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The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the
actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit
quantum efficiency, i.e., not all the photons lead to a charge, and by a finite resolution, i.e., a different number
of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a
detailed comparison, based on Monte Carlo simulated experiments and real data, among the performances of
detectors with different upper limits of counting capability. In our scheme the inversion of Bernoulli convo-
lution is performed by maximum-likelihood methods assisted by measurements taken at different quantum
efficiencies. We show that detectors that are only able to discriminate between zero, one and more than one
detected photons are generally enough to provide a reliable reconstruction of the photon number distribution
for single-peaked distributions, while detectors with higher resolution limits do not lead to further improve-
ments. In addition, we demonstrate that, for semiclassical states, even on/off detectors are enough to provide a
good reconstruction. Finally, we show that a reliable reconstruction of multipeaked distributions requires either
higher quantum efficiency or higher resolution.
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I. INTRODUCTION

Reconstruction of the photon number distribution, �n, of
optical states provides fundamental information on the nature
of any light beam and finds relevant applications in quantum
mechanics, quantum state engineering by postselection �1�,
quantum information �2�, and quantum metrology. However,
despite the relevant applications in the above fields, photon
detectors that can operate as photon counters �3,4� for any
state of radiation are still rather rare �5�. Among these, pho-
tomultiplier tubes �PMT’s� �6� and hybrid photodetectors
�4,7� are promising devices, though they have the drawback
of a low quantum efficiency. On the other hand, solid state
detectors with internal gain, which ensures higher efficiency,
are still under development. Highly efficient thermal detec-
tors have also been used as photon counters, though their
operating conditions are still extreme to allow common use
�8,9�. Quantum tomography also provides an alternative
method to measure photon number distributions �10,11�, but
this method needs the implementation of homodyne detec-
tion, which in turn requires the appropriate mode matching
of the signal with a suitable local oscillator at a beam splitter,
a challenging task in the case of pulsed optical fields.

In principle, in a photodetector each photon ionize a
single atom, and the resulting charge is amplified to produce
a measurable pulse. In practice, however, the performances
of real photodetectors are affected by two main limitations:
nonunit quantum efficiency and imperfect counting capabil-
ity, i.e., finite resolution. A quantum efficiency smaller than
unity means that only a fraction of the incoming photons
leads to an electric pulse. If the resulting current is propor-
tional to the incoming photon flux we have a linear photode-
tector. This is, for example, the case of the high-flux photo-
detectors used in homodyne detection. On the other hand,
photodetectors operating at very low intensities usually re-
sort to avalanche process or very high amplification in order

to transform a single ionization event into a recordable pulse.
Since each charge is independently amplified, overall we
have a gain instability in the amplification process, which is,
in turn, affected by a total noise that is much larger than that
of a single event. As soon as the light flux increases, linearity
is lost on the single event, and the resulting noise makes very
difficult to discriminate the number of detected photons.

Overall, we have that the output of a photodetector con-
sists of a current pulse whose charge statistics is a general-
ized Bernoulli convolution of the actual photon distribution
�12�. In addition, the discrimination between the number of
detected photons is only possible up to a finite number. We
refer to the maximum number m of detected photons that can
be distinguished from m−1 as the resolution M, which rep-
resents the maximum counting capability of the detector. De-
tectors that works in Geiger mode have M =1 because from
the output is possible to discriminate from m=1, one de-
tected photon, to m=0, dark, but is not possible to discrimi-
nate the output for m�2 from that for m=1.

Reconstruction of the photon number distribution from
the output of a realistic photodetector requires the inversion
of the Bernoulli convolution. Even in principle, this task is
not always possible �13�. As for example, for truly infinite
distributions it is possible only for quantum efficiency for
larger than �=0.5 �14�. For truncated distribution it is pos-
sible for any value of the efficiency, but it is inherently inef-
fective, as it requires a large data sample to provide a reliable
result. On the other hand, maximum-likelihood methods as-
sisted by measurements taken at different quantum efficien-
cies have been proved to be both effective and statistically
reliable �13,15–17�. In particular, it is possible to obtain a
method to reconstruct �n without any a priori information on
the state of light under investigation. An alternative approach
is based on the so-called photon chopping �18�, i.e., on a
network of beam splitter followed by an array of on/off de-
tectors. Photon chopping allows to send at most one photon
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on each detector, however, with the drawback of increasing
the overall complexity of the detection scheme.

