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• We suggest open quantum systems out-of-equilibrium as effective quantum probes.
• We establish a relationship between the QFI and the coherence of the probe.
• We suggest a scheme to estimate the ohmicity parameter of a bosonic environment.
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a b s t r a c t

We address open quantum systems out-of-equilibrium as effective quantum probes for
the characterisation of their environment. We discuss estimation schemes for parameters
driving a de-phasing evolution of the probe and then focus on qubits, establishing a
relationship between the quantum Fisher information and the residual coherence of the
probe. Finally, we apply our results to the characterisation of the ohmicity parameter of
a bosonic environment.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we address open quantum systems out-of-equilibrium [1,2], employed as quantum probes to precisely
characterise some relevant properties of their environment [3–5]. The probing scheme we are going to discuss is the
following (see Fig. 1): a quantum probe, i.e. a simple quantum system like a qubit, is prepared in a known initial state
and then made to interact with a larger, and possibly complex, system, which represents the environment of the quantum
probe. The environment usually induces decoherence, to an amount which depends on its temperature, spectral density
and internal correlations [6]. The final state of the quantum probe thus carries information about the properties of the
environment. In turn, any measurement performed on the probe may be exploited to infer the values of some relevant
environment parameters [7–11]. In this situation, the inherent fragility of quantum systems to decoherence represents a
resource, making quantum probes a very effective technique, able to provide enhanced precision compared to classical
(thermal) probes [12,13]. In addition, quantum probes are usually small and do not perturb the system under investigation,
thus representing a non-invasive technique suitable for delicate samples [14,15].

The interaction time between the probe and the system is usually a tunable parameter, and a question thus arises on
whether it may be used to further optimise the estimation precision. In a classical setting, e.g. thermometry, this is not
the case, since one prepares the probe, leave it interacting with the sample, and then read the environment parameter
by measuring the probe when it has reached its stationary state, i.e. when it is at equilibrium with its environment. On
the other hand, it has been recently shown that optimal estimation by quantum probes may be achieved also at finite
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Fig. 1. A quantum probe is prepared in a known initial state and then made to interact with a larger, and possibly complex, system, which represents
the environment of the probe itself. The final state of the quantum probes thus carries information about the properties of the environment, e.g. the
parameter � , which may be extracted by performing measurements at the output.

time, i.e. when the probe has not reached stationarity, and it is still in an out-of-equilibrium state [16–22]. Following this
results, we address here open quantum systems out-of-equilibrium as possible quantum probes for the characterisation
of their environment. At first, we discuss a general scheme to estimate parameters driving the de-phasing evolution of a
probe. We then devote attention to qubit probes, and establish a relationship between the quantum Fisher information
and the residual coherence of the probe. Finally, we apply our results to the estimation of the ohmicity parameter of a
bosonic environment.

The paper is structured as follows. In Section 2, we establish notation, describe the dynamics of a probe subject to
dephasing, and introduce the notion of residual coherence. In Section 3, we briefly review the tools of quantum parameter
estimation. In Section 4, we address quantum probes out-of-equilibrium, establish a relationship between the quantum
Fisher information and the residual coherence of the probe, and apply our results to the characterisation of the ohmicity
parameter of a bosonic environment. Section 5 closes the paper with some concluding remarks.

2. Probing by dephasing

Let us consider a generic quantum system interacting with its environment. No assumptions is made on the dimension
d of the Hilbert space of the probe. We also do not assume any specific form for the interaction Hamiltonian, but
nevertheless assume that the resulting dynamics corresponds to a pure dephasing [23–26], i.e. to a Von Neumann–Liouville
equation of the form

%̇ = �i [H, %] �  [H, [H, %] ] (1)

= �i [H, %] + 2  L[H] % , (2)

where % is the density matrix describing the state of the system, H is its free Hamiltonian,  > 0 is a dephasing rate
and L[O] • = � 1

