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A class of optimal quantum repeaters for qubits is suggested. The schemes areminimal, i.e., they involve a
single additionalprobequbit, andoptimal, i.e., they provide the maximum information adding the minimum
amount of noise. Information gain and state disturbance are quantified by fidelities which, for our schemes,
saturate the ultimate bound imposed by quantum mechanics for randomly distributed signals. Special classes of
signals are also investigated, in order to improve the information-disturbance trade-off. Extension to higher-
dimensional signalssquditsd is straightforward.
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I. INTRODUCTION

In a multiuser transmission line, each user should decode
the transmitted symbol and leave the carrier for the subse-
quent user. What they need is an idealrepeater, i.e., a device
that for each shot retrieves the message without altering the
carrier. However, symbols are necessarily encoded in states
of a physical system and therefore the ultimate bound on the
performances as a repeater is posed by quantum mechanics.
Indeed, a perfect quantum repeater cannot be achieved, i.e.,
quantum information cannot be perfectly copied, neither lo-
cally f1g nor at a distancef2g. Any measurement performed
to extract information on a quantum state in turn alters the
state itself, i.e., produces a disturbance.

The trade-off between information gain and quantum state
disturbance can be quantified using fidelities. Let us describe
a generic scheme for indirect measurement as a quantum
operation, i.e., without referring to any explicit unitary real-
ization. The operation is described by a set ofmeasurement
operatorshAkj, with the conditionokAk

†Ak=I. The probability
operator-valued measuresPOVMd of the measurement is
given byhPk;Ak

†Akj, whereas its action on the input state is
expressed as%→okAk%Ak

†. This means that, if% is the initial
quantum state of the system under investigation, the prob-
ability distribution of the outcomes is given bypk
=Trf%Pkg=Trf%Ak

†Akg, whereas the conditional output state,
after having detected the outcomek, is expressed assk
=Ak%Ak

†/pk, such that the overall quantum state after the
measurement is described by the density matrixs=okpksk
=okAk%Ak

†.
Suppose now you have a quantum system prepared in a

pure stateucl. If the outcomek is observed at the output of
the repeater, then the estimated signal state is given byufkl
sthe typical inference rule beingk→ ufkl with ufkl given by
the set of eigenstates of the measured observabled, whereas
the conditional stateuckl=1/ÎpkAkucl is left for the subse-
quent user. The amount of disturbance is quantified by evalu-
ating the overlap of the conditional stateuckl to the initial
one ucl, whereas the amount of information extracted by the
measurement corresponds to the overlap of the inferred state
ufkl to the initial one. The corresponding fidelities, for a
given input signalucl, are given by

Fc = o
k

pk

zkcuAkuclz2

pk
= o

k

zkcuAkuclz2, s1d

Gc = o
k

pkzkcufklz2, s2d

where we have already performed the average over the out-
comes. The relevant quantities to assess the repeater are then
given by the average fidelities

F =E
A

dcFc , G =E
A

dcGc , s3d

which are obtained by averagingFc andGc over the possible
input states, i.e., over the alphabetA of transmittable sym-
bols.F will be referred to as the transmission fidelity andG
as the estimation fidelity.

Let us first consider two extreme cases. If nothing is done,
the signal is preserved and thusF=1. However, at the same
time, our estimation has to be random and thusG=1/d,
whered is the dimension of the Hilbert space. This corre-
sponds to ablind quantum repeaterf3g which reprepares any
quantum state received at the input without gaining any in-
formation on it. The opposite case is when the maximum
information is gained on the signal, i.e., when the optimal
estimation strategy for a single copy is adoptedf4–6g. In this
caseG=2/sd+1d, but then the signal after this operation
cannot provide anymore information on the initial state and
thus F=2/sd+1d. Between these two extrema there are in-
termediate cases, i.e., quantum measurements providing only
partial information while partially preserving the quantum
state of the signal for subsequent users. These schemes,
which correspond to feasible quantum repeaters, may also be
viewed as quantum nondemolition measurementsf7g, which
have been widely investigated for continuous variable sys-
tems, and recently received attention also for qubitsf8g.

