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Abstract
We address the use of asymptotic incompatibility (AI) to assess the quantum-
ness of a multiparameter quantum statistical model. AI is a recently introduced
measure which quantifies the difference between the Holevo and the symmetric
logarithmic derivative (SLD) scalar bounds, and can be evaluated using only the
SLD operators of the model. At first, we evaluate analytically the AI of the most
general quantum statistical models involving two-level (qubit) and single-mode
Gaussian continuous-variable quantum systems, and prove that AI is a simple
monotonous function of the state purity. Then, we numerically investigate the
same problem for qudits (d-dimensional quantum systems, with 2 < d � 4),
showing that, while in general AI is not in general a function of purity, we
have enough numerical evidence to conclude that the maximum amount of AI
is attainable only for quantum statistical models characterized by a purity larger
than μmin = 1/(d − 1). In addition, by parametrizing qudit states as thermal
(Gibbs) states, numerical results suggest that, once the spectrum of the Hamilto-
nian is fixed, the AI measure is in one-to-one correspondence with the fictitious
temperature parameter β characterizing the family of density operators. Finally,
by studying in detail the definition and properties of the AI measure we find that:
(i) given a quantum statistical model, one can readily identify the maximum
number of asymptotically compatible parameters; (ii) the AI of a quantum sta-
tistical model bounds from above the AI of any sub-model that can be defined by
fixing one or more of the original unknown parameters (or functions thereof),
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leading to possibly useful bounds on the AI of models involving noisy quantum
dynamics.

Keywords: quantum metrology, multiparameter quantum estimation, quantum
incompatibility

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum metrology is currently revolutionizing the field of parameter estimation and sensing
by enhancing precision to a level that cannot be achieved via purely classical means [1–4].
Most of the paradigmatic results in quantum metrology have been obtained for the estimation of
single parameters, typically corresponding to a phase or a frequency. In those cases, the ultimate
and in principle achievable bounds are derived in terms of the quantum Fisher information,
which is in turn obtained via the symmetric logarithmic derivative (SLD) operator [5, 6]. The
extension to the multiparameter case is however not straightforward [7–10]. In fact, besides
the expected complications due to the fact that one needs to estimate more than one parameter,
the peculiar properties of quantum mechanics make this extension definitely non-trivial. In
particular, the (potential) non-commutativity of the optimal measurements corresponding to
different parameters poses more fundamental and interesting questions. A bound to precision
of multiparameter estimation may be obtained by generalizing the single-parameter case, i.e.
using the SLD operators corresponding to the different parameters. On the other hand, several
other bounds may be introduced, the most relevant being the ones based on the right logarithmic
derivative operator [11], on an operator interpolating between right and SLD [12], and the
so-called Holevo bound [13].

In general, all these bounds are not tight, i.e. it is not guaranteed that there exists a quantum
measurement that allows to saturate them. However, the Holevo bound stands out as the most
fundamental (scalar) bound for quantum multiparameter estimation as it may be saturated by
performing collective measurements on an asymptotically large number of copies of the quan-
tum state encoding the set of parameters [14–16] (tighter bounds that apply in the scenario
where one allows measurements on a finite number of copies have been derived more recently
[17, 18]). Moreover, in some cases, e.g. for pure states [19] and for the estimation of a displace-
ment by Gaussian probes [13], the Holevo bound can be achieved also in the standard scenario,
i.e. by single-copy measurements. These fundamental aspects have been investigated in several
multiparameter problems that may have practical applications in the quantum regimes, such as
superresolution of incoherent sources [20–23], estimation of multiple phases (or in general of
unitary parameters) [24–36], and estimation of phase and noise [32, 35, 37–40].

Recently, the difference between the SLD and the Holevo bound led to more fundamental
studies, focusing on the incompatibility of parameters and leading to the definition of mea-
sures able to capture this particular aspect [41, 42]. In particular in [41], a quantity has been
introduced to quantify the quantumness of a quantum multiparameter problem. This quantity,
denoted by Rλ, is equal to zero if and only if the Holevo bound coincides with the SLD based
bound, and thus if the parameters to be estimated are asymptotically compatible. Similarly, it
takes its largest value Rλ = 1 when the difference between the Holevo and the SLD bound is
maximum, that is when the parameters are highly incompatible even in the asymptotic regime.
Given these properties, in the following we will refer to Rλ as asymptotic incompatibility (AI).
The properties of AI has been discussed in relationship with the phase diagram of a quantum

2



J. Phys. A: Math. Theor. 54 (2021) 485301 A Candeloro et al

many-body system in [41], while its main properties and its behaviour for estimation problems
encoded in qubit systems have been thoroughly investigated in [43].

In this paper, we focus on the fundamental properties of the AI measureRλ in local quantum
estimation theory. We study its relationship with the purity of the density operators defining
the quantum statistical model, and prove that for some classes of states, the two quantities are
indeed in one-to-one correspondence. More in general, we find evidence that the maximum
amount of incompatibility may be achieved only for purity exceeding a threshold depending
on the dimension of the Hilbert space. We conjecture that this may be a general property of
quantum statistical models. Moreover, we derive some bounds on the AI measure for quan-
tum statistical submodels, and provide a method to directly identify the maximum number of
compatible parameters in certain estimation problems.

