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Optimal quantum repeaters for qubits and qudits
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A class of optimal quantum repeaters for qubits is suggested. The schenmemianal i.e., they involve a
single additionajprobe qubit, andoptimal i.e., they provide the maximum information adding the minimum
amount of noise. Information gain and state disturbance are quantified by fidelities which, for our schemes,
saturate the ultimate bound imposed by quantum mechanics for randomly distributed signals. Special classes of
signals are also investigated, in order to improve the information-disturbance trade-off. Extension to higher-
dimensional signalgqudits is straightforward.
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I. INTRODUCTION |<¢|Ak|¢>|2
_ _ 2
In a multiuser transmission line, each user should decode Fy= % Pk % KAAl W, (1)

the transmitted symbol and leave the carrier for the subse-

quent user. What they need is an idegleater i.e., a device

that for each shot retrieves the message without altering the G, =2 pd(Udl?, (2
carrier. However, symbols are necessarily encoded in states K

of a physical system and therefore the ultimate bound on thghere we have already performed the average over the out-

performances as a repeater is posed by quantum mechaniggmes. The relevant quantities to assess the repeater are then
Indeed, a perfect quantum repeater cannot be achieved, "%1ven by the average fidelities

quantum information cannot be perfectly copied, neither lo-
cally [1] nor at a distancg2]. Any measurement performed
to extract information on a quantum state in turn alters the F :f dyf,, G:f dyG, , 3)
state itself, i.e., produces a disturbance. A A

The trade-off between information gain and quantum statyhich are obtained by averagiiig, andG,, over the possible
disturbance can be quantified using fidelities. Let us describgypyt states, i.e., over the alphabetof transmittable sym-

a generic scheme for indirect measurement as a quantugy|s.F will be referred to as the transmission fidelity a@d
operation, i.e., without referring to any explicit unitary real- 55 the estimation fidelity.

ization. The operation is de_s_crlbedTby a senwfasurement Let us first consider two extreme cases. If nothing is done,
operators{A, with the conditior= A Ac=1. The probability  he signal is preserved and theis 1. However, at the same
operator-valued measur®®OVM) of the measurement is time, our estimation has to be random and ti@s1/d,
given by{Il,= Al/A}, whereas its action on the input state is whered is the dimension of the Hilbert space. This corre-
expressed ag — 2, AA[. This means that, i¢ is the initial  sponds to @lind quantum repeatdB] which reprepares any
quantum state of the system under investigation, the prolyuantum state received at the input without gaining any in-
ability distribution of the outcomes is given byy  formation on it. The opposite case is when the maximum
=Tr{oIl,]=Tr{eA[AJ, whereas the conditional output state, information is gained on the signal, i.e., when the optimal
after having detected the outconke is expressed asy  estimation strategy for a single copy is adopiéd6]. In this
=AwAllp,, such that the overall quantum state after thecase G=2/(d+1), but then the signal after this operation
measurement is described by the density matb&pkox  cannot provide anymore information on the initial state and
=S AA. thus F=2/(d+1). Between these two extrema there are in-
Suppose now you have a quantum system prepared in @rmediate cases, i.e., quantum measurements providing only
pure statey). If the outcomek is observed at the output of partial information while partially preserving the quantum
the repeater, then the estimated signal state is giveléPy state of the signal for subsequent users. These schemes,
(the typical inference rule beinig— [¢) with [y given by which correspond to feasible quantum repeaters, may also be
the set of eigenstates of the measured obseryablgereas viewed as quantum nondemolition measuremgTitswhich
the conditional statey)=1/\VpAJy) is left for the subse- have been widely investigated for continuous variable sys-
quent user. The amount of disturbance is quantified by evaluems, and recently received attention also for quigis
ating the overlap of the conditional stdtg,) to the initial The fidelitiesF andG are not independent of each other.
one|y), whereas the amount of information extracted by theassuming that\ corresponds to the set afl possible quan-
measurement corresponds to the overlap of the inferred staggm states, Banasz¢R] has explicitly evaluated the expres-
|y to the initial one. The corresponding fidelities, for a sjons of fidelities in terms of the measurement operators,
given input signaly), are given by rewriting Eq.(3) as
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6= g4+ (A @ —] — I

10>, [
where |¢y) is the set of states used to estimate the initial [RZ] § ::

signal. Of course, the estimation fidelity is maximized choos-
ing |y as the eigenvectors f, corresponding to the maxi- FIG. 1. Minimal implementation of the optimal quantum re-
mum eigenvalues. peater for qubits.