2 {O†O, •} + O • O† is a super-operator in the Lindblad form. Moving to the interaction picture, i.e. to a
reference frame rotating with H , the equation of motion reduces to

%̇ = 2  L[H] % . (3)

Upon writing the initial state in the Hamiltonian basis, i.e. %0 = P
nk %nk|enihek| with H|eni = En|eni, the state after the

interaction with the environment is given by

%� =
X

nk

%nk e�� ⌦2
nk |enihek| , (4)

=
Z

R
dz g(z; 0, 2� ) e�izH%0 eizH (5)

where � = t , ⌦nk = En � Ek and g(z; z̄, � 2) is a Gaussian distribution in the variable z with mean z̄ and variance � 2.
The coherence of the probe after the interaction is given by

C� =
X

n6=k

|%nk| e�� ⌦2
nk = 2

X

n<k

|%nk| e�� ⌦2
nk , (6)

and is always smaller than the initial coherence C0 = 2
P

n<k |%nk|. Since the precision of quantum probes is strictly related
to their sensitivity to decoherence, it is quite natural to start from a probe initially prepared in a maximally coherent state,
i.e. %0 = | 0ih 0| where

| 0i = 1p
d

X

nk

|enihek| C0 = 1 . (7)

For the sake of simplicity we also assume equi-spaced levels for the probe, i.e. ⌦2
nk = ⌦2(n�k)2. In this case, the residual

coherence after the interaction may be expressed as

C� = 2
d

d�1X

j=1

e�j2 � ⌦2
. (8)
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3. Quantum parameter estimation

After the interaction with the environment the state of the probe depends on the parameter we would like to estimate.
In order to optimise the inference strategy, i.e. to optimise the extraction of information, we employ the tools of quantum
estimation theory [27,28], which provides recipes to find the best detection scheme and to evaluate the corresponding
lower bounds to precision. The precision also depends on the interaction time or, equivalently, on the residual coherence
of the probe.

Let us consider the family of quantum states ⇢� and assume that the dephasing rate depends on some parameter of
interest, i.e. � = � (�). We perform measurements on repeated preparations of the probe and then process the overall
sample of outcomes in order to estimate �. Let us denote by Z the observable we measure on the probe (Z |zi = z|zi,
Pz = |zihz|), and by p(z|�) = Tr[%� (�) Pz] the distribution of its outcomes for a given value of �. After choosing a certain
observable Z , we perform M repeated measurements, collecting the data z = {z1, . . . , zM}. This set is then processed by
an estimator b� ⌘ b�(z), i.e. a function from the space of data to the set of possible values of the parameter. The estimate
value of the parameter is the mean value of the estimator over data, i.e.

� =
Z
dz p(z|�)b�(z) , (9)

where p(z|�) = ⇧M
k=1 p(zk|�) since the repeated measurements are independent on each other. The precision of this

estimation strategy corresponds to the variance of the estimator i.e.

V� ⌘ Var � =
Z
dz p(z|�)

h
b�(z) � �

i2
. (10)

The smaller is V�, the more precise is the estimation strategy. In fact, the precision of any unbiased estimator (i.e. an
estimator such that � ! � for M � 1), is bounded by the so-called Cramèr–Rao (CR) inequality:

V� � 1
MF�

(11)

where F� is the Fisher information (FI) of Z

F� =
Z
dz p(z|�)

h
@� log p(z|�)

i2
, (12)

i.e. the information that can be extracted on � by performing measurements of Z on %� (�). The best, i.e. more precise,
measurement to infer the value of � is the measurement maximising the FI, where the maximisation is performed over
all the possible probe observables.