The manuscript is organized as follows: in section 2 we review the main aspects of multipa-
rameter quantum estimation and we introduce the AI measure Rλ. In section 3, we show our
main results concerning the relationship between the AI measure and the purity of the quantum
states, while in section 4 we will derive further properties regarding the AI of parameters of
specific quantum statistical models. Section 5 closes the paper with some concluding remarks.

2. Local quantum multiparameter estimation

In this section we briefly review the tools of local quantum multiparameter estimation.
The goal of a typical metrological problem is to estimate the value of a set λ of p inde-
pendent parameters from a set of M outcomes x = {x1, x2, . . . , xM} that are distributed
according to the conditional probability distribution p(x|λ), usually referred to as statistical
model. The estimated value of the parameters is obtained via an estimator function λ̂(x).
If we denote by Eλ[λ̂] the mean value of the function λ̂ over the probability distribution
p(x|λ), then the precision of any unbiased estimator is quantified by the covariance matrix

(CM) Covλ[λ̂]αβ = Eλ

[
(λ̂− Eλ[λ̂])α(λ̂− Eλ[λ̂])β

]
. The latter satisfies the classical matrix

Cramér–Rao (CCRB) bound

Covλ[λ̂] � 1
M
F c(λ)−1, (1)

where the classical Fisher information matrix (CFIM) is defined via its elements

F c
αβ(λ) =

∫
χ

dx p(x|λ)
[
∂α log p(x|λ)

] [
∂β log p(x|λ)

]
. (2)

The inequality must be understood as the fact that Covλ[λ̂] − M−1F c(λ)−1 is a semi-definite
positive matrix [44–46]. Classical estimation theory studies the conditions for the attainability
of the CCRB and optimal estimators are the ones for which the inequality is saturated. In the
limit of a large number of measurements M →∞, the maximum likelihood estimator is proven
to be optimal [47].

Moving to the quantum realm, the parameters are encoded in a family of density opera-
tors �λ referred to as a quantum statistical model. We remark that in the following we will
restrict ourselves to quantum statistical models described by quantum states �λ whose rank in
the Hilbert space does not change by varying the parameters λ in the allowed region of the
parameters’ space. This will allow us to avoid discontinuities in the behaviour of the figures of
merit we will consider [48, 49]. The conditional probabilities of observing a certain outcome
are obtained through the Born rule p(k|λ) = Tr[�λΠ̂k]. These depends on the measurement
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process involved, which is described in its generality by a POVM, i.e. by a set of opera-
torsΠ = {Π̂k|Π̂k � 0,

∑
k Π̂k = Î}. By using different approaches, measurement-independent

bounds on the matrix covariance have been introduced [7, 9, 10]. Among them, in this paper we
are going to deal first with the bound obtained via the SLD operators, that is typically referred
to as SLD-bound. SLD operators L̂S

α, are defined implicitly as the solutions of the Lyapunov
equations

∂α�λ =
L̂S
α�λ + �λL̂S

α

2
. (3)

The corresponding SLD quantum Fisher information matrix (QFIM) is obtained via the
formula

Qαβ(λ) = Tr

[
�λ

L̂S
αL̂S

β + L̂S
β L̂S

α

2

]
, (4)

and the corresponding SLD quantum Cramér–Rao (QCR) matrix bound reads [46],

Covλ[λ̂] � Q(λ)−1. (5)

It can be shown that his bound is in fact achievable for single-parameter estimation [5, 6, 50].
This means that for a single-copy of the state �λ, a POVM whose Fisher Information is equal to
the SLD-QFI exists, and remarkably one can prove that this optimal POVM corresponds to the
projectors over the eigenstates of the SLD operator. If we now consider the multiparameter case
p > 1, the different SLD operators may not commute, and an optimal simultaneous estimation
of all the parameters cannot be in general obtained. As a consequence, the QCR matrix bound
may not always be achievable in the single-copy scenario and more informative bounds than
the one provided by the SLD operators may exist.

When dealing with matrix inequalities, an additional problem arises already in classical
estimation theory, i.e. the order of the CFIM is partial. This means that, given two experimental
strategies specified by two distinct POVM Π(1) and Π(2) to which corresponds F (1) and F (2),
it might be that both F (1) � F (2) and F (2) � F (1). Thus, to understand which strategies is
better, scalar bounds have been introduced. Here, we study the one defined in terms of a weight
matrix W , a real and positive definite matrix of dimension p× p. The SLD-QCR scalar bound
obtainable from equation (5) can be written as follow

Tr
[
WCovλ[λ̂]

]
� CS(λ,W) = Tr

[
WQ(λ)−1

]
. (6)

The role of the weight matrixW is to balance the precision of different parameters. In addition,
there is a one to one correspondence betweenW and a change of parametrization. Given a new
set of parameter γ = γ(λ) defined in terms of the previous one, the changes in the QFI-SLD
matrix is determined by the reparametrization matrix Bαβ = ∂λβ/∂γα. The SLD-QFI matrix
for the new parameter is [51]

Q(γ) = BQ(λ)BT . (7)

Besides, any real positive definite matrix can be decomposed asW = LLT , whereL is unique.
We see that if L = B−1, then a particular choice of W corresponds to a unique change of
parametrization induced by B.