Using Egs.(4), it is possible to derive the bound that
fidelities should satisfy according to quantum mechanics. Fofhis scheme is minimal because it involves a single addi-
randomly distributedd-dimensional signals, i.e., when the tional probe qubit, and optimal because it saturates the bound
alphabetA corresponds to the set afl quantum states for a (6).
qudit, the information-disturbance trade-off reads as follows The measurement scheme is shown in Fig. 1. The signal

[9]: qubit
F-Fo)?+dAG-Gp?+2d-2)(F-Fp(G-G 0. : 0.
(F = Fo2+ d%(G — Go)? + 2(d - 2)(F ~ Fo) (G - Gy) = cos20) + & sin &4
d-1 2 2
S, e . . :
(d+1) is coupled with a probe qubit

whereFy=3(d+2)/(d+1) andGy=33/(d+1). For randomly
distributed qubits, i.e., assuming a two-dimensional Hilbert
space, and with the alphabét equal to the whole Bloch

0. . )
@) =R|0),= <30552|O>p +e%2sin Ez|1>p

sphere, the boun¢b) reduces to by aC, gate(denoted byC). R; denotes a qubit rotation by
5 5 angles(é, ¢,) with respect to the axis. After the interaction,
(F_§> +4<G—l> < }' (6) the spin component in the direction is measured on the
2 9 probe qubit.
According to Egs(1) and(2), the fidelitiesF,, andG,, are

From Eq.(5), one knows the maximum transmission fidelity

. . . SR 7 given b
compatible with a given value of the estimation fidelity or, in 9 y

other words, the minimum unavoidable amount of noise that F = Pl o) |? + pal(sl )2,
is added to the knowledge about a set of signals if one wants
to achieve a given level of information. G,= Pol(0) 2+ pol¢{ D),

In this paper, we suggest a set of explicit unitary realiza-

tions for the indirect estimation of qubits. Our schemes aravherep,=(y{I1,|1), k=0,1 are theprobabilities for the two

minimal since they involve a single additional probe qubit, possible outcomes, and

and optimal i.e., the corresponding fidelities saturate the

bound (6) with the equal sign. The schemes can be easily - AdY)
. ; . . ) = ——=".

generalized to the case of qudits, yet being minimal and satu- VP«

rating the bound5). Recently[10], similar schemes have

been suggested, also with the possibility of obtaining signal : '

independent fidelities through a twirl operatifit,17. for the subsequent user. Moreover, in writi@y, we as-

The paper is structured as follows. In Sec. II, the simplesUMmed the inference rule—[k), with [k) eigenstates of the

example of our class of schemes will be described in detail€asured observabis, _

Its possible generalizations, involving the measurement of a | N€ Measurement operatakg for our schemes are given

generic spin component, are analyzed in Sec. Il A, whereay

generalization to dimensiod is described in Sec. Il B. In A= (KIClw) @)

Sec. lll, we return back to qubits, and consider the transmis- kTP P

sion of signals with quantum states that do not span thevhereas the POVM can be evaluated as follows:

entire Hilbert space, i.e., of alphabets that are proper subsets i +

of the Bloch sphere. It will be shown that discrete alphabets I =Tr[Cl @ |w)prw|CT @ [Kpyk]=AA,  (8)

can be. used to beat the bouf, whereas continuous a}lpha}- where Tg[- -] denotes partial trace over the probe degrees of

bets different from the whole B'Ioch sphere lead to.'nfer'orfreedom. Explicitly, in the standard basis, we have

performances. A general condition on the class of signals to

beat the bound will be also derived. Section IV closes the

jare the corresponding conditior(aure) states, which are left

2 i . 2

paper with some concluding remarks. COSE 0 g2 Slnz 0
II. MINIMAL IMPLEMENTATION OF OPTIMAL 0 a2 5in 22 0 cos 2
QUANTUM REPEATERS 2 2

In this section, we suggest a measurement scheme to efhe mean fidelities andG are obtained by averaging over
timate the state of a generic qubit without its destructionall the possible input states, i.e., the whole Bloch sphere,
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FIG. 2. Minimal implementation of optimal quantum repeater
According to Eq.(4), this corresponds to for qudits.

