , �4c�

and where �A�
Tr��A� denotes ensemble average on both
the modes. The so-called Bell parameter is defined by con-
sidering four different values of the complex displacement
parameters as follows:

B�,D = E�,D��,�� + E�,D���,�� + E�,D��,��� − E�,D���,���

�5�

=2 + 4�I�,D��,�� + I�,D���,�� + I�,D��,���

− I�,D���,��� − G�,D��� − Y�,D���� . �6�

Any local theory implies that 
B�,D
 satisfies the CHSH ver-
sion of the Bell inequality, i.e., 
B�,D
�2 ∀� ,�� ,� ,�� �5�,
while quantum-mechanical description of the same kind of
experiments does not impose this bound �see Sec. IX for
more details on quantum-mechanical bounds on 
B�,D
 in on/
off experiments�.

Notice that using Eqs. �1� and �4� we obtain the following
scaling properties for the functions I�,D�� ,�� ,G�,D��� and
Y�,D���:

I�,D��,�� = � 1

1 + D
	2

I�/�1+D���,�� , �7a�

G�,D��� =
1

1 + D
G�/�1+D���� , �7b�

Y�,D��� =
1

1 + D
Y�/�1+D���� , �7c�

where I�=I�,0, G�=G�,0, and Y�=Y�,0. Therefore it will be
enough to study the Bell parameter for D=0, namely B�

=B�,0, and then we can use Eqs. �7� to take into account the
effects of non-negligible dark counts. From now on we will
assume D=0 and suppress the explicit dependence on D.
Notice that using expression �6� for the Bell parameter the
CHSH inequality 
B�,D
�2 can be rewritten as

− 1 � I�,D��,�� + I�,D���,�� + I�,D��,��� − I�,D���,���

− G�,D��� − Y�,D��� � 0, �8�

which represents the Clauser-Horne version of the Bell in-
equality for our system �6�.

In order to simplify the calculations, throughout this paper
we will use the Wigner formalism. The Wigner functions
associated with the elements of the POVM �1� for D=0 are
given by �see the Appendix�

W��0,���z� =
��

	�
exp�− ��
z
2� , �9�

W��1,���z� = W�I��z� − W��0,���z� , �10�

with ��=2� / �2−��, and W�I��z�=	−1. Then, noticing that
for any operator O one has

W�D���OD†�����z� = W�O��z − �� , �11�

it follows that W�D����0,�D†�����z� is given by

W�D����0,�D†�����z� = W��0,���z − �� , �12�

and therefore

W��00
��,0���,����z,w� = W��0,���z − ��W��0,���w − �� ,

�13�

W��0,���� � I��z,w� = W��0,���z − ��	−1, �14�

FIG. 1. Scheme of the nonlocality test based on displaced on/off
photodetection: the two modes a and b of a bipartite state � are
locally displaced by an amount � and �, respectively, and then
revealed through on/off photodetection. The corresponding correla-
tion function violates Bell’s inequalities for dichotomic measure-
ments for a suitable choice of the parameters � and �, depending on
the kind of state under investigation. The violation holds also for
nonunit quantum efficiency and nonzero dark counts.
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W�I � �0,������z,w� = 	−1W��0,���w − �� . �15�

Finally, thanks to the trace rule expressed in the phase space
of two modes, i.e.,

Tr�O1O2� = 	2�
C2

d2z d2w W�O1��z,w�W�O2��z,w� ,

�16�

one can evaluate the functions I��� ,�� ,G����, and Y����,
and in turn the Bell parameter B� in Eq. �6�, as a sum of
Gaussian integrals in the complex plane.

III. NONLOCALITY OF THE BELL STATES

We start our analysis by considering balanced superposi-
tions of zero- and one-photon states, i.e., the so-called Bell
states, which are described by the density matrices

�± = 

±��
±
, �± = 
�±���±
 , �17�

where



±� =
1
�2

�
1�
0� ± 
0�
1�� , �18�


�±� =
1
�2

�
0�
0� ± 
1�
1�� . �19�

In optical implementations Bell states 

±� are obtained from
single-photon sources using linear optical elements, while
preparation of 
�±� requires active devices based on sponta-
neous parametric down-conversion.

The Wigner functions of the Bell states are given by

W��±��z,w� =
4

	2exp�− 2
z
2 − 2
w
2��2
z 
 w
2 − 1� ,

�20�

and

W��±��z,w� =
4

	2exp�− 2
z
2 − 2
w
2�

��1 − 2
z 
 w
2 + 8
z
2
w
2� , �21�

respectively.
Let us first consider �±. In this case the functions in Eqs.