As its matrix counterpart, the SLD-QCR scalar bound (6) is not in general attainable due
to the incompatibility of the optimal measurements corresponding to the different parameters.
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The problem of finding the most informative scalar bound was addressed by Holevo in [13].
The solution takes the name of Holevo Cramér–Rao bound (HCRB) and it will be denoted
by CH(λ,W). It represents the most informative bound for the asymptotic model in which
a collective measurement is performed on an asymptotically large number of copies of the
state �⊗n

λ =
⊗n

j=1�λ, with n →∞ [14, 15]. In this limit, the bound is indeed achievable and
for this reason it is typically considered as the most fundamental scalar bound for quantum
multiparameter estimation. However, the evaluation of the HCRB requires a non-trivial min-
imization (see appendix A for the formal definition of the HCRB). Nonetheless, some results
have been obtained both numerically and even analytically under some assumptions on the
quantum statistical model [28, 33–35, 38, 52–56].

2.1. Asymptotic incompatibility measure

As observed before, in a multiparameter scenario the optimal strategies for each single param-
eter estimation may not be compatible and as a result the lower bound (6) cannot always be
attained. A key object in this respect is the commutator [L̂S

α, L̂S
β] between the different SLD-

operators: if this commutator is equal to zero for all the parameters in λ, all the SLD-bounds
for each single parameter are simultaneously achievable in the single-copy scenario by per-
forming the same POVM, and as a result, both the matrix and scalar SLD-QCR bound given
in equations (5) and (6). These models are known in the litterature as quasi-classical model
[7, 54]. However, as we will describe in a moment, its average value over the quantum statisti-
cal model �λ plays an important role too. Typically this quantity is introduced via the so-called
Uhlmann (or Berry) curvature [9, 57], defined via its matrix elements

Uαβ(λ) := − i
2

Tr
[
�λ

[
L̂S
α, L̂S

β

]]
. (8)

One proves that a necessary and sufficient condition for the attainability of the SLD-QCR
scalar bound (6) in the asymptotic limit is given by the compatibility condition, or weak com-
mutativity, U = 0 [58]. If this condition is fulfilled, that is if all the SLD operators commute
on average, then CH(λ,W) = CS(λ,W), i.e. the SLD-QC scalar bound can be attained in
the asymptotic model �⊗n

λ with n →∞. In the following, we will refer to models that satisfy
this condition as asymptotically classical model and parameters belonging to these models as
asymptotic compatible parameters [7, 54].

More recent results have shown how the HCRB can be bounded from above as

CS(λ,W) � CH(λ,W) � (1 +Rλ)CS(λ,W) � 2CS(λ,W) (9)

that is CH(λ,W) cannot be larger than two times the SLD QCR scalar bound. In the chain of
inequalities above, we have introduced the following parameter

Rλ = ||iQ(λ)−1U (λ)||∞, (10)

where ||A||∞ denotes the largest eigenvalue of the matrix A. In the rest of the manuscript we
will focus on this quantity, that has been introduced, as a quantumness parameter, in [41] and
studied in detail for qubit systems in [43]. As already suggested in equation (9), one can prove
that

0 � ΔC(λ, W) � Rλ � 1,
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where we have defined the renormalized difference between the Holevo and SLD-bound

ΔC(λ, W) =
CH(λ, W) − CS(λ, W)

CS(λ, W)
. (11)

Moreover one also proves two relevant properties [41, 43]: (i) Rλ = 0 if and only if U (λ) = 0,
that is when the model is asymptotically classical; (ii) Rλ is a property of the quantum statisti-
cal model �λ only, being also independent on possible reparametrization and, as a consequence,
on the weight matrix W . In [43] it was also studied its relationship with the quantity

ΔCmax = max
W>0

ΔC(λ, W), (12)

for quantum statistical models encoded in qubit systems. The quantity ΔCmax stands out as
a natural measure of AI and it is in general upper bounded by Rλ. It was shown that, while
for several quantum statistical model the bound is indeed tight, that is one finds ΔCmax = Rλ,
there exist counterexamples where ΔCmax is strictly smaller than Rλ. However, also in these
examples one observes that the two quantities have the same general behaviour and in general
that the order relations induced by them are equivalent.

For all these reasons, and also considering the fact that the evaluation of the quantity Rλ

is quite straightforward and, at difference with ΔCmax, does not rely on the evaluation of the
Holevo bound and on its (non trivial) maximization over the weight matrices W, in the follow-
ing we will restrict to it and we will in general refer to Rλ as a AI measure of the quantum
statistical model �λ.

3. Asymptotic incompatibility and purity of the quantum statistical model

In this section we discuss the relationship between the AI measure Rλ and the purity of the
quantum state �λ corresponding to the quantum statistical model under exam. We will mainly
focus to scenarios where �λ describes the most general quantum state of a particular quantum
system, starting from the simplest cases of a qubit and of a single-mode Gaussian continuous-
variable quantum state, and then moving our attention to qudits, that is to quantum states living
in a d-dimensional Hilbert space.