1 - . .
F==2+|TrAJR+ [THAP), (9)  abilitiesp, and the conditional staFe}&k} are the same as in
6 the scheme of the previous section. At this point, we note
that the simple inference rule— |k),,, cannot be used. In this

1 case, in fact, we would obtain the same fideltyas in the
G=5( +(O[TTo|0) + (1[TT4[1)). (100 previous section, but a different fideliy, and thus our re-
peater could not be optimal. However, it is straightforward to
Explicit calculations of formula$9) and(10) lead to reestablish the same expressiorGofising the inference rule
1 p E k— |k) (with |k) eigenstates of-,). Using this procedure, the
F= —<2 +2|cos= + &% sin _2‘ ) fidelities become equal to Eq4.1) and(12) and the repeater
6 2 2 is again optimal.
2 6 6
= 5(1 + smE cosE cos¢>2>, (11 B. Optimal quantum repeaters for qudits

The optimal repeater for qubits described in the previous
1 6\ 1 0 sections can be generalized to obtain an optimal repeater for
G=_|2+2cod 5= _(1 + co$ E) (12)  qudits. The scheme is depicted in Fig. 2 and is similar to that
of Fig. 1 with theC, replaced by itsd-dimensional coun-
Equations(11) and(12) say that anyallowed ratio between terpart, i.e., by the gate acting &gli)[s),=|i)|i ©s),, where
the two fidelities may be achieved by a suitable preparations denotes sum moduld [13]. The corresponding matrix
of the probe. At this point, we seb,=0 and substitute Eq. elements reag(8|<i|Cd|j>|S’)p=5.,- Sss/0j-
(12) into Eq. (11) in order to find the explicit dependence  The probe qudit is prepared in the state
F=F(G). We have

d-1
. 1
F=2(1+\-9G7+9G-2) (19 [0)p= 0SB0, + ysin b =2 [y, (16
3 / . \“dFO

The functionF(G) in Eq. (13) corresponds to the bouri@) where
with the equal sign and therefore proves that our scheme is T+daro.
an optimal explicit unitary realization of a quantum repeater y= M (17)
for qubits. Notice that we have seb=0, i.e., this result has vdtané,
been obtained using only one of the two probe degrees of o _ )
freedom. is a normalization factor. As for qubits, an optimal repeater

can be obtained exploiting a single probe degree of freedom.
After the interaction, the spin of the probe is measured in a
A. A more general scheme given direction. In the following, having in mind the equiva-
We now explore the possibility of generalizing our !€nce already shown for qubits, we refer to a scheme where
scheme for the measurement of the spin in a generic diredh€ Spin is measured in tiredirection.

tion, i.e., for the measurement of the observahig The measurement operators are given by

:RInoZRm. Let us consider a scheme similar to that in Fig. 1 .

with the C gate replaced by the gaw=(I®R,) C. The A= (KIClw)p= 2 (AYiliXil, (18
j

corresponding map operators are given by
, where
Ak:mp<k|(II ® Rp)Clw), = p<k|C|w>p:Ak, (14

with [k)y, eigenstates ofr,, whereas the POVM is obtained (AJij = 8| 8 cosé,+ ysin gzi_z Sejos|- (19)
as vds

I = Tr[WI & )l | W T & [K)pmdK/] The fidelities are evaluated using E@4) and(19), arriving
= Tr[C1 ® | @|CTT @ [k ] =T, (15 &

The primed operators in Egél4) and(15) are equal to the F= 1 [1+(cosb,+ 7’\"’6 sin 6,)2]
operators in Eqs(7) and (8). As a consequence, the prob- d+1 2 2
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FIG. 3. Left: qubits belonging to discrete cla&gN=5). Right:
qubits belonging to continuous claBs(N=5).

0.5 0.55 0.6 0.65
G

1 . 2
G= —{1 + <00502+ % sin 02> ], (20 FIG. 4. The functionsF(G) for signals of classA and B for
d+1 vd different values ofN. The solid line denotes the boudG) im-
which may be tuned by varying the preparation of the probeP°S€d by Eq(6). Dot-dashed lines de”OFeAN(GAN_)' whereas dot-
i.e., the value of,. Inserting Eq(20) into Eq.(5), we found € lines are fofg\(Ggy). We plot curves foN=4,5,7,11 and
that the bound is saturated fgrgiven by Eq.(17). In other  N=1000-Fan(Gan) is always above the boun®) and decreases
words, the scheme of Fig. 2 withdadimensionalC,, and a with increasingN. Fg\(Ggp) is always below the boungb) and
P O ‘ : ,“not increases with increasiny.
probe qudit given by Eq(16) provides an optimal quantum
repeater for qudits.
0, 0; 0, 0, 0 0
Fi :coé‘—21+sir14—21+4sir12—21co§—213in52cosE2
Il. SPECIAL CLASSES OF QUBITS
1 .
The bound in Eq(6) has been derived with the assump- = 5[(1 +co$ 6)) +sin 6,(1 - co$ 6)], (21)
tion that the incoming signal is chosen at random on the
whole Bloch sphere. In this section, we analyze whether a ; ) 0 ) ; ;
different chqlce of the.alphabet may be u_sed tp beat theGj :<co§‘—i+sir14 —i)cosz—2+2sir?—lcos°-—lsin2—2
bound and, in turn, to improve the information-disturbance
trade-off. As we will see, this is indeed the case assuming
that the input signal is chosen within a discrete set of states, ==(1 + co¢ 6; cos6,). (22
whereas a continuous subset of the Bloch sphere leads to
degraded performances.

