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Programmable entanglement oscillations in a non-Markovian channel
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We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations
of a pair of polarization qubits in an effective non-Markovian channel. We generate entangled photon pairs by
spontaneous parametric down-conversion (SPDC), and then insert a programmable spatial light modulator in
order to impose a polarization-dependent phase shift on the spatial domain of the SPDC output. This creates an
effective programmable non-Markovian environment where modulation of the environment spectrum is obtained
by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement
are achieved, where the entangled state obtained at the maximum of the revival after sudden death violates Bell’s
inequality by 17 standard deviations.
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I. INTRODUCTION

Entanglement of a bipartite system is usually degraded by
the interaction of each subsystem with the environment, which
induces decoherence, i.e., an irreversible loss of information
from the system to the rest of the universe [1,2]. If the
interaction is Markovian, i.e., the loss of information is
unidirectional, from the system to the environment, then
entanglement monotonically decreases and may be also
destroyed in a finite time [3–7]. On the other hand, when
some memory effect is present in the interaction between the
system and the environment, i.e., when the noisy channel
is non-Markovian [8,9], then a nonmonotone behavior of
entanglement and, more generally, of quantum correlations
may be observed [10–17]. In fact, entanglement oscillations
are expected in continuous variable systems [18–20], whereas
collapses and revivals of entanglement have been observed
with polarization qubits [21].

In this paper we suggest and demonstrate an experimental
setup to observe and engineer entanglement oscillations in
a programmable way. We address the spatial domain of
spontaneous parametric down-conversion (SPDC), and exploit
a programmable spatial light modulator (SLM) to impose a
polarization- and position-dependent phase shift. Since the
polarization qubits are obtained by tracing out the spatial
degrees of freedom, our apparatus allows us to analyze
the entanglement dynamics within the “coherence time” of
the effective non-Markovian channel. In this framework an
effective environment spectrum may be obtained by acting on
the spatial profile of the SPDC and, in particular, by a suitable
modulation of the angular distribution. In turn, in order to
investigate entanglement oscillations we insert a spatial grating
on the signal arm to achieve a modulation of the environment
spatial spectrum. Besides fundamental interest, our scheme
may found applications in engineering decoherence for the
polarization qubit, e.g., in quantum process tomography.
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The paper is structured as follows. In the next section
we describe our scheme for entanglement generation and
purification with a detailed analysis of the structure of the
angular function. In Sec. III we describe how a periodic
structure of the angular distribution may be used to induce
entanglement oscillations in a programmable way, whereas
entanglement decrease and then death may be expected for
a nonperiodical angular distribution. Experimental results are
described in detail in Sec. IV, with the full characterization
of the involved states by quantum tomography reported in
Sec. V. Section VI closes the paper with some concluding
remarks.

II. ENTANGLEMENT GENERATION AND PURIFICATION

In our setup a two-crystal geometry [22–24] is used to
produce two-qubit polarization entangled states by type I
down-conversion in a noncollinear configuration. The state
at the output of the crystal can be written as

|ψ〉 ∝
∫ ∫

dθdθ ′f (θ,θ ′)[|Hθ〉|Hθ ′〉 + eı#(θ,θ ′)|V θ〉|V θ ′〉],

where |P θ〉 denotes a single photon state emitted with
polarization P = H,V at angle θ (θ ′) along the signal (idler)
arm, θ and θ ′ are the shifts from the central emission angle
(θ0,θ

′
0 $ 3◦), and the integrations range from − 1

2$ to 1
2$,

$ being the angular aperture of two slits along the down-
conversion paths; see Fig. 1.

The angle-dependent phase shift

#(θ,θ ′) = φ(θ ) + φ′(θ ′) + #0

comes from the difference between the optical path of the
vertically polarized photon pair, generated in the first crystal,
which must travel along the second one, and the optical path
of the pump beam traversing the first crystal before generating
the horizontally polarized pair in the second crystal. These
angular-dependent terms are responsible for decoherence of
the polarization qubit and should be removed in order to obtain
an effective source of entangled pairs [25]. Upon expanding to
first order the terms in #(θ,θ ′) [26], we arrive at

φ(θ ) = γ θ, φ′(θ ′) = −γ θ ′.
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FIG. 1. (Color online) Schematic diagram of experimental setup.
A linearly polarized cw laser diode at 406 nm (L) pumps a couple
of BBO crystals cut for type I down-conversion. The horizontal and
vertical photon pairs are balanced by a half-wave plate set along the
pump path, whereas an additional BBO crystal is set on the pump
path to compensate for the temporal delay. Signal and idler cones
travel through the SLM and are spatially selected by two irises and
two slits set at D = 500 mm with $x = 5 mm ($ = 10 mrad). Two
long-pass filters cut-on wavelength 715 nm are used to reduce the
background. A handmade grating can be inserted on the signal arm.
Photons are focused in two multimode fibers (MMF’s) and sent to
single-photon counting modules. Polarizers at the angles 45◦, −45◦

or 45◦, 45◦ are inserted to measure visibility whereas a quarter-wave
plate, a half-wave plate, and a polarizer are used for the tomographic
reconstruction.