3.1. Asymptotic incompatibility of state parameters in full tomography of qubit systems

A generic mixed qubit state is typically written as

�λ =
1
2

⎛
⎝𝟙+

3∑
j=1

γ jσ j

⎞
⎠ , (13)

where the matrices σ j denote the Pauli matrices, while γ1 = r sin θ cosφ, γ2 = r sin θ sinφ,
γ3 = r cos θ. By considering the set of p = 3 parametersλ = (r, θ,φ) characterizing the vector
in the Bloch sphere, one can readily derive the SLD operators by solving the corresponding
Lyapunov equations, and obtains the SLD-QFI and the Ulhman curvature matrices

Q(λ) =

⎛
⎝1/(1 − r2) 0 0

0 r2 0
0 0 r2 sin2 θ

⎞
⎠ , (14)
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U (λ) =

⎛
⎝0 0 0

0 0 r3 sin θ
0 −r3 sin θ 0

⎞
⎠ . (15)

The corresponding AI measure has been already derived in [43], obtaining Rqubit = r. The
purity of the quantum state �λ can be easily evaluated, obtaining μ = Tr[�2

λ] = (1 + r2)/2,
and thus leading to the result

Rqubit =
√

2μ− 1. (16)

We thus observe that the AI for the full tomographyRqubit is indeed a monotonous function of
the purity of the quantum state, and that in particular it takes its limiting values Rqubit = 0 for
the maximally mixed state, and Rqubit = 1 for pure states only.

3.2. Asymptotic incompatibility for a single-mode continuous-variable Gaussian system

As a second example we now consider a single-mode continuous-variable quantum system,
described by annihilation and creation operators satisfying the canonical commutation relation
[â, â†] = 𝟙. Quantum states describing such systems belongs to an infinite-dimensional Hilbert
space. A well known subclass of such states is given by Gaussian states, typically defined as
those states having a Gaussian Wigner function [59, 60]. These states have been indeed studied
in great detail, both for the simple mathematical formulation (they can be fully described by
first and second moments of the quadrature operators q̂ = (â + â†)/

√
2 and p̂ = i(â† − â)/

√
2)

and for practical and fundamental reasons (they can be easily generated in the lab, and they
can be exploited for implementing quantum technology protocols as quantum teleportation).
We leave more details on Gaussian states in appendix B, along with the formulas needed to
evaluate the SLD-QFI and the Uhlmann curvature matrices.

We here address the problem of complete estimating an arbitrary single mode Gaussian
state, which can be parametrized by p = 5 parameters, resulting from the application of a
complex squeezing operator S(ξ) = exp

(
1
2ξ(a†)2 − 1

2ξ
∗a2

)
and a complex displacement oper-

ator D(α) = exp
(
αa† − α∗ a

)
on a thermal state νN = e−βâ†â/Z with average photon number

Tr[νNâ†â] = N. The corresponding quantum statistical model is thus represented by the family
of density operators [60]

�λ = D(α)S(ξ)νNS(ξ)†D(α)†, (17)

with a parametrization in terms of the set λ = {Reα, Imα, r,ϕ, N}, and where we have writ-
ten the two complex parameters as ξ = r eiϕ and α = Reα+ i Imα. The first moments vector
d = (Tr[�λq̂], Tr[�λ p̂])T has elements

Tr[�λq̂] =
√

2Reα, (18a)

Tr[�λ p̂] =
√

2 Imα, (18b)

while the elements of the CM (see appendix B for details) can be expanded in terms of sym-
metric 2 × 2 matrices, i.e. σ = s1σx + s2I2 + s3σz (with σx and σz denoting the standard Pauli
matrices), obtaining

s1 = −(2N + 1) sinh(2r) sin(ϕ), (19a)

s2 = (2N + 1) cosh(2r), (19b)

s3 = (2N + 1) sinh(2r) cos(ϕ). (19c)
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The matrix elements for the SLD-QFI matrix and for the Uhlmann curvature matrix can be
directly evaluated via the formulas

Qαβ =
1
2

Tr[(σ−1∂ασ)(σ−1∂βσ)]
1 + μ2

+
2∂αμ∂βμ

1 − μ4
+ 2(∂αd)Tσ−1(∂βd) (20)

Uαβ =
μ2

2(μ2 + 1)2
Tr

[
σΩ

[
∂ασσ

−1, ∂βσσ
−1
]]

+ 2μ2(∂αd)Ω(∂βd), (21)

where the purity of single-mode Gaussian states is given by μ = 1/
√

det σ = 1/(2N + 1).
Notice that our result differ from that in [61] by a factor 2 in the first term of the Uhlmann
matrix (for a detailed derivation, see appendix B).