. . ) The mean fidelities for clas& are given by
Let us consider the optimal repeater of Sec. Il with the

input signal chosen within the following two classes of 10 1+3N+(N-Dsing,
states. Fan= NE Fi= N

A. A discrete set made df statesy; equally spaced i =0
and with random phasé. Since the fidelities,, are phase- e
independent, we set, without loss of generality 0, 1 1 + 3N+ (N-1)cosb,

Gan= N 2 AN , (23)
= cos |0y +sinD[1), =0, ... (N-1) =
[41)a = cos 2 27" Y ' from which we obtain

where 6;=jm/(N-1). N-1

B. A continuous set of 2 X N states, equally spaced & Fan(Gan) = (1 +3N+ N+ 1

and with random phases,

2
It/f,-qs)B:cosgi|0>+é¢’singi|1>, XV(N+1)% = 4N*(1 - 2GAN)>- (24)

Fan IS @ monotonously decreasing functiondfand, as can

- _ be seen in Fig. 4, is above the bound set by @B for any
j=0,...(N-1), e 3
value ofN. Therefore, by transmitting a discrete alphabet of
where g,=jm/(N-1) and ¢ € [0, 27]. symbols, we can beat the bou(@], i.e., the protocol is more
The two sets are schematically depicted in Fig. 3. convenient than the transmission of the whole class of qu-
Using Egs.(1) and(2), we find that fidelities correspond- bits.
ing to stateg;)s and|y;,)s (with the sames; and different As concerns clasB, the mean fidelities are evaluated as
phasesare given by follows:
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N-1

1 .
> 2a(sin 0,)F;,

BNT N-1 .
27TEJ.:O sin 6, j=o

F

1 N-1

Gen= G & 27(sin6)G;.
27721':0 sin 6; j=o

(25)
For evenN, we obtain
1 )
Fen=,[3+sin6,+ 2igh GN-Dm2N-D](7 + sing,)

— jeliGN-D7I2N-D)(3 4 gjn g,)]

Ggn= l[2 + c0sh, + 2iel!GN-DmI2N-1)]
4

— ie[i(SN_l)"T]/[z(N_l)](Z + Cosez)]'

whereas for oddN,

(26)

1+sin6,+ cos (3+sinb,)

N-1

Fen= - )
2(1 +2 cos—)
N-1

o
1(2 + C0sb,)

) . (27)

GBN_ o
2(1 +2Ccos——

PHYSICAL REVIEW A1, 052307(2009

A general condition may be found for an alphabet of sig-
nals to beat the boun@). For an unspecified class of states,
the fidelities may be evaluated using E¢&l1) and(22). We
have that

1
F_

= 5[1 +coS 6+ sin6,(1 -cos 6)],

1 -
G= 5(1 + c0sf, cos 0),
where(---) denotes the average over the alphabet. Substitut-
ing Egs.(28) in Eqg. (6), we found that any class of states
violating the inequality

(28)

1 - 2
cos 0—§+(1—co§ 0)sin@,| +4cog #,cos ¢ <

[(o RN

(29)

provides a better information-disturbance trade-off than ran-
domly distributed signals. As an example, =0, i.e., for
the maximum value of the estimation fideli§y the bound
(6) is surpassed for classes of states for wiiok >1/3.

IV. CONCLUSIONS

In this paper, unitary realizations of quantum repeaters,
i.e., nondemolitive estimations of qubits and qudits, have
been suggested. The schemesramimal i.e., they involve
a single probe system in addition to the signal, aptimal
i.e., they obtain the maximum information with the minimum
amount of noise allowed by quantum mechanics for ran-

Using Egs.(26) and (27), we have calculated the explicit domly distributed signals.

function Fg\(Ggn). The resulting expression is quite cumber-

We then analyzed the performances of optimal repeaters

some and will not be reported here. In Fig. 4, we show theon different classes of qubits, corresponding to alphabets that

function Fg\(Ggy) for different values ofN. All the curves
are below the bound curvés), approaching it forN— .

are subsets of the whole Bloch sphere. We derive a general
condition that a class of states should satisfy to beat the

Therefore, if we need to transmit a continuous alphabet, it ibound (6) showing that discrete alphabets can beat this
more effective to transmit qubits on the whole Bloch spherebound, whereas continuous alphabets lead to inferior perfor-

rather than on a continuous subset.

mances.
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