In our apparatus, a one-dimensional programmable SLM is set
both on the signal and idler paths (see Fig. 1), and is used to
achieve a complete purification (i.e., # = #0) by inserting a
linear phase function φSLM(θ ) = −γ θ on the signal path and
φ′

SLM(θ ′) = γ θ ′ on the idler path [26–30]. The constant phase
#0 allows the generation of different maximally entangled
states.

A. More details on the angular function

In the present experiment we set #0 = 0 by adding a
proper constant phase to φSLM . In order to obtain an effective
non-Markovian channel the SLM is then used to impose an
additional phase function φs(θ ) on the signal arm. Before going
to details, let us devote some attention to the angular function
f (θ,θ ′), which will be important for the following discussion
and is assumed to have the factorized form g(θ )g′(θ ′). This
assumption has been experimentally verified by measuring
the coincidence count distribution C = |fexpt(θ,θ ′)|2, within a
coincidence time window of 50 ns, as a function of the signal
and idler slit positions θ and θ ′. We set two slits of aperture
$x = 1 mm ($ = 2 mrad) along the down-conversion arms
and measured coincidence counts within a time window of 10 s
for slit positions θ,θ ′ = −2$, − $, . . . , + 2$. In Fig. 2 we
show the experimental data; the phase-matching central angles
correspond to θ,θ ′ = 0. The corresponding coincidence count
distribution has then been compared with the one computed as

|fexpt(θ,0)fexpt(0,θ ′) |2

|fexpt(0,0) |2
,

and an excellent agreement was found, also corroborated by
a significant χ2 test (Pχ2>χ2

0
$ 0.9). Upon inspecting the
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FIG. 2. (Color online) Coincidence count distribution C =
|fexpt(θ,θ ′)|2 for 10 s, within a coincidence time window of 50 ns,
as a function of the signal and idler slit positions θ and θ ′. The
phase-matching central angles correspond to θ,θ ′ = 0.

distribution of Fig. 2 one sees that the angular distributions
g(θ ), g′(θ ′) are peaked around the central values θ = θ ′ = 0
value with a width of 8.6 mrad. They may be approximated
by Gaussian curves, though the specific functional form is
irrelevant for our analysis. As will be clear in the following,
factorization simplifies the evaluation of visibility.

III. ENTANGLEMENT OSCILLATIONS IN A
NON-MARKOVIAN ENVIRONMENT

Once the state has been purified and the additional phase
φs(θ ) = αθ has been imposed to the signal photon, the
dependence on θ ′ is traced out, and thus no terms containing
g′(θ ′) appear in the polarization density matrix,

) = Trθ,θ ′ [|ψ〉〈ψ |] = 1
2 (|HH 〉〈HH | + ε|V V 〉〈HH |

+ ε∗|HH 〉〈V V | + |V V 〉〈V V |), (1)

where

ε =
∫

dθ |g(θ )|2eıαθ

is the decoherence factor. It can be shown that, for the state ),
the concurrence is C = |ε| [21]. Since the angular distribution
g(θ ) is symmetric, ε is real and positive, and we may write

) = ε)b + (1 − ε))m,

where )b denotes a Bell state and )m the corresponding
mixture. In turn, in this case, ε equals the interferometric
visibility V (α) = Re[ε] which, in turn, coincides with the
concurrence C.

In general, the angular distribution may be assumed to be
peaked at some central value with a finite width as, for example,
the Gaussian shape we have discussed in the preceding section.
In this case, the photons coming from different directions
(i.e., angles) will experience different relative phase between
the horizontal and vertical polarization components. As a
consequence, in the absence of any purification mechanism,
the off-diagonal elements of the polarization density matrix
decrease exponentially and the state is driven toward the
unentangled mixture )m.
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The situation changes dramatically if the angular distribu-
tion is amplitude modulated. In this case the decoherence factor
ε may oscillate, i.e., the overall relative phase may refocus and
the off-diagonal elements reappear, as well as entanglement.
Since we address the spatial domain, it is straightforward to
insert an amplitude modulation on g(θ ), e.g., by inserting
a physical obstacle along the signal optical path. As noted
above, from the expression of the visibility V (α), we see that
a periodic structure of the angular distribution would induce
oscillations, whereas entanglement decrease and then death
may be expected for a nonperiodical angular distribution.
In this framework α may be considered as the evolution
parameter of the dynamics of the (noisy) channel, and the
periodic structure of the angular distribution as the (spatial)
enviroment spectrum. Moreover, the periodic structure implies
that in tracing out the spatial degrees of freedom any two-point
correlation function of the environment is not single peaked
and this is a sign of the non-Markovian character of the
channel.