�4a�–�4c� are given by

I���,�� =
1

2
e−��
�
2−
�
2��2�1 − �� + �2
� 
 �
2� , �22�

G���� = Y���� =
1

2
e−�
�
2�2 − � + �2
�
2� , �23�

while the Bell’s parameter is obtained using Eq. �6�. Maxi-
mization of 
B�
, carried out using both analytical and nu-
merical methods, indicates that the imaginary parts of the
parameters � ,�� ,� ,�� can be neglected for �=1, while it
influences only slightly the value of 
B�
 for ��1. More

details about the choice of the parametrization are given in
Sec. VIII. Using the parametrizations: �=−�=J, ��=−��
=−�11J for the state 

+�, and �=�=J, ��=��=−�11J for
the state 

−� with J�R we get the same Bell’s parameter
for both the states and a maximum violation 
B
=2.68 �when
�=1�. The Bell’s parameter for �± is shown in Fig. 2�a� as a
function of J and �.

If we consider �±, we have

I���,�� =
1

2
e−��
�
2+
�
2��2�1 − �� + �2�1 + 
� ± �*
2

+ �1 − �
�
2��1 − �
�
2��� , �24�

whereas G���� and Y���� are given in Eq. �23�. As for the
states 

±�, the optimal parametrization has been obtained by
a semianalytical analysis. We get �=−�=J, ��=−��=
−�11J for the state 
�+�, and �=�=J, ��=��=−�11J for
the state 
�−� �see Sec. VIII for more details�. Thanks to this
choice, B� is maximized �when �=1� for both the Bell states
�±. The results are shown in Fig. 2�b�.

The overall effect of nonunit quantum efficiency is to re-
duce the interval of J values in which there is violation.
Notice that the states 
�±� are slightly more robust than the


±� one. In fact, one has 
B�
�2. as far as � falls below
83.6% for 

±� and 81.6% for 
�±�. These results are con-
sistent with the study given in Ref. �3�, where the authors
also have taken into account mode mismatch and have used

FIG. 2. Plot of −B� for the states 

±� �a� and of B� for 
�±� �b�
as functions of J and �. The maximum violations for �=1 are �a�
−B�=2.69, and �b� B�=2.68, which are both obtained when J
=0.17. For the particular choice of the parametrizations B� is the
same for 

±� and for 
�±�.
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a numerical algorithm in order to find the best choice of the
parameters � , � , ��, and ��.

Unbalanced superpositions

Our analysis of on/off photodetection is aimed to describe
optical implementations of nonlocality tests, where most of
the experiments have been realized. In this framework the
Bell states 

±� may be obtained from single-photon sources
using balanced beam splitters. In order to take into account
possible imperfections it is worthwhile to analyze nonlocal-
ity properties of the class of states that can be obtained from
unbalanced beam splitters. Indeed, the analysis given above
can be extended in order to describe general superpositions
of the form



�� = sin �
1�
0� + cos �
0�
1� , �25�


��� = sin �
0�
0� + cos �
1�
1� . �26�

Since the calculations are similar to the ones of the Bell
states, here we do not explicitly write the analytical results
for the states 

�� and 
���. Rather, we plot the correspond-
ing Bell parameter B� in Figs. 3 and 4. In both the plots we
used the same parametrization as for the Bell states. As one
can see in Fig. 3, in the case of the superposition 

�� the
best result is obtained for the balanced superposition, namely
�=	 /4. On the other hand, the case of 
��� shows a differ-
ent behavior: here the maximum of the violation for the ideal
case �i.e., �=1� is achieved for a value of � slightly smaller
than 	 /4, and it increases as the detection efficiency de-
creases. Moreover, by the comparison between Figs. 2�b� and
3, we can see that, for the particular choice of the parametri-

zation, when �=0.8 the balanced superposition does not vio-
lates the CHSH inequality, whereas, adjusting the parameter
�, the unbalanced superposition violates it and it does until
the efficiency falls below the threshold value ��0.74.

IV. NONLOCALITY OF SUPERPOSITIONS CONTAINING
TWO-PHOTON STATES

A two-photon state which can be easily produced is the
one obtained when two single-photon states impinge simul-
taneously in a balanced beam splitter: in this case the output
state is given by


�� =
1
�2

�
2�
0� + 
0�
2�� �27�

and the corresponding Wigner function reads as follows:

W����z,w� =
4

	2exp�− 2
z
2 − 2
w
2��1 − 4�
z
2 + 
w
2

− 
z2 − w*2
2�� . �28�

Now, the functions defined in Eqs. �4� are given by

I���,�� = e−��
�
2−
�
2���1 − ���1 − � + �2�
�
2 + 
�
2��

−
�4

4

�2 − �*2
2� , �29�

FIG. 3. Plot of −B�: �a� for 

�� as a function of J and � in the
case of ideal �i.e., �=1� on/off photodetection; �b� for J=0.17 and
different values of �: from top to bottom �=1.0, 0.9, 0.85, and 0.8.
The vertical line is �=	 /4.