As a matter of fact, the maximum is achieved for any observable having the same spectral measure of the so-called
symmetric logarithmic derivative L�, i.e. the selfadjoint operator satisfying the equation

2 @�%� (�) = L� %� (�) + %� (�) L� . (13)

The corresponding FI is usually referred to as the quantum Fisher information (QFI) and may be expressed as H� =
Tr[%� (�) L2�]. Since F�  H�, the ultimate bound to precision in estimating � by performing quantum measurements on
%� (�) is given by the quantum CR bound

V� � 1
MH�

. (14)

In terms of the eigenvalues and eigenvectors of %� = P
n %n|�nih�n| the QFI may be written as

H� =
X

n

(@�%n)2

%n
+ 2

X

n6=k

(%n � %k)2

%n + %k

��h�k|@��ni
��2 . (15)

In order to evaluate analytically the QFI, we need to diagonalise the density matrix of the probe after the interaction,
i.e. that in Eq. (4). This can be done easily for low dimensional probes (qubit and qutrits), whereas numerical solutions
are often needed for higher dimensions [29]. Upon maximising the QFI one then optimises the estimation scheme [30,31].

A global measure of the estimability of a parameter, which compares the variance with the value of the parameter, is
given by the signal-to-noise ratio R� = �2/V�. In turn, the quantum CR bound may be rewritten in terms of R� as follows

R�  Q� = �2H� , (16)

where Q� is referred to as the quantum signal-to-noise ratio (QSNR).
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Fig. 2. A qubit is prepared in a maximally coherent state |+i = (|e1i + |e2i)/
p
2 and then is made to interact with a Ohmic-like environment made

of bosonic modes, characterised by a spectral density Js(!) The output state of the probe carries information about the ohmicity parameter s, which
may be estimated by performing measurements at the output.

4. Quantum probes out of equilibrium

Let us now consider the simplest quantum probe, i.e. a qubit system used to characterise its environment, which itself
induces dephasing on the qubit. In this case we may consider a generic pure initial state | 0i = cos�|e1i + sin�|e2i
and use the notation ⌦ = ⌦21 = E2 � E1. The initial coherence is given by C0 = sin 2� and the final one by
C� ⌘ C� (�) = e�� (�)⌦2 sin 2�. In order to evaluate the QFI, we leave the qubit to evolve, then diagonalise the state, and
finally use Eq. (15). After some algebra, we obtain a remarkably compact formula

H� = ⌦4 �
@��

�2 C2
0C

2
�

C2
0 � C2

�

, (17)

which is valid for any � and expresses the QFI in terms of the dependence of the dephasing rate on the parameter of
interest, i.e. the susceptibility @�� , and on the relationship between the initial and the final coherence of the probe. As it
may easily proved, the maximum of the QFI is achieved for � = ⇡/4, thus confirming the intuition, already mentioned in
Section 2, that the optimal initial state of the probe corresponds to a maximally coherent state |+i = (|e1i+|e2i)/

p
2. We

remark that Eq. (17) is valid for any (pure) initial preparation of the probe and any kind of parameter, the only assumption
being that the preparation of the environment and the corresponding interaction leads to a pure dephasing evolution of
the probe .

As an application, let us now consider a qubit, used to probe the nature of an Ohmic-like environment made of bosonic
modes (see Fig. 2). In order to introduce the problem, let us write the Hamiltonian of the whole system. We use the natural
system of units (h̄ = 1), and also write the Hamiltonian in unit of the qubit frequency ⌦ , making it adimensional

H = 1
2
�3 +

X

k

!k b
†
k bk + �3

X

k

(gk b
†
k + g⇤

k bk) , (18)

where !k is the (dimensionless) frequency of the kth environmental mode. The � ’s are the Pauli matrices and [bk, b†
k] =

�k k0 describe the modes of the environment. The gk’s are coupling constants, describing the interaction of each mode
with the qubit probe. Their distribution determines the spectral density of the environment, according to the expression
J(!) = P

k |gk|2 �(!k � !). The spectral density is the crucial quantity to describe the system-environment interaction,
and it does depend on the specific features of the environment. In turn, the characterisation of the spectral density is
crucial to understand, and possibly control, quantum decoherence [32–37].

A large class of structured reservoirs is characterised by an Ohmic-like spectral density of the form

Js(!) = !c

✓
!