In our apparatus, the amplitude modulation is implemented
by means of a handmade grating with a period δx and a
transparent region width δw centered along the signal arm (see
Fig. 1). As we will see, the narrower the transparent regions,
the higher entanglement oscillations are expected. Formally,
the insertion of the grating is equivalent to the substitution

g(θ ) → g(θ )m(θ )

in the visibility, up to the normalization
∫

dθ |g(θ )m(θ )|2 = 1,
where m(θ ) is the periodical unitary step function imposed by
the grating. By simply inserting or removing the grating it
is possible to compare the different dynamics imposed by a
periodical or nonperiodical angular distribution.

IV. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 1: a linearly po-
larized cw, 406-nm laser diode (Thorlabs LPS-406-FC), with
a transverse profile TEM00, pumps a couple of 1-mm-thick
β-barium borate (BBO) crystals cut for type I down-
conversion. The |HH 〉 and |V V 〉 pairs are balanced by a
half-wave plate set along the pump path. A BBO crystal with
the proper length and optical axis angle is set on the pump
path, and is used to counteract the decoherence effect due
to the temporal delay between the two components [25–35].
This crystal introduces a delay time between the horizontal
and vertical polarization of the pump which precompensates
for the delay time between the |V V 〉 pair generated by
the first crystal and the |HH 〉 pair from the second one.
Signal and idler cones then travel through the SLM and
are spatially selected by two irises and two slits set at
D = 500 mm. The low quantum efficiency of our detectors
(∼ 10%) forces us to couple large angular regions: we set
$x = 5 mm ($ = 10 mrad). As we discuss in the following,
this will decrease the maximum value of the visibility. The
down-conversion output is not spectrally filtered, whereas two
long-pass filters (cut-on wavelength 715 nm) are used to reduce
the background. A handmade grating can be inserted on the
signal arm.

Photons are focused in two multimode fibers and sent
to homemade single-photon counting modules, based on an
avalanche photodiode operated in Geiger mode with passive
quenching. In order to measure the visibility, we insert two
polarizers, set at the angles 45◦, −45◦ for the minimum and
45◦, 45◦ for the maximum. For the tomographic reconstruction
we insert on both paths a quarter-wave plate, a half-wave plate,
and a polarizer.

After purification we study the behavior of the visibility
as a function of the dimensionless evolution parameter α,
governing the linear phase function φs(θ ) = αθ imposed to
the signal by the SLM. As previously discussed, oscillations
of entanglement are expected when the grating is inserted.
Because of the pixel discretization a step function with
an angular resolution ζ = 0.3 mrad is physically inserted
by the SLM in order to approximate the linear functions
φSLM(θ ),φ′

SLM(θ ′). Experimentally, using the SLM, we impose
the phase functions

φe
SLM(n) = −aoptn + b on idler,

φe
SLM(n) = aoptn + φe

s (n) on signal,

where n is the distance in pixels from the center of the signal
beam (n = 0 for θ = 0), aopt = 0.12 rad/pixel is the optimal
slope that allows us to achieve a complete purification, and b =
−#0. The linear function φe

s (n) = a n is also inserted to study
the dynamics, where the experimental evolution parameter is
given by a = αh/L rad/pixel, h = 100 µm being the pixel
width and L $ 330 mm the distance between the SLM and the
generating crystals. Since the pixel discretization of the SLM
imposes the condition a + 2π/pixel, high values of a must
be neglected in our analysis. We experimentally verified that
the curve V (a) saturates to the uncompensated value when
(a + aopt) → 2π . The revival is expected at

arev = 2πD

δx

h

L

or, in terms of the angular grating period δθ , αrev = 2π
δθ

. We
choose δx = 2 mm, which leads at arev = 0.476 rad/pixel, in
order to avoid high values of the evolution parameter, and we
set δw = 0.4δx.

In Fig. 3 we present the experimental results, together
with the theoretical prediction calculated from the expression

FIG. 3. (Color online) Visibility as a function of the evolution
parameter a. Blue circles and red squares are the experimental data
obtained with and without grating (errors within the symbols). The
blue solid line and the red dashed line denote the corresponding
theoretical predictions.
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of the visibility, as a function of the experimental evolution
parameter a. Notice that the area under the increasing part of
the visibility curve provides an experimental lower bound to
the amount of non-Markovianity of the channels [8,36].