FIG. 4. Plot of B�: �a� for 
��� as a function of J and � in the
case of ideal �i.e., �=1� on/off photodetection; �b� for J=0.17 and
different values of �: from top to bottom �=1.0, 0.9, 0.85, 0.8, and
0.75. The vertical line is �=	 /4.
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G���� = Y����

= e−�
�
2�1 − � +
�2

2
+ �2�1 − ��
�
2 +

�4

4

�
4� .

�30�

The parametrization which maximizes the violation of the
inequality 
B�
�2 is �=�=0 and ��=��*=�2ei	/4J and, as
for the Bell states, has been obtained by means of a semi-
analytical analysis. As it is apparent from Fig. 5, in this case
the violation is quite smaller than the previous ones: the
maximum violation B�=−2.07 is achieved when J=0.45
and �=1. Also the threshold for violation on the quantum
efficiency is higher: for ��92% we have 
B�
�2.

V. NONLOCALITY OF THE TWIN BEAM

The twin-beam state �TWB� of radiation


r� =
1

�cosh r
�
n=0

�

tanhnr
n� � 
n�

may be produced by spontaneous down-conversion in a non-
linear crystal. TWB is described by the Wigner function

Wr�z,w� =
4

	2exp�− 2A�
z
2 + 
w
2� + 2B�zw + z*w*�� ,

�31�

with A
A�r�=cosh�2r� and B
B�r�=sinh�2r�, r being the
so-called squeezing parameter of the TWB. Since Wr and the
Wigner functions of the POVM �2� are Gaussian, it is quite
simple to evaluate I��� ,�� ,G����, and Y���� of the corre-
lation function �3� and, then, B�; we have

I���,�� =
4M��r�

�2 exp�− F̃��
�
2 + 
�
2� + H̃���� + �*�*��

�32�

with

F̃� 
 F̃��r� = �� − �2A + ���M��r� , �33�

H̃� 
 H̃��r� = 2BM��r� , �34�

M��r� =
��

2

4�A2 − B2� + 4A�� + ��
2 , �35�

and

G���� = Y����

=
2��

2�A2 − B2� + A��

�exp�−
2��

2�A2 − B2� + A��


�
2� . �36�

In order to study Eq. �6�, we consider the parametrization
�=−�=J and ��=−��=−�11J �as in the case of the Bell
states, more details are given in Sec. VIII�. The parametriza-
tion was chosen after a semianalytical analysis and maxi-
mizes the violation of the Bell’s inequality �for �=1�. In Fig.
6 we plot B� for �=1: as one can see the inequality 
B�

�2 is violated for a wide range of parameters, and the maxi-
mum violation �B�=2.45� is achieved when J=0.16 and r
=0.74.

The effect of nonunit efficiency in the detection stage is to
reduce the the violation; this is shown in Fig. 7, where we
plot B� as a function of J with r=0.74 for different values of
the quantum efficiency. Note that though the violation in the
ideal case, i.e., �=1, is smaller than for the Bell states, the
TWBs are more robust when one takes into account nonunit
quantum efficiency. Comparison between Figs. 2 and 7

FIG. 5. Plot of −B� for the superposition of two photons as a
function of J and �. The maximum violation is −B�=2.07, which is
obtained when J=0.45 and �=1.

FIG. 6. Plot of B� for a TWB as a function of J and the TWB
squeezing parameter r in the case of ideal �i.e., �=1� on/off photo-
detection. The maximum violation is B�=2.45, which is obtained
when J=0.16 and r=0.74.

FIG. 7. Plot of B� for a TWB as a function of J with r=0.74 for
different values of �: from top to bottom �=1.0, 0.9, 0.85, and
0.80.
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shows that for �=0.8 we have a region of J values for which
B��2 in the case of the TWB, whereas there is no violation
for the Bell states. Our parametrization maximize the viola-
tion when �=1: in this way 
B�
�2 when ��0.77 and r
=0.74. Using different values of � ,� ,��, and �� �which,
now, depend on � and the squeezing parameter r�, one can
extend the violation to lower detection efficiency �3�. In Sec.
VIII we will draw some remark about the choice of the pa-
rametrization.