!c

◆s

exp
⇢
� !

!c

�
, (19)

where the frequencies are in unit of ⌦ . The cutoff frequency describes a natural boundary in frequency response of the
system. As we will see, it determines the timescale of the evolution. The quantity s is a real positive number, which
governs the behaviour of the spectral density at low frequencies. Upon varying s we move from the so-called sub-Ohmic
regime (s < 1), to Ohmic (s = 1), and to super-Ohmic one (s > 1). Different values of the ohmicity parameter s often
correspond to radically different kinds of dynamics, and therefore it would be highly desirable to have an estimation
scheme for their precise characterisation.

Such a scheme may be obtained from the results of the previous Sections, since the dynamics induced on the qubit
is a pure dephasing. In order to prove this result, one assumes that the system is initially in the state | i ⌦ |0i (i.e. a
generic state for the probe and, assuming to be at zero temperature, the ground state for the environment), then evolve
the whole system according to the Hamiltonian in Eq. (18), and finally trace out the environment. The resulting evolution
is that of Eq. (4) where the dephasing rate is given by

�s(⌧ ) =
Z 1

0

1 � cos(!⌧/!c)
!2 Js(!) d! , (20)
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Fig. 3. (Top): the dephasing rate �s(⌧ ) as a function of ⌧ for three values of s = 0.1 (solid black line), 1.6 (dashed red line), and 3.0 (dotted blue
line). (Bottom): the asymptotic value Hs(1) of the QFI as a function of the ohmicity parameter s. We have Hs(1) = 0 for s  1, and Hs(1) 6= 0 for
s > 1.

=

8
>>>>><

>>>>>:

1
2
log

�
1 + ⌧ 2

�
s = 1

0

@1 � cos [(s � 1) arctan ⌧ ]
�
1 + ⌧ 2

� s�1
2

1

A� [s � 1] s 6= 1

(21)

where ⌧ = !c t and � [x] =
R 1
0 tx�1e�tdt is the Euler Gamma function. For short time we have �s(⌧ ) ' 1

2⌧
2� [1 + s] 8s,

whereas for large value of ⌧ the dephasing rate diverges for s  1, and shows a finite asymptotic value �s(1) = � [s� 1]
for s > 1. In the upper panel of Fig. 3, we show the behaviour of �s(⌧ ) as a function of ⌧ for three different values of s.

Upon preparing the qubit in the initial state |+i = (|0i + |1i)/
p
2, the evolved state %+

s (⌧ ) is obtained from Eqs. (4)
and (21). Then, using Eq. (17) the QFI for the estimation of s is given by

Hs(⌧ ) =
⇥
@s�s(⌧ )

⇤2

e2�s(⌧ ) � 1
, (22)

where the interaction time ⌧ is a free parameter that can be used to further optimise precision. Notice that the short-time
behaviour of Hs(⌧ ), as well as the asymptotic one, may be extracted from the corresponding behaviour of the dephasing
rate �s(⌧ ). For short time we have Hs(⌧ ) ' ⌧ 2gs, where

gs = � [s � 1]
4s(s � 1)

(2s � 1 + s(s � 1) [s � 1])2 ,

 [z] = � 0[z]/� [z] being the logarithmic derivative of the gamma function. For large value of ⌧ we have Hs(1) = 0 for
s  1, and Hs(1) 6= 0 for s > 1. The behaviour of the asymptotic value Hs(1) as a function of the ohmicity parameter is
illustrated and summarised in the lower panel of Fig. 3.