In particular, for the quantum statistical model defined above, we obtain

QReα,Reα = 4μ (cosh(2r) − cos(ϕ) sinh(2r)) , (22a)

QImα,Imα = 4μ (cosh(2r) + cos(ϕ) sinh(2r)) , (22b)

QReα,Imα = 4μ sinh(2r) sin(ϕ), (22c)

Qr,r =
4

1 + μ2
, (22d)

Qϕ,ϕ =
sinh (2r)2

1 + μ2
, (22e)

QN,N =
4μ2

1 − μ2
, (22f)

and

UReα,Imα = 4μ2, (23a)

Uϕ,r =
4μ sinh(2r)
(1 + μ2)2

, (23b)

while the matrix elements not reported are null. We emphasize that these values do not depend
on (Rα, Iα), and we also observe that the SLD-QFI matrix is block diagonal. In particular,
the second block regarding the parameters (r,ϕ, N) is exactly diagonal. Moreover, since most
of the entries of the Uhlmann matrix are equal to 0, we conclude that most of the parameters
are orthogonal globally with respect to the SLD-QFI, with the exception of the pairs (Rα, Iα)
and (r,ϕ).

The AI measure can be readily evaluated, obtaining

RGS =
2μ

1 + μ2
. (24)

Remarkably, we see that the contribution depending on (r,ϕ) cancel out in the AI RGS. Also
in this case we have thus obtained that AI is a monotonous function of purity μ, and that
one obtains that all the parameters become asymptotically compatible only in the limit of
a maximally mixed state (that is RGS = 0 only for μ→ 0), while the maximum value of
incompatibility RGS = 1 is obtained if and only if �λ is a pure state.

8
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3.3. Asymptotic incompatibility for of state parameters in full tomography in qudit systems

Let us now move back to consider finite-dimensional quantum systems described via Hilbert
spaces with dimension d larger than two. The most natural way to describe the most general
quantum states in this scenario is by the following parametrization

�γ =
1
d

⎛
⎝𝟙+

d2−1∑
j=1

γiΣi

⎞
⎠ , (25)

where the matrices Σi denotes the generators of the Lie algebra su(d), and thus correspond to
Pauli matrices for d = 2 and to Gell–Mann matrices for d = 3. The p = d2 − 1 coordinates γ
represent the normalized Cartesian vector in the d2 − 1-dimensional Bloch space and are also
known as the components of the d2 − 1-dimensional Bloch vector or as mixture coordinates
[62]. In the following we consider the estimation of the parameters γ, i.e. the full tomography
of the state. It is known that this model is a D-invariant model and hence the Holevo bound is
equal to the right logarithmic derivative scalar bound [63].

Analytical solutions for the AI measure are very hard to derive with arbitrary dimension d.
Hence, we address the problem numerically by randomly generating quantum density matrices
corresponding to d = 3, d = 4 and d = 5. The method we used to generate random density
matrix follows two steps:

(a) First, we generate the eigenvalues of the density matrix �γ , which belongs to the

probability simplex Xd = {x = (x1, . . . , xd)|
∑d

i=1 xi = 1}.
(b) Second, we randomly generate unitary matrix U. We remind that different U corresponds

to different eigenvectors of �γ and thus to different quantum states and more importantly
to different values of the parameters γ.

For each random state we evaluate the AI measure from the definition (10) by numerically
solving the Lyapunov equation for the SLD operators and then by evaluating the SLD-QFI and
Uhlmann curvature matrices. The results are reported in figure 1 as function of the purity of
the state. We clearly see that there is no one-to-one correspondence between the value of μ and
the value of R(d). However, we see that the AI is strictly less than one whenever the purity of
the state is lower than μ = 1/(d − 1). Thus, we can state the following conjecture:

Conjecture 1. Given a quantum statistical model described by a family quantum states �λ
living in a d-dimensional Hilbert space, the maximum amount of the AI measure Rλ = 1
may be observed only if the purity of the quantum state is larger than a minimum threshold
μmin = 1/(d − 1).

This conjecture is clearly consistent for the two cases discussed above, i.e. qubit and single-
mode Gaussian states, whose AI was exactly derived, and it is surrogated by the numerical
evidence in figure 1.

We now introduce a second way to parametrize a d-dimensional quantum system that will
be particularly useful for our purposes, i.e.

�λ =
e−βH

Tr
[
e−βH

] , H =

d2−1∑
j=1

λ jΣ j. (26)

The coordinates λ are known as exponential coordinates [62] while the parameter β play the
role of the inverse temperature of the state with respect to the Hamiltonian operator H, clearly
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Figure 1. (Left panel) Scatter plot of the AI measure (y-axis) vs purity (x-axis) for qutrit
systems. The black lines are the AI for fixed spectrum of H, see main text for details.
The most left line refers to a choice of H with 2 degenerate eigenvalues. (Right panel)
Scatter plot of the AI measure (y-axis) vs purity (x-axis) for four-dimensional quantum
systems. Again, the black lines are the AI for a fixed spectrum of H. The red-dashed
lines refers to choice of H with at least 2 degenerate eigenvalues.

recalling the Gibbs state form used in statistical mechanics. However, this is not a true coor-
dinate since it can be included in the definition of the λ, hence must be considered more as a
rescaling parameter which allow us to constrain the exponential coordinates to be in a finite
interval (|λi| � 1 in our simulations).