VI. EFFECT OF DARK COUNTS

In the previous sections we studied the nonlocality of
Bell-like states and of the TWB. We took into account the
quantum efficiency � and ignored the effects of dark counts:
this is a quite good approximation, since, at optical frequen-
cies, dark counts may often be neglected. However, there are
situations in which the effect of dark counts cannot be ig-
nored. In this cases, we can add to our analysis the effect of
the dark counts using Eqs. �7a�–�7c�. In Fig. 8 we plot B�,D
for the Bell states 
�±� and the TWB: as on may expect, the
violation is reduced.

When the number of dark counts is small we can expand
the POVMs �1� and �2� up to first order, arriving at

�0
��,D���� = �1 − D − �D����0

��,0���� , �37�

�00
��,D���,�� = �1 − 2D − �D����00

��,0���,�� . �38�

Now, using Eq. �38� one can express the correlation func-
tions in two equivalent forms as follows:

E�,D��,�� = �1 − 2D − �D���E�,0��,�� + 2D�G�,0���

+ Y�,0���� �39�

=�1 − D − �D���E�,0��,�� − 4DI�,0��,�� ,

�40�

which, in turn, can be used to express the Bell parameter, as
follows:

B�,D = �1 − 2D − �D���B�,0 + 4D�G�,0��� + Y�,0���� ,

�41�

where B�,0 is the Bell parameter for zero dark counts, as
evaluated in the previous sections.

VII. NONLOCALITY OF THE DE-GAUSSIFIED TWIN
BEAM

The de-Gaussification of a TWB can be achieved by sub-
tracting photons from both modes �7–9�. In Ref. �7� we re-
ferred to this process as to inconclusive photon subtraction
�IPS� and showed that the resulting state, the IPS state, can
be used to enhance the teleportation fidelity of coherent
states for a wide range of the experimental parameters.
Moreover, in Ref. �12�, we have shown that, in the absence
of any noise during the transmission stage, the IPS state has
nonlocal correlations larger than those of the TWB irrespec-
tive of the IPS quantum efficiency �see also Refs. �10,11��.

First of all we briefly recall the IPS process, whose
scheme is sketched in Fig. 9. The two modes, a and b, of the
TWB are mixed with the vacuum �modes c and d, respec-
tively� at two unbalanced beam splitters �BSs� with equal
transmissivity; the modes c and d are then detected by ava-
lanche photodetectors �APDs� with equal efficiency, which
can only discriminate the presence of radiation from the
vacuum: the IPS state is obtained when the two detectors
jointly click. When the input state, namely the state arriving
at the two beam splitters, is the TWB of Eq. �31�, the state
produced by the IPS process reads as follows �see Ref. �12�
for details�:

Wr,T,�
�IPS��z,w� =

4

	2p11�r,T,���k=1

4

CkWr,T,�
�k� �z,w� , �42�

where

FIG. 8. Plot of B�,D�� ,� ,�� ,��� for the Bell states 
�±� �upper
plot� and the TWB �lower plot�. We set J=0.17 for the Bell states,
J=0.16 and r=0.74 for the TWB, and used the parametrizations
introduced in Secs. III and V, respectively.

FIG. 9. Scheme of the IPS process.
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p11�r,T,�� = �
k=1

4 Ck

FkGk − Hk
2 �43�

is the probability of a click in both the APDs. In Eqs. �42�
and �43� we introduced

Ck 
 Ck�r,T,�� =
4Ck

xkyk − 4B2�1 − T�2 , �44�

and defined

Wr,T,�
�k� �z,w� = exp�− Fk
z
2 − Gk
w
2 + Hk�zw + z*w*�� ,

�45�

where Fk= �b− fk�, Gk= �b−gk�, Hk= �2BT+hk�, Ck
Ck���
with C1=1, C2=C3=−2�2−��−1, C4=4�2−��−2; xk


xk�r ,T ,�� and yk
yk�r ,T ,�� are

x1 = x3 = y1 = y2 = a ,

x2 = x4 = y3 = y4 = a + 2��2 − ��−1

with a
a�r ,T�=2�A�1−T�+T�, b
b�r ,T�=2�AT+ �1−T��;
finally, fk ,gk, and hk depend on r ,T, and � and are given by

fk = Nk�xkB
2 + 4B2�1 − A��1 − T� + yk�1 − A�2� , �46�

gk = Nk�xk�1 − A�2 + 4B2�1 − A��1 − T� + ykB
2� , �47�

hk = Nk��xk + yk�B�1 − A� + 2B�B2 + �1 − A�2��1 − T�� ,

�48�

Nk 
 Nk�r,T,�� =
4T�1 − T�

xkyk − 4B2�1 − T�2 . �49�

The state given in Eq. �42� is no longer a Gaussian state and,
in the following, we will use the measurement described
above in order to test its nonlocality. Nonlocal properties of
the IPS state �42� have been investigated in Refs. �12,13� by
means of other kinds of nonlocality tests. In particular, Ref.
�13� addressed the presence of noise during the propagation
and detection stages, showing that the IPS process onto
TWBs is a quite robust method to enhance their nonlocal
correlations especially in the low-energy �i.e., small r� re-
gime.