In Fig. 4 we show the behaviour of Hs as a function of s and ⌧ . In order to emphasise the non trivial features of this
function, we first show a 2D plot as a function of time for three values of s (upper panel), a 3D plot illustrating the
behaviour for limited interaction time (⌧  7, middle left plot) and a contour plot with a longer time range (⌧  35,
middle right plot). In order to optimise the estimation of s we should chose the interaction time that maximises the QFI.
As it may be guessed from the plots, this optimal time ⌧s increases with s when s is small, and then jump to a smaller value
for larger values of s. We obtain numerically the following estimate ⌧s ' ⇡es/2 for s ⌧ 1 and ⌧s = ⇡/(2s) for 2.2 . s . 3.
In the intermediate region, Hs is an increasing (though saturating) function of ⌧ , and the optimal strategy would be to
leave the qubit interacting with the environment as much as it can. Of course, this is not possible, due to the finite size
of any environment. Thus the prescription is that of choosing a generically large interaction time. Overall, we have that
depending on the values of s, one may achieve optimal estimation at finite interaction time (i.e. out-of-equilibrium) or
for large time (when, presumably, the qubit has reached its stationary state [38]). The behaviour of ⌧s as a function of s is
shown in the lower panel of Fig. 4. Our results confirm that pure dephasing is an effective mechanism to gain information
about the system under investigation without exchanging energy.

In the upper panel of Fig. 5 we show the optimised value of Hs as a function of s, whereas in the lower panel we show
the corresponding quantum signal-to-noise ratio Qs = s2Hs. The physical meaning of these plots is that estimation of
intermediate values of s, corresponding to slightly super-Ohmic environments (s ' 1.5), is inherently more precise than
the estimation of smaller or slightly larger values (1.5 . s . 2.5).
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Fig. 4. (Top): The QFI Hs as a function of ⌧ for three values of s = 0.1 (solid black line), 1.6 (dashed red line), and 3.0 (dotted blue line). (Middle):
The QFI Hs as a function of s and ⌧ . On the left a 3D plot for interaction times ⌧  7, and on the right a contour plot illustrating the behaviour for
a longer time range (⌧  35). (Bottom): The time value ⌧s , maximising Hs at fixed s. The value ⌧s increases with s when s is small and then jump
to a smaller value for larger values of s. In the intermediate region, Hs is an increasing function of ⌧ .

Fig. 5. (Top): The optimal value QFI Hs , maximised over ⌧ , as a function of s. (Bottom): the corresponding quantum signal-to-noise ratio Qs . As it is
apparent from the plots, estimation of intermediate values of s, corresponding to slightly super-Ohmic environments (s ' 1.5), is inherently more
precise than the estimation of smaller values, and also of slightly larger values.

4.1. Feasible measurement achieving optimal precision

In this Section we discuss the feasibility of the optimal measurement, i.e. whether it exists a measurement for which
the associated Fisher information is equal to the QFI. To this aim, let us consider the most general projective measurement
{P±}, P+ + P� = I on the qubit probe, i.e.

P± = I ± b · �

2
, (23)
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where b = (b1, b2, b3), |b| = 1 and � is the vector of the Pauli matrices, �x, �y, �z . The probability distribution of the two
outcomes for the qubit probe initially prepared in the state |+i is given by

p±(⌧ ) = Tr
⇥
%+
s (⌧ ) P±

⇤
= 1

2
⇥
1 ± b1e��s(⌧ )⇤ , (24)

corresponding to a Fisher information

Fs =
X

k=±

[@spk(⌧ )]2

pk(⌧ )
. (25)

Starting from the above equation, it is easy to see that we have Fs = Hs if b1 = 1, i.e. for the measurement of �x on the
qubit. This means that measuring �x provides optimal estimation of the parameter s, provided that an efficient estimator
is employed to process the data. The overall optimal strategy thus consists in the preparation of the qubit in an eigenstate
of �x and the measurement of the same observable after the interaction with the environment.

4.2. Quantum probes at nonzero temperature

If temperature T of the environment is not strictly zero, the dephasing rate is given by

�s(⌧ , T ) =
Z 1

0
d!

1 � cos(!⌧/!c)
!2 Js(!) coth

!

2T
, (26)

which is usually hard to evaluate analytically for a generic value of s. In many situation of interest, however, the
temperature is not too high and we may use the approximate expression

coth
!