In this paper, we extend a previous analysis based on
maximum-likelihood on/off schemes �13,16�, and carry out
comparison among the performances of detectors character-
ized by realistic quantum efficiencies and different values of
the resolution M. The comparison is made using real data
and by an extensive set of Monte Carlo simulations, per-
formed on different states of the radiation field including
quantum and semiclassical states associated to single peaked
as well as multipeaked photon distributions. The reconstruc-
tion is obtained by maximum-likelihood methods assisted by
measurements taken at different quantum efficiencies. In par-
ticular, as the statistics of the detected photons is linearly
dependent on the photon distribution �see below�, the inver-
sion can be performed by means of the expectation-
maximization �EM� algorithm which leads to an effective
and reliable iterative solution.

Our results indicate that detectors with resolution M =2,
i.e., discriminating between zero, one and more than one
photon, are generally enough to provide a reliable recon-
struction of the photon number distribution for single-peaked
distributions, while detectors with higher value of M do not
lead to further improvements. On the other hand, multi-
peaked distributions requires a higher quantum efficiency,
whereas for semiclassical states even on/off detectors are
enough to provide a good reconstruction.

The paper is structured as follows. In the next section we
describe the statistics of the detected photons and illustrate
the reconstruction algorithm. In Sec. III we report the results
of a set of Monte Carlo simulated experiments performed on
different kinds of signals, whereas in Sec. IV we report ex-
perimental results for coherent signals. Section. V closes the
paper with some concluding remarks.

II. STATISTICS OF DETECTED PHOTONS
AND RECONSTRUCTION ALGORITHM

Using a photodetector with quantum efficiency � and un-
bounded resolution �M =��, i.e., unlimited counting capabil-
ity, the probability of obtaining m detected photons at the
output is given by the convolution �12�

p��m� = �
n=m

�

A��m,n��n, �1�

where �n= �n���n� is the actual photon number distribution
of the signal under investigation, i.e., the expectation values
of the projectors over Fock state, � being the density opera-
tor of the mode. The matrix A��m ,n� is given by

A��m,n� = 	 n

m

�1 − ��n−m�m. �2�

If M has a finite value, then only M +1 outcomes are pos-
sible, which occur with probabilities

q�
m = p��m�, m = 0, . . . ,M − 1, �3�

q�
M = �

m=M

�

p��m� = 1 − �
m=0

M−1

q�
m. �4�

Once the value of the quantum efficiency is known, Eqs. �3�
and �4� provide M +1 relations �M independent relations�
among the statistics of detected photons and the actual sta-
tistics of photons. At first sight the statistics of a detector
with low counting capability �M in the range M =1, . . . ,6�
appears to provide quite a scarce piece of information about
the state under investigation. However, if the distribution of
detected photons �q�

m� is collected for a suitably large set of
�, then the information is enough to reconstruct the whole
photon distribution �n of the signal, upon a suitable trunca-
tion at N of the Hilbert space. We adopt the following strat-
egy: by placing in front of the detector K filters with different
transmissions, we may perform the detection with K different
values ��, �=1, . . . ,K, ranging from a minimum value �1 to
a maximum value �K=�max equal to the nominal quantum
efficiency of the detector. By denoting the probability of hav-
ing m detected photons in the experiment with quantum ef-
ficiency �=�� by q�

mq��

m we can rewrite Eqs. �3� and �1� as

q�
m���n�� = �

n=m

�

A��m,n��n, �5�

where �=1, . . . ,K and m=0, . . . ,M −1. Let us now suppose
that the �n’s are negligible for n�N and that the ��’s are
known, then ∀�� Eq. �5� may be rewritten as a finite sum
over n from m to N. Overall, we obtain a finite linear system
with K�M equations in the N+1 unknowns ��n�. Unfortu-
nately, the reconstruction of �n by matrix inversion cannot
be used in practice since it would require an unreasonable
number of experimental runs to assure the necessary preci-
sion �13,15�. This problem can be circumvented by consid-
ering Eqs. �5� as a statistical model for the parameters ��n� to
be solved by maximum-likelihood �ML� estimation. The
likelihood functional is given by the global renormalized
probability �19� of the sample, i.e.,

L = �
�=1

K

�
m=0

M−1	 q�
m

�
�

q�
m
nm�

. �6�

The ML estimates of ��n� are the values that maximizes L. In
Eq. �6� nm� denotes the number of “m detected photons”
events obtained with quantum efficiency ��. The maximiza-
tion of L under the constraints �n�0, �n�n=1, can be ob-
tained by using the expectation-maximization algorithm
�20–22�, which leads to the iterative solution

�n
�i+1� = �n

�i�	�
�=1

K

�
m=0

M−1

A��m,n�
−1

� �
�=1

K

�
m=0

M−1

A��m,n�
f�

m

q�
m���n

�i���
. �7�

In Eq. �7� �n
�i� denotes the nth element of reconstructed

distribution at the ith step, q�
m���n

�i��� the theoretical prob-
abilities as calculated from Eq. �5� at the ith step, whereas

GUIDO ZAMBRA AND MATTEO G. A. PARIS PHYSICAL REVIEW A 74, 063830 �2006�

063830-2



f�
m=nm� /n� represents the frequency of the “m detected pho-

tons” event with quantum efficiency ��, being n� the total
number of runs performed with �=��. In the following we
assume that the number of runs n� is the same for all the
��’s.