In the case of the state �42�, the correlation function �3�
reads �for the sake of simplicity we not do write explicitly
the dependence on r ,T, and ��

E���,�� = 1 +
1

p11�r,T,���k=1

4

Ck�4I�
�k���,��

− 2�G�
�k���� + Y�

�k������ , �50�

where

I�
�k���,�� =

4M�
�k��r,T,��
�2 exp�− G̃�

�k�
�
2 − F̃�
�k�
�
2

+ H̃�
�k���� + �*�*�� , �51�

with F̃�
�k�
 F̃�

�k��r ,T ,��, G̃�
�k�
 G̃�

�k��r ,T ,��, and H̃�
�k�


 H̃�
�k��r ,T ,�� given by

F̃�
�k� = �� − �Fk + ���M�

�k��r,T,�� , �52�

G̃�
�k� = �� − �Gk + ���M�

�k��r,T,�� , �53�

H̃�
�k� = HkM�

�k��r,T,�� , �54�

M�
�k��r,T,�� =

��
2

�Fk + ����Gk + ��� − Hk
2 , �55�

respectively, and

G�
�k���� =

4��

�Gk�Fk + ��� − Hk
2��

�exp�−
�FkGk − Hk

2���

Gk�Fk + ��� − Hk
2 
�
2� , �56�

Y�
�k���� =

4��

�Fk�Gk + ��� − Hk
2��

�exp�−
�FkGk − Hk

2���

Fk�Gk + ��� − Hk
2 
�
2� . �57�

In order to investigate the nonlocality of the IPS by means
of Eq. �6�, we choose the same parametrization as in Sec. V.
The results are shown in Figs. 10 and 11 for �=1 and �=1:
we can see that the IPS enhances the violation of the inequal-
ity 
B�
�2 for small values of r �see also Refs. �7,12,13��.
Moreover, as one may expect, the maximum of violation
is achieved as T→1, whereas decreasing the effective trans-
mission of the IPS process, one has that the inequality
becomes satisfied for all the values of r, as we can see in
Fig. 11 for T=0.6.

In Fig. 12 we plot B� for the IPS with T=0.9999, �=1
and different �. As for the TWB, we can have violation of

FIG. 10. Plot of B� for the IPS state with T=0.9999 and �=1 as
a function of J and the TWB squeezing parameter r in the case of
ideal �i.e., �=1� on/off photodetection. The maximum violation is
B�=2.53, which is obtained when J=0.16 and r=0.39.
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the Bell’s inequality also for detection efficiencies near 80%.
As for the Bell states and the TWB, an �- and r-dependent
choice of the parameters in Eq. �6� can improve this result.
The effect on a nonunit � is studied in Fig. 13, where we plot
B� as a function of T and � and fixed values of the other
involved parameters. We can see that the main effect on the
Bell parameter is due to the transmissivity T.

The presence of dark counts at the detection stage can be
taken into account using Eqs. �7�: since the results are similar
to those of the Bells states and the TWB presented in Sec.
VI, we do not report them explicitly.

VIII. CHOICE OF THE PARAMETRIZATION

In this section we draw some remarks about the choice of
the parametrization used in the investigation of the Bell pa-
rameter B�. Numerical analysis has shown that, in the case
of state 

+� and in the presence of nonunit quantum effi-
ciency, the maximal violation of the Bell’s inequality for the
displaced on/off test is achieved by choosing � ,�� ,�, and ��
as complex parameters �3�. On the other hand, here we ad-
dressed only real parametrization for the Bell’s parameter B
given in Eq. �6�, and, in particular, we take �=−�=J�R,
and ��=−��=J��R for the states 

+�, 
�+�, the TWB and
the IPS state, while we put �=�=J�R and ��=��=J�
�R for the states 

−� and 
�−�. In Fig. 14 we plot 
B�
 as a
function of J and J� in the ideal case �i.e., �=1� for �a� the
states 

±� and �b� the TWB with r=0.74, which maximizes

the violation. The results for the other states are similar. In
both the plots, the darker is the region, the bigger is the
violation �the white region refers to 
B�
�2�. As one can see,
there is a symmetry with respect to the origin, which implies
that the best parametrization has the form J�=−�J, with
��R, ��0. Furthermore, for all the considered states,
the numerical analysis shows that a good choice for � is
�=�11, which is an approximation of the actual value.