Comparing the curve with the one obtained without the
grating we see that in the latter case no revival occurs after the
degradation of entanglement. We also notice that the minimum
occurs for lower values of a compared to the case with the
grating.

V. STATE CHARACTERIZATION

In order to fully characterize the output state we have
also performed state reconstruction by polarization qubit
tomography for different values of the evolution parameter a.
The procedure is as follows: we measure a suitable set of
independent two-qubit projectors [37,38] and then reconstruct
the density matrix from the experimental probabilities using
maximum-likelihood reconstruction of two-qubit states. The
tomographic measurements are obtained by inserting a
quarter-wave plate, a half-wave plate, and a polarizer. The
purification procedure with the grating inserted leads to a
visibility V = 0.881 ± 0.004, the density matrix is graphically
represented in the upper left panel of Fig. 4. Increasing
the evolution parameter to a = 0.23, the visibility decreases
to V = 0.120 ± 0.016. The corresponding tomographic

HH
HV

VH
VV

HH

HV

VH
VV0.0

0.2

0.4

0.6

HH
HV

VH
VV

HH

HV

VH
VV0.0

0.2

0.4

0.6

HH
HV

VH
VV

HH

HV

VH
VV0.0

0.2

0.4

0.6

HH
HV

VH
VV

HH

HV

VH
VV0.0

0.2

0.4

0.6

FIG. 4. (Color online) Tomographic reconstruction of a state
evolving in the effective non-Markovian channel. In the upper left plot
the two-qubit density matrix just after the purification, with visibility
V = 0.881 ± 0.004. Upon increasing the evolution parameter to
a = 0.23 we achieve the minimum of entanglement oscillations: the
density matrix is shown in the upper right plot, the corresponding
visibility is V = 0.120 ± 0.016. In the lower panels, we show the
real and the imaginary parts of the reconstructed density matrix at the
maximum of entanglement oscillations, which occurs for a = 0.48.
The corresponding visibility is V = 0.696 ± 0.013, and the Bell
parameter B = 2.341 ± 0.019.

reconstruction, depicted in the upper right panel of Fig. 4,
well illustrates the degradation of entanglement. However, we
found a consistent revival after a further increasing of the
evolution parameter to a = 0.48, where we have V = 0.696 ±
0.013. The corresponding tomographic reconstruction (real
and imaginary parts) is reported in the lower panels of
Fig. 4.

In order to show the revival of the nonlocal correlations we
have also measured the Bell parameter,

B = |E(β1,β2) + E(β1,β
′
2) + E(β ′

1,β2) − E(β ′
1,β

′
2)|,

where E(β1,β2) denotes the correlations between measure-
ments performed at polarization angle βj for the mode j .
We found B = 2.341 ± 0.019, which violates Clauser-Horne-
Shimony-Holt-Bell inequality [39] by more than 17 standard
deviations.

The residual lack of visibility after the purification proce-
dure is mainly due to the very broad down-conversion spectral
range that is selected by the slits. In fact, with the selected
slit aperture, $x = 5 mm → $ = 10 mrad, we estimate that
about 200 nm of the down-conversion spectrum are coupled.
By narrowing the slit aperture to $ = 4 mrad only 60 nm
are selected, and the visibility is found to increase at V =
0.963 ± 0.005. The present experiment has been performed
with the larger aperture to compensate for the low quantum
efficiency of the photodetectors.

VI. CONCLUSIONS

In conclusion, we have suggested and demonstrated an
experimental setup to observe oscillations of polarization
entanglement in a programmable way. Our scheme is based
on a spatial light modulator, which is inserted on the spatial
domain of the down-conversion output in order to impose a
polarization-dependent phase shift on the spatial domain of
the SPDC output. An effective programmable non-Markovian
environment is then obtained by inserting a spatial grating
on the signal arm. This results in a periodic structure of
the angular distribution, which corresponds to modulation
of the enviroment spectrum, and induces oscillations of
entanglement, whereas entanglement decrease and then death
is observed for a nonperiodical angular distribution.

In our experiment, programmable oscillations of entan-
glement are achieved by varying the linear phase function
imposed to the signal by the SLM and verified both by visibility
measurements and full polarization state tomography. The
entangled state obtained at the maximum of the revival
after sudden death violates Bell’s inequality by 17 standard
deviations.

Our scheme is all-optical and allows us to generate and
detect revivals of entanglement and nonlocality, thus paving
the way for engineering of decoherence for polarization
qubits.
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