The fidelitiesF andG are not independent of each other.
Assuming thatA corresponds to the set ofall possible quan-
tum states, Banaszekf9g has explicitly evaluated the expres-
sions of fidelities in terms of the measurement operators,
rewriting Eq.s3d as

F =
1

dsd + 1dSd + o
k

uTrfAkgu2D ,
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G =
1

dsd + 1dSd + o
k

kfkuPkufklD , s4d

where ufkl is the set of states used to estimate the initial
signal. Of course, the estimation fidelity is maximized choos-
ing ufkl as the eigenvectors ofPk corresponding to the maxi-
mum eigenvalues.

Using Eqs.s4d, it is possible to derive the bound that
fidelities should satisfy according to quantum mechanics. For
randomly distributedd-dimensional signals, i.e., when the
alphabetA corresponds to the set ofall quantum states for a
qudit, the information-disturbance trade-off reads as follows
f9g:

sF − F0d2 + d2sG − G0d2 + 2sd − 2dsF − F0dsG − G0d

ø
d − 1

sd + 1d2 , s5d

whereF0= 1
2sd+2d / sd+1d andG0= 1

23/sd+1d. For randomly
distributed qubits, i.e., assuming a two-dimensional Hilbert
space, and with the alphabetA equal to the whole Bloch
sphere, the bounds5d reduces to

SF −
2

3
D2

+ 4SG −
1

2
D2

ø
1

9
. s6d

From Eq.s5d, one knows the maximum transmission fidelity
compatible with a given value of the estimation fidelity or, in
other words, the minimum unavoidable amount of noise that
is added to the knowledge about a set of signals if one wants
to achieve a given level of information.

In this paper, we suggest a set of explicit unitary realiza-
tions for the indirect estimation of qubits. Our schemes are
minimal, since they involve a single additional probe qubit,
and optimal, i.e., the corresponding fidelities saturate the
bound s6d with the equal sign. The schemes can be easily
generalized to the case of qudits, yet being minimal and satu-
rating the bounds5d. Recentlyf10g, similar schemes have
been suggested, also with the possibility of obtaining signal-
independent fidelities through a twirl operationf11,12g.

The paper is structured as follows. In Sec. II, the simplest
example of our class of schemes will be described in detail.
Its possible generalizations, involving the measurement of a
generic spin component, are analyzed in Sec. II A, whereas
generalization to dimensiond is described in Sec. II B. In
Sec. III, we return back to qubits, and consider the transmis-
sion of signals with quantum states that do not span the
entire Hilbert space, i.e., of alphabets that are proper subsets
of the Bloch sphere. It will be shown that discrete alphabets
can be used to beat the bounds6d, whereas continuous alpha-
bets different from the whole Bloch sphere lead to inferior
performances. A general condition on the class of signals to
beat the bound will be also derived. Section IV closes the
paper with some concluding remarks.

II. MINIMAL IMPLEMENTATION OF OPTIMAL
QUANTUM REPEATERS

In this section, we suggest a measurement scheme to es-
timate the state of a generic qubit without its destruction.

This scheme is minimal because it involves a single addi-
tional probe qubit, and optimal because it saturates the bound
s6d.

The measurement scheme is shown in Fig. 1. The signal
qubit

ucl = cos
u1

2
u0l + eif1 sin

u1

2
u1l

is coupled with a probe qubit

uvlp = R2u0lp = cos
u2

2
u0lp + eif2 sin

u2

2
u1lp

by aCnot gatesdenoted byCd. Ri denotes a qubit rotation by
anglessui ,fid with respect to thez axis. After the interaction,
the spin component in thez direction is measured on the
probe qubit.