FIG. 12. Plot of B� for the IPS state as a function of J with r
=0.39, T=0.9999, �=1, and for different values of �: from top to
bottom �=1.0, 0.9, 0.85, and 0.8.

FIG. 13. Plot of B� for the IPS state as a function T and � with
J=0.16, r=0.39, and, from top to bottom, �=0.99, and 0.90. The
main effect on B� is due to the transmissivity T.

FIG. 14. Plots of 
B�
 for �a� the states 

±� and �b� the TWB
with r=0.74 and �=1. The darker is the region, the bigger is the
violation of the Bell’s inequality. In the white region 
B�
�2. J and
J� refer to the particular parametrization of B�; see the text for
details.

FIG. 11. Plot of B� for the IPS state as a function of J with
r=0.39 for different values of T and �=1 in the ideal case �i.e.,
�=1�: from top to bottom T=0.9999, 0.9, 0.75, and 0.55.

INVERNIZZI et al. PHYSICAL REVIEW A 72, 042105 �2005�

042105-8



In Fig. 15 the effect of � is taken into account: Since the
results for the Bell’s states, the TWB and the IPS state are
similar, we only address the TWB case: there is still the
symmetry with respect to the origin, but a thorough numeri-
cal investigation shows that the maximum of B�, and, in
turn, � depend on both � and r.

Notice that we have considered real values for the param-
eters. It can be shown numerically �3� that for decreasing � a
complex parametrization leads to a slight improvement.

IX. BELL’S INEQUALITY, POVMS, AND MAXIMUM
VIOLATION

In this section we address the maximal violation of the
Bell inequality that is achievable by using nonprojective
measurements.

Let us consider two systems, A and B, and the generic
POVM ��0��� ,�1����, depending on the complex parameter
�, such that �1���= I−�0���. We define the observables

Ok��� = �1��� − �0��� = I − 2�0��� �58�

acting on system k=A, B, respectively �we are using the
same POVM for both systems�. Furthermore, we assume that
OA��� and OB��� have spectra included in the interval
�−1, +1� �14�. Now we introduce the Bell operator �5�

B = OA��� � OB��� + OA���� � OB���

+ OA��� � OB���� − OA���� � OB���� , �59�

which has the property �14�

B �
1
�2

�O A
2 ��� � I + I � O B

2 ���

+ O A
2 ���� � I + I � O B

2 ����� . �60�

If �1��� and �0��� are projectors on orthogonal subspaces,
namely �1

2���=�1���, �0
2���=�0��� and �0����1���=0,

then

O A
2 ��� = O B

2 ��� = I , �61�

and Eq. �60� leads to

B � 2�2, �62�

where B=Tr��B �, � being the state of the system, is the
Bell parameter. The bound 2�2 is usually known as Cirel’son
bound and is the maximum violation achievable in the case
of a bipartite quantum system �14�. Equation �62� may be
also derived in a different way �15,16�: since the squared
Bell operator reads

B 2 = 4I + �OA���,OA����� � �OB���,OB����� , �63�

then using the relation 

�A ,B� 
 
�2

A 
 


B 
 
, where 

A 
 

=Sup
��

A
�� 
 
, we have B2�8, from which Eq. �62� fol-
lows.

On the other hand, when ��0��� ,�1���� is not a projective
measurement a different inequality should be derived. First
of all we note that the observables Ok��� corresponding to the
POVM given in Eqs. �1a� and �1b� satisfy the hypothesis of
the Cirel’son theorem. In fact, in this case

Ok��� = �
n=0

�

�1 − 2�1 − ��n�D���
n��n
D†��� �64�

and its spectrum ��n�, �n=1−2�1−��n, lies in the interval
�−1, +1� for 0���1 �when �=1 the spectrum reduces to
the two points �−1, +1��. Now, one has

O A
2 ��� = I − 4�0����1��� = I − 4��0��� − �0

2����

= I − 4EA��� , �65�

and, analogously, O B
2 ���=I−4EB���, where we defined the

operator

Ek��� = �0��� − �0
2��� , �66�

k=A, B. In this way, from Eq. �60� follows

B � 2�2�I − �EA��� + EB��� + EA���� + EB������ ,

�67�

with EA���
EA��� � I and EB���
I� EB���. Finally we get

B � B�max���,�,��,��� , �68�

where we defined

FIG. 15. Plots of B� in the case of TWB for different �. The
TWB parameter r is chosen in order to maximize the violation of
the Bell’s inequality as � varies. We put �a� �=1, r=0.74 �B�,max