In general, a closed formula for the AI is hard to derive also with this parameteriza-
tion. Hence, we investigate the problem by considering a simplified case, i.e. a diagonal
H = diag {Δ0,Δ1, . . . ,Δd−1}, with the constraint |Δi| � 1. In other words, we set λ j = 0 for
the indexes j corresponding to non-diagonal operators Σ j, and we address the estimation for
all the parameters corresponding to the exponential coordinates λ. The reason why we study
this class of states is twofold: the first is that the calculations are greatly simplified, the second
is that the results we find seem to be valid more generally, as we will explain later in more
detail.

We have evaluated analytically the AI measure corresponding to the estimation of all the
d2 − 1 parameters encoded in this particular quantum statistical model, finding

Rqudit = tanh

(
βΔM

2

)
, (27)

where ΔM = maxi Δi − min j Δ j, i.e. the maximum difference between the eigenvalues of H
(we remark that the calculations are much simpler by evaluating the matrices for the parameters
γ, and exploiting the fact that Rλ is invariant under reparametrization). The result in (27)
is consistent with the AI for a qubit states, as for d = 2 the purity μ and the argument of
the tanh are in one-to-one correspondence. Indeed, the purity can be written in terms of λ as
μ = (1 + tanh(β|λ · λ|)2)/2. In the case of a diagonal H, we have λ1 = λ2 = 0 and ΔM =
2|λ3|, and thus

μ =
1
2

(1 + tanh (β|λ3|)2 =
1
2

(
1 + tanh

(
βΔM

2

)2
)
. (28)

By simply using (27) we indeed obtain the result in equation (16). Remarkably, also the
Gaussian case might be reduced to this expression if we consider that the purity in terms

10
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of the average number of excitation N is μ = (2N + 1)−1. By replacing the value of N by
the formula for the Bose–Einstein statistics N = 1/(expβω − 1), we obtain that the purity
can be written as μ = tanh(βω/2). Then, the AI (24) becomes exactly equal to (27) by fixing
ΔM = 2ω.

This line of reasoning of course does not prove that the AI is equal to (27) for arbitrary
d-dimensional density matrix �λ. To try to answer this question, we addressed the problem by
studying these quantities for the numerically generated random quantum states of dimension
d = 3, 4, 5. In more detail

(a) We evaluate the quantity βΔM for each random states �λ we generate (see previous para-
graph for the details of the random generation of �λ) via the formulas β(rand)Δ(rand)

i =

− log(xi), and β(rand)Δ(rand)
M = maxi β

(rand)Δ(rand)
i − min j β

(rand)Δ(rand)
j (we remind that the

quantities {xi} correspond to the eigenvalues of �λ).
(b) For each random state we evaluate the AI measure corresponding to its full estimation

via equation (10), and we compare it with the formula (27) evaluated via the parameter
β(rand)Δ(rand)

M .
(c) We find that the two quantities match for all the quantum states that we have numerical

generated.

We conclude that for d = 3, 4, 5 the AI is fully determined only by βΔM, i.e. it corresponds
to a property of the spectrum of H only (to be more precise it depends only on the maximum
and minimum eigenvalues of H). For these reasons, we state a second conjecture here.

Conjecture 2. Given a quantum statistical model described by a family quantum states �λ
living in a d-dimensional Hilbert space, the AI corresponding to the full estimation of the state
is given by (27), where β is the fictious temperature of the state with respect to the Hamiltonian
operator H in the exponential coordinates (26).

A further element in favour of this conjecture comes from figure 1, in which we clearly see
that the AI for a fixed spectrum (black lines) span the whole area covered by the AI measure
values corresponding to the random states generated. In addition, we see that the AI for a four-
dimensional system with H having two eigenvalues with degeneracy 2 reaches the maximum
value of R = 1 when the purity is μ = 1/2, since in the case in which Δ0 = Δ1 and Δ2 = Δ3,
we have that μ→ 1/2 for β →∞.

We finally remark again that, as we described above, the formula in equation (27) can
be readily evaluated, after diagonalizing the quantum state describing the quantum statistical
model �λ =

∑
i xi|ψi〉〈ψi|, and by observing that βΔi = −log(xi).

4. Further properties of asymptotic incompatibility measure

In this section we analyze in more detail some further properties of the AI measure Rλ, shed-
ding more light on the relationship between a given quantum statistical model �λ and possible
sub-models that arise when one or more parameters of the set λ are considered known and thus
not to be estimated.