2T
T⌧1' 1 + 2e�!/T .

In those situations, the dephasing rate may be written as

�s(⌧ , T ) ' �s(⌧ , 0) + 2
✓
1 + T
T

◆1�s

�s

✓
T⌧

1 + T
, 0

◆
(27)

' �s(⌧ , 0) + T 1+s(1 � T )
(1 + T )s

⌧ 2 � [1 + s] , (28)

where �s(⌧ , 0) is given in Eq. (21), and temperature is an adimensional quantity, expressed in unit of !c [39]. Using Eq. (28),
an analytic expression for the QFI Hs at low temperature may be obtained and compared with the zero temperature case.
In order to quantify the effects of temperature we introduce the excess QFI

�Hs(⌧ , T ) = Hs(⌧ , T ) � Hs(⌧ , T ⌘ 0) , (29)

which is positive when a nonzero temperature leads to an improvement in precision, and negative otherwise. In Fig. 6 we
show the absolute value |�Hs(⌧ , T )| of the excess QFI as a function of s and ⌧ for two different values of the temperature.
On the left we show the function for T = !c/100 and on the right for T = !c/10. The blue region corresponds to
�Hs(⌧ , T ) > 0, i.e. working at nonzero temperature is convenient in terms of the achievable precision, and the green
one to �Hs(⌧ , T ) < 0, i.e. regions where temperature is degrading performances. Upon looking at Fig. 6 and noticing the
different scale with respect to Fig. 4b, one concludes that (low) temperature has only a minor effect on the achievable
precision. Accordingly, the optimal interaction time for the probe, and the resulting maximum value of the QFI are only
slightly changed. In the opposite limit, i.e. when the temperature is high, the situation dramatically changes. This may be
easily seen by expanding the hyperbolic cotangent as coth x ' x�1, thus arriving at

�s(⌧ , T ) ' 1
2T
�1+s(⌧ , 0) .

Moreover, since �1+s(⌧ , 0) is a bounded function of ⌧ , we have

Hs(⌧ , T ) = 1
4T 2

h
@s�1+s(⌧ , 0)

i2

e�1+s(⌧ ,0)/T � 1

⇡ 1
T
H1+s(⌧ , 0) . (30)

Eq. (30) says that the QFI for the ohmicity parameter at high temperature is largely reduced in comparison to the low
temperature case, i.e. almost no information may be extracted by quantum probes. Indeed, this is matching physical
intuition, since for large temperature decoherence is mostly due to thermal fluctuations rather than the specific features
of the interaction, and thus the probes is unable to extract information about the structure of the environment.



832 Sh. Razavian and M.G.A. Paris / Physica A 525 (2019) 825–833

Fig. 6. The absolute value |�Hs(⌧ , T )| of the excess QFI as a function of s and ⌧ for two different values of the temperature. On the left the function
for T = !c/100 and on the right for T = !c/10. The blue region corresponds to �Hs(⌧ , T ) > 0 and the green one to �Hs(⌧ , T ) < 0. Notice the
different scale with respect to Fig. 4b.

5. Conclusions

In this paper we have addressed the use of open quantum systems out-of-equilibrium as possible quantum probes
for the characterisation of their environment. In particular, we have discussed estimation schemes involving parameters
governing a de-phasing evolution of the probe. For qubit probe we have found a simple relation linking the quantum
Fisher information to the residual coherence of the probe. Finally, we have addressed in some details the estimation of
the ohmicity parameter of a bosonic environment, finding that depending on the values of s, one may achieve optimal
estimation at finite interaction time, i.e. when the probe is in an out-of-equilibrium state, or for large time, when,
presumably, the qubit has reached its stationary state. Overall, our results pave the way for further investigation about
out-of-equilibrium quantum metrology, perhaps exploiting memory effects [40], and confirm that pure dephasing at low
temperature represents an effective mechanism to imprint information on quantum probes without exchanging energy
with the system under investigation.
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