=2.45�, �b� �=0.9, r=0.67 �B�,max=2.24�, �c� �=0.85, r=0.60
�B�,max=2.15�, and �d� �=0.8, r=0.49 �B�,max=2.07�. J and J�
refer to the particular parametrization of B�; see the text for details.
Since there is symmetry with respect to the origin, we show only
the region J��0.
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B�max� 
 B�max���,�,��,��� �69�

=2�2�1 − �EA��� + EB��� + EA���� + EB������ �70�

and EA���=Tr��EA��� � I� and EB���=Tr��I � EB����. Now,
since Ek�0, k=A, B, one has that the bound of the Bell
parameter is smaller than the limit 2�2, obtained in the case
of projective measurements. Notice that the new bound de-
pends on the parameters � ,� ,��, and �� of the measurement
and on the state under investigation itself.

In the following we address the problem of evaluating the
maximum violation for the Bell states, the TWB and the IPS
state when a nonunit efficiency affects the displaced on/off
photodetection. First of all we note that

�0,�
2 = �

k=0

�

�1 − ��2k
k��k
 = �0,��2−��, �71�

so that

EA��� = G���� − G��2−����� , �72�

EB��� = Y���� − Y��2−����� . �73�

In this way it is straightforward to evaluate B�
�max� for

the Bell states, as well as for TWB and IPS states with op-
timized squeezing parameter r. The results are shown in
Figs. 16–21: in Figs. 17, 19, and 21 we plot B�

�max� using the
parametrization �=�=J and ��=��=�11J, which maxi-
mizes the Bell parameter B�. It is worth noticing that for all
the considered states and for fixed J the limit B�

�max� is never
reached; on the other hand, even if the actual maximum vio-

lation, i.e., B�,max, is quite lower than the Cirel’son bound
2�2, it is relatively near the new bound given by Eq. �68�.

Notice that a similar analysis may be performed through
the squared Bell operator, which for O k

2����I is given by

B 2 = �O A
2 ��� + O A

2 ����� � �O B
2 ��� + O B

2 �����
+ �O A

2 ��� − O A
2 ����� � �OB���,OB�����+

− �OA���,OA�����+ � �O B
2 ��� − O B

2 �����
+ �OA���,OA����� � �OB��� + OB����� , �74�

�A ,B�+=AB+BA being the anticommutator. As for Eq. �68�,
the maximum value of Eq. �74� depends on the state under
investigation and on the POVM itself.

FIG. 16. Plot of B�
�max��� ,� ,�� ,��� for the Bell states. We set

�=�=J and ��=��=J�, and �a� �=0.9, �b� �=0.8.

FIG. 17. Plots of B�
�max��� ,� ,�� ,��� in the case of the Bell

states for different values of �; from top to bottom �solid lines�:
�=0.95, 0.9, 0.85 and 0.8. The dashed line corresponds to the value
2�2 obtained when �=1. We set �=�=J and ��=��=�11J,
which maximize B.

FIG. 18. Plot of B�
�max��� ,� ,�� ,��� for the TWB with opti-

mized r. We set �=�=J and ��=��=J�, and �a� r=0.67 and �
=0.9, �b� r=0.49 and �=0.8.
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X. CONCLUDING REMARKS

We have analyzed in details the nonlocality of several
two-mode �entangled� states of light by using a test based on
displaced on/off photodetection. Nonlocality has been quan-
tified through violation of CHSH inequality for the Bell’s
parameter. Effects due to nonunit quantum efficiency and
nonzero dark counts have been taken into account. We found
that unbalanced superpositions show larger nonlocality than
balanced one when noise affects the photodetection process,
and that twin-beam nonlocality is more robust than that of
superpositions of few photon-number states. De-
Gaussification by means of �inconclusive� photon subtraction
is shown to enhance nonlocality of twin beams in the low-

energy regime. We have also shown that, since our measure-
ment is described by a POVM rather than a set of projectors,
the maximum violation the CHSH inequality cannot saturate
the Cirel’son bound. A state-dependent bound has been
derived.
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APPENDIX: NOISY ON/OFF PHOTODETECTION

The action of an on/off detector in the ideal case is de-
scribed by the two-value POVM ��0= 
0��0
 ,�1= I−�0�,
which represents a partition of the Hilbert space of the sig-
nal. In the realistic case the performances of on/off photode-
tectors are degraded by two effects. On one hand, one has
nonunit quantum efficiency, i.e., the loss of a portions of the
incoming photons, and, on the other hand, there is also the
presence of dark-count, i.e., by “clicks” that do not corre-
spond to any incoming photon. In order to take into account
both these effects we use a simple scheme described in the
following.