In the definition of Rλ in equation (10), only the largest eigenvalue of the matrix
I = iQ(λ)−1U (λ) is considered. In the following we will study more in detail the role of
the spectrum of I in the characterization of the quantum statistical model. To do so, we first
introduce the Cauchy interlace theorem [64]:

11
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Theorem 4.1 (Cauchy interlace theorem). Consider an N × N Hermitian matrix A
and any (N − 1) × (N − 1) principal sub-matrix B of A. Consider the corresponding eigen-
values in decreasing order a = {a1, . . . , aN} and b = {b1, . . . , bN−1}. Then, a interlace b,
that is

aN � bN−1 � aN−1 � · · · � b2 � a2 � b1 � a1. (29)

This result can now be applied for our purposes to the matrix I , leading to the following
theorem:

Theorem 4.2 (Bound on AI measure for quantum statistical sub-models). Given
a quantum statistical model defined by a set of p-parameters λ, and any other possible
sub-model defined by a set of ( possibly reparametrized) (p− 1) parameters λ̃, then the two
corresponding AI measures R(p)

λ and R(p−1)
λ̃

satisfy the inequality

r2 � R(p−1)
λ̃

� R(p)
λ , (30)

where r2 denotes the second largest eigenvalue of the matrix I corresponding to the quantum
statistical model �λ.

Proof. As observed in [41], the eigenvalues of I are either 0 or given in pairs hi = ±ri,
with 0 < ri � 1, i = 1, . . . , δ and δ � 	(p+ 1)/2
. The thesis of the theorem is thus a simple
corollary of the Cauchy interlace theorem 4.1 stated above.

One can further show that, if we consider smaller sub-matrices of I , we can recursively
apply this argument to smaller statistical sub-model λ̄ with (p− j) parameters. Eventually one
obtains that the AI measure for the corresponding statistical sub-model is bounded as

r j+1 � R(p− j)
λ̄

� R(p)
λ . (31)

In particular we see that any statistical sub-model with (p− j) parameters is incompatible if
we restrict ourselves to j � δ − 1, since for those j we have that ri > 0. This observation leads
to the following corollary:

Corollary (Upper bound on the number of compatible parameters of a quantum
statistical model). By denoting with δ the number of strictly positive eigenvalues of I ,
then the quantum statistical model �λ contains at number of compatible parameters that is
upper bounded as

pcomp � p
(bound)
comp = p− δ. (32)

This result can be easily applied to the full estimation problem we studied in the previous
section. Indeed, we can use the same evidence we have for the conjecture 2 to conjecture that
the eigenvalues of the matrix I are

Eig(I) = {0, . . . , 0,±r(1,0),±r(2,0),±r(2,1), . . . ,±r(d−1,d−3),±r(d−1,d−2)} , (33)

where

ri, j = tanh

(
β(Δi −Δ j)

2

)
(34)

12
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and (Δ0, . . . ,Δd−1) are the β-normalized eigenvalues in ascending order of H, defined in
equation (26). If the eigenvalues of H are non-degenerate, the number of strictly positive
eigenvalues of I is simply

δndg =

(
d
2

)
=

d(d − 1)
2

. (35)

Instead, for H with degenerate spectrum, the result slightly change. Indeed, if we denote with
κ the number of distinct degenerate eigenvalues and with ηi the corresponding degeneracies
(with i = 1, . . . ,κ), then the number of strictly positive eigenvalues is

δdg =

(
d
2

)
−

κ∑
i=1

(
ηi

2

)
=

d(d − 1)
2

−
κ∑

i=1

ηi(ηi − 1)
2

. (36)

Thus, given the numerical evidence we obtained from our simulations, we conjecture the
following.

Conjecture 3 (Upper bound on the number of compatible parameters for the full
estimation of a d-dimensional quantum system). By denoting with d the dimension
of the quantum system �λ, the number of compatible parameters pcomp in the full estimation
of the d2 − 1-parameters describing �λ is upper bounded by the quantity

p
(bound)
comp = d2 − 1 − δdg

=
(d + 2)(d − 1)

2
+

κ∑
i=1

ηi(ηi − 1)
2

, (37)

where κ is the number of distinct degenerate eigenvalues and ηi the degeneracy degree, with
i = 1, . . . ,κ.

This conjecture shows that the value of p(bound)
comp depends on the values of the parameters, and

in particular on the values that makes the corresponding density matrix degenerate. Indeed,
the larger is the number of degenerate eigenvalues, the larger is the maximum number of
possible compatible parameters. In the limit of full degeneracy, i.e. κ = 1 and ηi = d, we
see that p(bound)

comp → d2 − 1, i.e. equals the number the number of parameters of the model.
Instead, in the case with no degeneracy in the spectrum of H, we have the minimum value,
i.e. p(bound)

comp = (d + 2)(d − 1)/2. We would also like to stress that the model is always full-rank
as far as the value of β is finite, independently on the number of degenerate eigenvalues of H.

An upper bound on the number of compatible parameters has been also derived recently
in [65] by following a different approach and exploiting the algebraic structure of the quan-
tum statistical model. We have compared this bound with our bound for the full estimation
of a qubit, that is by considering the estimation of the Bloch sphere parameters λ = (r, θ,φ).
We found that the matrix I has eigenvalues Eig(I) = {r,−r, 0}, leading to the upper bound
p

(bound)
comp = 2. This results does indeed coincide with the one obtained in [65].