Equation �7� provides a solution once an initial distribu-
tion is chosen. In the following we will always consider an
initial uniform distribution �n

�0�= �1+N�−1∀n in the truncated
Fock space n=0, . . . ,N. Results from Monte Carlo simulated
experiments show that any other distribution with �n

�0�

�0∀n performs equally well, i.e., the choice of the initial
distribution does not alter the quality of reconstruction,
though it may slightly affect the convergence properties of
the algorithm.

A question may arise about the choice of the cutoff N,
above which the �n’s can be neglected. This, of course, de-
pends on the average number of photons of the state under
investigation, which is unknown or only partially known. An
effective method to circumvent this problem is to choose a
large value for N and then decreasing it �in order to decrease
the number of free parameters� until the normalization con-
dition �n

N�n=1 holds within a certain precision. Results from
Monte Carlo simulated experiments and from the analysis of
experimental data confirm the effectiveness of this proce-
dure, i.e., the independence of the reconstruction on the
value of N �as far as N is large enough to assure normaliza-
tion�.

III. MONTE CARLO SIMULATED EXPERIMENTS

In this section we report the photon number distribution
for different states of a single-mode radiation field as ob-
tained by ML reconstruction from Monte Carlo simulated
photodetection performed with the same �low� quantum effi-
ciency and different values of M. We consider semiclassical
states as well as highly nonclassical states and show results
for different values of the maximal quantum efficiency �max.

In order to assess our results and to measure the reliability
and the accuracy of the method we introduce two figures of
merit. Since the solution of the ML estimation is obtained
iteratively, the most important aspect to keep under control is
the convergence of the algorithm. A suitable parameter to
evaluate the degree of convergence at the ith iteration is,
besides the value of the likelihood itself, the total absolute
error,

��i� = �
�=1

K

�
m=0

M−1

�f�
m − q�

m���n
�i���� . �8�

Indeed, the total error measures the distance of the probabili-
ties q�

m���n
�i���, as calculated at the ith iteration, from the ac-

tual experimental frequencies and thus, besides convergence,
it quantifies how well the estimated distribution reproduces
the experimental data �23�. The total distance is a decreasing
function of the number of iterations and its stationary value
is proportional to the accuracy of the experimental frequen-
cies �f�

m�. For finite data sample this value is of order 1 /�n�

for each value of ��.
As a measure of the accuracy at the ith iteration we adopt

the so-called fidelity between probability distributions

G�i� = �
n=0

N

��n
�i��n, �9�

where �n is the actual photon number distribution and �N
�i�

the estimated one at the i iteration. In Ref. �16� it was shown
that using on/off detection �i.e., M =1� a reliable reconstruc-
tion scheme may be obtained. In this paper, our aim is to
check whether a higher value of M leads to some advantages,
either in terms of accuracy or convergence.

Figure 1 summarizes results for different states and values
of M, assuming �max=0.2 as the maximum value of the
quantum efficiency. In order to compare the performances
achievable by different M one must first choose a criterion to
stop the iterative algorithm. A natural criterion would be that
of stopping the iteration when the total absolute error ��i�

converges, i.e., when the rate of its variation falls below a
threshold and becomes negligible. This is also motivated by
the behavior of ��i� versus the number of iterations �see cen-
tral column in Fig. 1�: a rapid fall followed by a plateau.
However, the most convenient value for the threshold un-
avoidably depends on the shape of the unknown distribution
�n. Therefore, assuming no a priori information, this thresh-
old criterion should be supplemented by some additional
recipes. We found numerically that a suitable criterion, valid
for any value of M and, on the average, for any class of
states, is the following: if the total absolute error appears to
converge, then stop the algorithm at a number of iterations
imax I=n� equal to the number of measurements taken at
each value of the quantum efficiency, otherwise stop the al-
gorithm as soon as one sees convergence. In cases in which
��i� converges for a number of iteration I	n� it is not con-
venient to stop the algorithm, since it may further increase
the quality of the reconstruction, see, for example, G�i� in the
fourth line of Fig. 1. On the other hand, if I goes far beyond
the condition of convergence of ��i�, then the algorithm may
lose in precision due to the noise of the data f�

m �see inset in
the second line of Fig. 1�. The choice of the threshold at I
=n� fits with other two independent facts. On the one hand,
we performed an extensive set of simulations and no consid-
erable reduction of G�i� was observed before the convergence
condition I=n�. On the other hand, we applied the recon-
struction algorithm to the exact on/off frequencies �not to
simulated data� and no reduction of G�i� was observed for
increasing I, thus confirming the data-noise origin of preci-
sion loss.

Let us now illustrate our results about the accuracy of the
reconstructions. We have performed simulated experiments
on semiclassical states like coherent and thermal ones, as
well as on highly nonclassical states such as Fock states. For
this simulation we used three values for the maximum quan-
tum efficiency �max=0.2,0.5,0.8. Simulations have been
performed by using n�=104 data at each value of the quan-
tum efficiency. This value of n� is relatively small and well
within the realm of quantum optical experiments. In a real
experiment performed under the same conditions, a value of
n� of this order would allow on-line reconstruction of the
photon number distribution. Simulations performed using
different values of the parameters lead to similar conclusion.
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In Fig. 2 we show the fidelity of reconstruction G�i� at
the last iterations, G�I�, for different input signals and differ-
ent values of M as a function of the average number of
photons of the signal. As it is apparent from the plots, for
low quantum efficiency and semiclassical states on/off detec-

tors �M =1� are enough to achieve a good reconstruction. On
the other hand, the accuracy for nonclassical states largely
improves for M �2. For higher values of the quantum effi-
ciency �the middle and the right plots� on/off detectors be-
come sufficient for a good reconstruction also for nonclassi-
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FIG. 1. �Color online� Maximum-likelihood reconstruction of photon number distribution using photodetectors with different counting
capability �different values of M� and maximum quantum efficiency �max=0.2. First line, photon distribution of a coherent state with
�a†a�=3; panel �a� the reconstructed 
n; �b� total absolute error ��i� according to Eq. �8�; �c� fidelity G�i� according to Eq. �9�. Results are
reported for M =1 �on/off detector�, M =2, M =3, and M =6. We use K=30 different quantum efficiency values �=��, uniformly distributed
in ��max/K ,�max�. The Hilbert space have been truncated at N=30 and n�=106 runs have been performed for each value ��. The last iteration
is I=n� except for the Fock state, M =1, for which I=107. Other lines, same as first line for thermal state with �a†a�=3, Fock state with n=4;
superposition of two Fock states 1

�2
��3�+ �5��. The inset of panel �c� in the third line shows the last iterations i in an expanded scale.
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cal states having single-peaked distributions. Notice that a
higher resolution, however with a low value of �max, does
not guarantee a good reconstruction. Also notice that the re-
sults reported in Fig. 2 has been obtained by stopping the
algorithm according to the prescriptions mentioned above.
We therefore do not expect that the fidelity is optimal for any
state. Indeed, the fidelity G�I� in panels �cii� and �ciii� of Fig.

2 slightly decreases for a high number of photons, though it
remains close to unit value. The decreases in panels �bi�,
�bii�, and �biii� of Fig. 2 for large mean values are due to the
choice of a small dimension of the truncated Hilbert space:
by increasing N this trend disappears. On the other hand, the
low values of G�I� for the superposition states are due to the
noise in f�

m. Indeed, by increasing n� the reconstructions
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FIG. 2. �Color online� Fidelity parameter at the last iteration, G�I�, as a function of �a†a� for four different statistics of ��n�: coherent,
panels labeled �a�; thermal, label �b�; Fock state, label �c�; superposition of two Fock states, 1

�2
���a†a�−1�+ ��a†a�+1��, label �d�. The

reconstructions have been performed using �max=0.2, 0.5, and 0.8, panels labeled with �i�, �ii� and �iii�, respectively. Number of runs, n�

=104. According to the rule given in the text, the last iteration performed is I=n� except for the coherent state with �a†a�=1 to 4 for which
I=105 �only for M =1�, and for the superpositions state. Inset of �di� show G�I� for the superposition 1

�2
��5�+ �7��, M =1, quantum efficiencies

�=0.2 and �=0.8 as a function of n�. Each point of the curves is the mean of 40 simulations, the error bars represent the standard deviations.
The other parameters are the same as in Fig. 1.
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greatly improves. Moreover, for high quantum efficiency the
detectors perform good reconstructions also for M =1, see
the inset of panel �di� in Fig. 2.