A real photodetector is modeled as an ideal photodetector
�unit quantum efficiency, no dark count� preceded by a beam
splitter �of transmissivity equal to the quantum efficiency ��
whose second port is in an auxiliary excited state �, which
can be a thermal state, or a phase-averaged coherent state,
depending on the kind of background noise �thermal or Pois-
sonian�. If the second port of the beam splitter is the vacuum
�= 
0��0
 we have no dark count; for the second port of the
BS excited in a generic mixture �=�s�ss
s��s
 the POVM for
the on/off photodetection is given by ��1= I−�0�

�0 = �
n=0

�

�1 − ��n�
s=0

�

�ss�
s�n + s

s
	
n��n
 . �A1�

The density matrices of a thermal state and a phase-averaged
coherent state �with M mean photons� are given by

�T =
1

M + 1�
s
� M

M + 1
	s


s��s
 , �A2�

FIG. 19. Plots of B�
�max��� ,� ,�� ,��� in the case of the TWB

with r=0.74 for different values of �; from top to bottom �solid
lines�: �=0.95, 0.9, 0.85 and 0.8. The dashed line corresponds to
the value 2�2 obtained when �=1. We set �=�=J and ��=��
=�11J, which maximize B.

FIG. 20. Plot of B�
�max��� ,� ,�� ,��� for the IPS state with T

=0.9999, �=1, and optimized r. We set �=�=J and ��=��=J�,
and �a� r=0.35 and �=0.9, �b� r=0.25 and �=0.8.

FIG. 21. Plots of B�
�max��� ,� ,�� ,��� in the case of the IPS state

with r=0.39, T=0.9999, and �=1 for different values of �; from
top to bottom �solid lines�: �=0.95, 0.9, 0.85 and 0.8. The dashed
line corresponds to the value 2�2 obtained when �=1. We set
�=�=J and ��=��=�11J, which maximize B.
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�P = e−M�
s

Ms

s!

s��s
 . �A3�

In order to reproduce a background noise with mean photon
number D we consider the state � with average photon num-
ber M =D / �1−��.

In this case we have

�0,�,D
T =

1

1 + D
�

n
�1 −

�

1 + D
	n


n��n
 , �A4�

�0,�,D
P = e−D�

n
��1 − ��nLn�− D

�

1 − �
	�
n��n
 , �A5�

where T and P denotes thermal and Poissonian, respectively,
and Ln�x� is the Laguerre polynomial of order n. The corre-
sponding Wigner functions are given by

W��0,�,D
T ���� =

1

	

2

2�1 + D� − �
exp�−

2�

2�1 + D� − �

�
2� ,

�A6�

W��0,�,D
P ���� =

1

	

2

2 − �
exp�−

2�

2 − �
�D + 
�
2��

�I0�4
�
��D

2 − �
	 , �A7�

respectively, where I0�x� is the 0th modified Bessel function
of the first kind. For small D the POVMs coincide up to first
order, as well as the corresponding Wigner functions.

�1� R. F. Werner, Phys. Rev. A 40, 4277 �1989�.
�2� K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 82, 2009

�1999�.
�3� K. Banaszek, A. Dragan, K. Wódkiewicz, and C. Radzewicz,

Phys. Rev. A 66, 043803 �2002�.
�4� A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in

Quantum Information �Bibliopolis, Napoli, 2005�.
�5� J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 �1969�.
�6� J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 �1974�.
�7� S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A

67, 032314 �2003�.
�8� T. Opatrný, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61,

032302 �2000�.

�9� P. T. Cochrane, T. C. Ralph, and G. J. Milburn, Phys. Rev. A
65, 062306 �2002�.

�10� H. Nha and H. J. Carmichael, Phys. Rev. Lett. 93, 020401
�2004�.

�11� R. García-Patrón Sánchez et al., Phys. Rev. Lett. 93, 130409
�2004�.

�12� S. Olivares and M. G. A. Paris, Phys. Rev. A 70, 032112
�2004�.

�13� S. Olivares and M. G. A. Paris, J. Opt. B: Quantum Semiclas-
sical Opt. 7, S392 �2005�.

�14� B. S. Cirel’son, Lett. Math. Phys. 4, 93 �1980�.
�15� L. J. Landau, Phys. Lett. A 120, 54 �1987�.
�16� A. Peres, Quantum Theory: Concepts and Methods �Kluwer,

Dordrecht, 1993�.

INVERNIZZI et al. PHYSICAL REVIEW A 72, 042105 �2005�

042105-12