According to Eqs.s1d ands2d, the fidelitiesFc andGc are
given by

Fc = p0zkcuc0lz2 + p1zkcuc1lz2,

Gc = p0zkcu0lz2 + p1zkcu1lz2,

wherepk=kcuPkucl, k=0,1 are theprobabilities for the two
possible outcomes, and

uckl =
Akucl
Îpk

.

are the corresponding conditionalspured states, which are left
for the subsequent user. Moreover, in writingGc, we as-
sumed the inference rulek→ ukl, with ukl eigenstates of the
measured observablesz.

The measurement operatorsAk for our schemes are given
by

Ak = pkkuCuvlp, s7d

whereas the POVM can be evaluated as follows:

Pk = TrpfCI ^ uvlppkvuC†I ^ uklppkkug = Ak
†Ak, s8d

where Trpf¯g denotes partial trace over the probe degrees of
freedom. Explicitly, in the standard basis, we have

A0 =1cos
u2

2
0

0 eif2 sin
u2

2
2, A1 =1eif2 sin

u2

2
0

0 cos
u2

2
2 .

The mean fidelitiesF andG are obtained by averaging over
all the possible input states, i.e., the whole Bloch sphere,

FIG. 1. Minimal implementation of the optimal quantum re-
peater for qubits.
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F =
1

4p
E

0

2p

df1E
0

p

du1 sinu1Fc ,

G =
1

4p
E

0

2p

df1E
0

p

du1 sinu1Gc .

According to Eq.s4d, this corresponds to

F =
1

6
s2 + uTrfA0gu2 + uTrfA1gu2d, s9d

G =
1

6
s2 + k0uP0u0l + k1uP1u1ld. s10d

Explicit calculations of formulass9d and s10d lead to

F =
1

6
S2 + 2Ucos

u

2
+ eif2 sin

u2

2
U2D

=
2

3
S1 + sin

u2

2
cos

u2

2
cosf2D , s11d

G =
1

6
S2 + 2 cos2

u2

2
D =

1

3
S1 + cos2

u2

2
D . s12d

Equationss11d ands12d say that anysallowedd ratio between
the two fidelities may be achieved by a suitable preparation
of the probe. At this point, we setf2=0 and substitute Eq.
s12d into Eq. s11d in order to find the explicit dependence
F=FsGd. We have

F =
2

3
s1 +Î− 9G2 + 9G − 2d. s13d

The functionFsGd in Eq. s13d corresponds to the bounds6d
with the equal sign and therefore proves that our scheme is
an optimal explicit unitary realization of a quantum repeater
for qubits. Notice that we have setf2=0, i.e., this result has
been obtained using only one of the two probe degrees of
freedom.

A. A more general scheme

We now explore the possibility of generalizing our
scheme for the measurement of the spin in a generic direc-
tion, i.e., for the measurement of the observablesm
=Rm

† szRm. Let us consider a scheme similar to that in Fig. 1
with the C gate replaced by the gateW =sI ^ Rmd C. The
corresponding map operators are given by

Ak8 = mpkkusI ^ RmdCuvlp = pkkuCuvlp = Ak, s14d

with uklm eigenstates ofsm, whereas the POVM is obtained
as

Pk8 = TrpfWI ^ uvlppkvuW†I ^ uklmpmpkkug

= TrpfCI ^ uvlppkvuC†I ^ uklppkkug = Pk. s15d

The primed operators in Eqs.s14d and s15d are equal to the
operators in Eqs.s7d and s8d. As a consequence, the prob-

abilities pk and the conditional statesuckl are the same as in
the scheme of the previous section. At this point, we note
that the simple inference rulek→ uklm cannot be used. In this
case, in fact, we would obtain the same fidelityF as in the
previous section, but a different fidelityG, and thus our re-
peater could not be optimal. However, it is straightforward to
reestablish the same expression ofG using the inference rule
k→ ukl swith ukl eigenstates ofszd. Using this procedure, the
fidelities become equal to Eqs.s11d ands12d and the repeater
is again optimal.