Confidence intervals on the quality of the estimated dis-
tributions �the error bars in Fig. 2� have been evaluated as
standard deviations of G�I� as calculated from 40 different
Monte Carlo runs. They may appear large, but this is due to
the high value of G�I�, which in turn determines the scale of
the plot. Look at panels �d� for comparison.

Finally, we notice that using Eq. �7� for reconstructing the
photon distribution we are not taking into account the effects
due to the dead time and the dark counts of the detectors.
Indeed these effects may be neglected without degrading of
the quality of the reconstruction for the following reasons.
Dead time is equivalent to an effective reduction of the quan-
tum efficiency, whose amount, however, depends on the state
under investigation. Since the state of the detector is under
control, we may simply discard the data obtained during the
dead time. This procedure only limits the maximum rate of
the measurement, which, in our case, may be as fast as
10 MHz. Notice that the relevant parameter is how many
times the gate opens and not when it opens during the mea-
surement. The dark counts of our detectors, which are mostly
due to thermal noise, are below a few hundreds Hertz. There-
fore, by a suitable choice of the measurement gate, they do
not influence the counting rate. Of course, if the quantum
efficiency is very small, dark counts may influence the sta-
tistics. Therefore, we discard the measurements taken at the
lower quantum efficiency which, anyway, contain very little
information on the state under investigation. In conclusion,
dead time and dark counts may be neglected due to the good
quality of our detectors which allows reliable measurements
with the gate in the range from few hundreds Hertz to some
mega Hertz.

IV. EXPERIMENTAL DATA

In order to confirm the Monte Carlo results for single-
peaked distributions we have performed the reconstruction of
the photon statistics of a coherent signal obtained from a
Nd:YLF laser. The experimental data have been recorded by
a hybrid photodetector, Hamamatsu H8236-40, placed on the
second harmonics �523.5 nm� output of a cw mode-locked
Nd:YLF laser regeneratively amplified at a repetition rate of
5 kHz �High Q Laser�. In Fig. 3 there is the block diagram of
the experimental setup.

The frequencies f�
m, until m=3, have been extrapolated

from the response of the detector with the following proce-
dure. First, a Gaussian best fit of each of the response peaks

corresponding to 0,…,4 photoelectrons has been performed
�6�. Then, the frequencies have been obtained by choosing
three thresholds, whose optimal choice turns out to be the
midpoint between photoelectron peaks �24�. Once the fre-
quencies f�

m had been obtained, we used the algorithm of the
preceding section. The results of the reconstruction are
shown in Fig. 4, panel �a�. The reconstructed distribution at
the last iteration �n

�I� have been then compared with a Pois-
sonian best fit. As it is evident from Fig. 4, the agreement
between �n

�I� and the best fit is very good. In addition, we
notice that the shape of G�i� and ��i� are very similar to those

HybridLaser MCA
PC

VA

SGI

FIG. 3. �Color online� Experimental setup for reconstruction the
photon number distribution of a coherent state. The laser and the
detector �named hybrid� are described in the text. VA is a variable
attenuator; SGI is a synchronous gated integrator; MCA is a multi-
channel analyzer.
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FIG. 4. �Color online� Experimental reconstruction of the pho-
ton number distribution of a coherent state. �a� Reconstructed 
n

and coherent best fit, �a†a�=2.98; �b� total absolute error ��i�; �c�
fidelity G�i� calculated a posteriori. The reconstruction is performed
with a hybrid photodetector operated by taking M =1 �on/off detec-
tor�, M =2 and M =3; K=100 different quantum efficiencies �=��

distributed in �0,�max�, �max=0.4; the Hilbert space is truncated at
N=30; n�=104 number of runs have been performed for each �; the
algorithm is stopped at iteration I=n�.
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coming from simulation and that the �n
�i� obtained from the

experimental data with M =1 is close to that obtained with
M =2 and M =3, as predicted by simulations.

V. CONCLUSION

We have presented a detailed comparison, based on
Monte Carlo simulated experiments and real data, among the
performances of detectors with different upper limits of
counting capability �resolution�. We found that using
maximum-likelihood methods, detectors with high quantum
efficiency does not need to have high counting capability,
since on/off detection already provides good reconstructions.

On the other hand, a small quantum efficiency makes the
counting capability a crucial parameter. Overall, our results
indicate that development of future photodetectors may be
focused on increasing the quantum efficiency rather than the
counting capability.
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