B. Optimal quantum repeaters for qudits

The optimal repeater for qubits described in the previous
sections can be generalized to obtain an optimal repeater for
qudits. The scheme is depicted in Fig. 2 and is similar to that
of Fig. 1 with theCnot replaced by itsd-dimensional coun-
terpart, i.e., by the gate acting asCduiluslp= uilui % slp, where
% denotes sum modulod f13g. The corresponding matrix
elements readpksuki uCdu jlus8lp=di jds,s8% j.

The probe qudit is prepared in the state

uvlp = cosu2u0lp + g sinu2
1
Îd

o
s=0

d−1

uslp, s16d

where

g =
Î1 + d tan2 u2 − 1

Îd tanu2

s17d

is a normalization factor. As for qubits, an optimal repeater
can be obtained exploiting a single probe degree of freedom.
After the interaction, the spin of the probe is measured in a
given direction. In the following, having in mind the equiva-
lence already shown for qubits, we refer to a scheme where
the spin is measured in thez direction.

The measurement operators are given by

Ak = pkkuCduvlp = o
i j

sAkdi j uilk j u, s18d

where

sAkdi j = di jFdkj cosu2 + g sinu2
1
Îd

o
s

dk,j %sG . s19d

The fidelities are evaluated using Eqs.s4d and s19d, arriving
at

F =
1

d + 1
f1 + scosu2 + gÎd sinu2d2g,

FIG. 2. Minimal implementation of optimal quantum repeater
for qudits.
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G =
1

d + 1F1 +Scosu2 +
g

Îd
sinu2D2G , s20d

which may be tuned by varying the preparation of the probe,
i.e., the value ofu2. Inserting Eq.s20d into Eq.s5d, we found
that the bound is saturated forg given by Eq.s17d. In other
words, the scheme of Fig. 2 with ad-dimensionalCnot and a
probe qudit given by Eq.s16d provides an optimal quantum
repeater for qudits.

III. SPECIAL CLASSES OF QUBITS

The bound in Eq.s6d has been derived with the assump-
tion that the incoming signal is chosen at random on the
whole Bloch sphere. In this section, we analyze whether a
different choice of the alphabet may be used to beat the
bound and, in turn, to improve the information-disturbance
trade-off. As we will see, this is indeed the case assuming
that the input signal is chosen within a discrete set of states,
whereas a continuous subset of the Bloch sphere leads to
degraded performances.

Let us consider the optimal repeater of Sec. II with the
input signal chosen within the following two classes of
states.

A. A discrete set made ofN statesc j equally spaced inu
and with random phasef. Since the fidelitiesFc are phase-
independent, we set, without loss of generality,f=0,

uc jlA = cos
u j

2
u0l + sin

u j

2
u1l, j = 0, . . . ,sN − 1d,

whereu j = jp / sN−1d.
B. A continuous set of 2p3N states, equally spaced inu

and with random phases,

uc jflB = cos
u j

2
u0l + eif sin

u j

2
u1l,

j = 0, . . . ,sN − 1d,

whereu j = jp / sN−1d andfP f0,2pg.
The two sets are schematically depicted in Fig. 3.
Using Eqs.s1d ands2d, we find that fidelities correspond-

ing to statesuc jlA and uc jflB swith the sameu j and different
phasesd are given by

Fj = cos4
u j

2
+ sin4 u j

2
+ 4 sin2 u j

2
cos2

u j

2
sin

u2

2
cos

u2

2

=
1

2
fs1 + cos2 u jd + sinu2s1 − cos2 u jdg, s21d

Gj = Scos4
u j

2
+ sin4 u j

2
Dcos2

u2

2
+ 2 sin2 u j

2
cos2

u j

2
sin2 u2

2

=
1

2
s1 + cos2 u j cosu2d. s22d

The mean fidelities for classA are given by

FAN =
1

N
o
j=0

N−1

Fj =
1 + 3N + sN − 1dsinu2

4N
,

GAN =
1

N
o
j=0

N−1

Gj =
1 + 3N + sN − 1dcosu2

4N
, s23d

from which we obtain

FANsGANd =
1

4N
S1 + 3N +

N − 1

N + 1

3ÎsN + 1d2 − 4N2s1 − 2GANd2D . s24d

FAN is a monotonously decreasing function ofN and, as can
be seen in Fig. 4, is above the bound set by Eq.s6d for any
value ofN. Therefore, by transmitting a discrete alphabet of
symbols, we can beat the bounds6d, i.e., the protocol is more
convenient than the transmission of the whole class of qu-
bits.

As concerns classB, the mean fidelities are evaluated as
follows:

FIG. 3. Left: qubits belonging to discrete classA sN=5d. Right:
qubits belonging to continuous classB sN=5d.

FIG. 4. The functionsFsGd for signals of classA and B for
different values ofN. The solid line denotes the boundFsGd im-
posed by Eq.s6d. Dot-dashed lines denoteFANsGANd, whereas dot-
ted lines are forFBNsGBNd. We plot curves forN=4,5,7,11 and
N=1000.FANsGANd is always above the bounds6d and decreases
with increasingN. FBNsGBNd is always below the bounds6d and
increases with increasingN.
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FBN =
1

2po j=0

N−1
sinu j

o
j=0

N−1

2pssinu jdFj ,

GBN =
1

2po j=0

N−1
sinu j

o
j=0

N−1

2pssinu jdGj . s25d

For evenN, we obtain

FBN =
1

4
f3 + sinu2 + 2iefis3N−1dpg/f2sN−1dgs1 + sinu2d

− iefis5N−1dpg/f2sN−1dgs3 + sinu2dg

GBN =
1

4
f2 + cosu2 + 2iefis3N−1dpg/f2sN−1dg

− iefis5N−1dpg/f2sN−1dgs2 + cosu2dg, s26d

whereas for oddN,

FBN =

1 + sinu2 + cos
p

N − 1
s3 + sinu2d

2S1 + 2 cos
p

N − 1
D ,

GBN =

1 + cos
p

N − 1
s2 + cosu2d

2S1 + 2 cos
p

N − 1
D . s27d

Using Eqs.s26d and s27d, we have calculated the explicit
functionFBNsGBNd. The resulting expression is quite cumber-
some and will not be reported here. In Fig. 4, we show the
function FBNsGBNd for different values ofN. All the curves
are below the bound curves6d, approaching it forN→`.
Therefore, if we need to transmit a continuous alphabet, it is
more effective to transmit qubits on the whole Bloch sphere
rather than on a continuous subset.

A general condition may be found for an alphabet of sig-
nals to beat the bounds6d. For an unspecified class of states,
the fidelities may be evaluated using Eqs.s21d ands22d. We
have that

F =
1

2
f1 + cos2 u + sinu2s1 − cos2 udg,

G =
1

2
s1 + cosu2 cos2 ud, s28d

wheres¯d denotes the average over the alphabet. Substitut-
ing Eqs. s28d in Eq. s6d, we found that any class of states
violating the inequality

Fcos2 u −
1

3
+ s1 − cos2 udsinu2G2

+ 4 cos2 u2 cos2 u2 ø
4

9

s29d

provides a better information-disturbance trade-off than ran-
domly distributed signals. As an example, foru2=0, i.e., for
the maximum value of the estimation fidelityG the bound
s6d is surpassed for classes of states for whichcos2 u.1/3.

IV. CONCLUSIONS

In this paper, unitary realizations of quantum repeaters,
i.e., nondemolitive estimations of qubits and qudits, have
been suggested. The schemes areminimal, i.e., they involve
a single probe system in addition to the signal, andoptimal,
i.e., they obtain the maximum information with the minimum
amount of noise allowed by quantum mechanics for ran-
domly distributed signals.

We then analyzed the performances of optimal repeaters
on different classes of qubits, corresponding to alphabets that
are subsets of the whole Bloch sphere. We derive a general
condition that a class of states should satisfy to beat the
bound s6d showing that discrete alphabets can beat this
bound, whereas continuous alphabets lead to inferior perfor-
mances.
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