We also remark that, while the bound in [65] was derived for finite-dimensional Hilbert
space, in our case we made no assumption on the dimension of the Hilbert space. Hence we can
apply our result also for infinite-dimensional system. For instance, let us consider the paradig-
matic case of the estimation of the parameters characterizing a single-mode Gaussian state
defined as in equation (17) and already treated in section 3. The spectrum of the corresponding

13
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Figure 2. Plot of R(5)
λ (red line) and R(2)

λ̈
(blue line). (Left panel) 〈â†â〉 = 4; thick line:

η = 1; dashed line: η = 0.5. (Right panel) η = 0.1; thick line 〈â†â〉 = 4; dashed line:
〈â†â〉 = 20. Both panel: γ = ω = 1.

matrix I is given by

Eig(I) =

{
2μ

1 + μ2
,μ, 0,−μ,− 2μ

1+ μ2

}
. (38)

This leads to the AI measure for the complete statistical model R(5)
λ = 2μ/(1 + μ2) we dis-

cussed above. By further inspecting the set of eigenvalues above we can however also conclude
that for any subset of p = 4 parameters λ̃, the corresponding AI parameter is bounded as

μ � R(4)
λ̃

� 2μ
1 + μ2

, (39)

and that there is a maximum of p(bound)
comp = 3 compatible parameters. In general, by observing

the form of the Uhlmann curvature matrix we also see that the only incompatible models are
the one which deals with the simultaneous estimation of {r,ϕ} or {Reα, Imα}.

In the examples above, if we restrict to subsets of the original parameters
λ = {Reα, Imα, r,ϕ, N}, all the results are directly available from the explicit solu-
tion of the SLD-QFIM (22a)–(22f) and the Uhlmann matrix (23a) and (23b). Here below we
rather present an example where the results cannot be obtained straightforwardly in analytical
form, while the properties discussed above can still provide a first insight without needing to
solve exactly the estimation problem.

We address the estimation of two dynamical parameters, the frequency and the loss rate
λ̈ = {ω, γ} that characterize the evolution due to the Markovian master equation

�̇ = −i
ω

2
[q̂2 + p̂2, �] + γD[â]�, (40)

with D[â]� = â�â† − 1
2

(
â†â�+ �â†â

)
. By consider an initial Gaussian state �(0) as the one

in equation (17), the dynamics remains Gaussian and thus can be fully described by means of
the first and second moments of its quadrature operators. In particular one can readily evaluate
analytically the purity of the quantum state, obtaining

μ(t) =
√

(1 − e−γt)(1 − e−γt(1 − 2s2(0))) + e−2γtμ(0)2. (41)

From this result and via equation (24), we can directly evaluate R(5)
λ , whereas the AI measure

R(2)
λ̈

for the quantum statistical model defined above is evaluated numerically by exploiting the
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techniques reported in appendix B. To present the results, we choose the initial state to be a
pure state N = 0 and we parametrize it in terms of its average excitations number 〈â†â〉 and its
fraction of squeezing η defined as

〈â†â〉 = |α|2 + sinh (r)2, (42)

η =
sinh (r)2

〈â†â〉 . (43)

We plot the results in figure 2 and we see that R(5)
λ is, as expected, always larger than R(2)

λ̈
,

confirming that R(5)
λ can be used as an upper bound for the quantumness for any other sub-

statistical model. Besides, as we see from the left panel in figure 2, the upper bound may not
be much informative, since the evolution of R(5)

λ and R(2)
λ̈

in time are opposite. In addition,
this example shows that the condition on the number of eigenvalue is not sufficient to have a
compatible model.

5. Conclusions

In this paper, we have studied in details the properties of the AI measure Rλ of incompatibility
and discussed its use in assessing the quantumness of multiparameter estimation problems.
At first, we have focused on the estimation of the full set of parameters characterizing a
given quantum system, showing that for qubits and single-mode Gaussian systems Rλ is a
simple monotonous function of the purity μ of the state. We have then considered a generic
d-dimensional quantum systems and, using analytical and numerical tools, we found that in
general the one-to-one correspondence between Rλ and μ does not hold anymore. However,
numerical results suggest that the maximum number of AI is attainable only for quantum statis-
tical models having a purity μ � 1/(d − 1). We conjecture that this may be a general property
of d-dimensional quantum systems. Upon considering quantum statistical models described as
Gibbs state of a given Hamiltonian, we have also shown that the AI measure can be written as
a simple function of the fictitious temperature parameter and the spectrum of the Hamiltonian.

We have then studied in detail the role of the spectrum of the matrix I = iQ(λ)−1U (λ)
and have determined bounds on Rλ for quantum statistical submodels. In particular, we have
shown that the number of strictly positive eigenvalues of I determines the maximum number
of compatible parameters in a given statistical model.

Very recently there has been much interest in deriving bounds that apply when one allows
measurements on a finite number of copies [17, 18]; we thus expect that our approach can be
extended from the asymptotic model, identifying and studying a hierarchy of incompatibility
measures in this finite copies scenario. More in general our results pave the way to a deeper
understanding of the fundamental properties of multiparameter quantum estimation, and pro-
vide potentially useful tools to approach multiparameter problems that cannot be addressed
analytically.
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Appendix A. The Holevo Cramér–Rao bound

The Holevo bound CH(λ,W) can be evaluated via the following minimization

CH(λ,W) = min
X̂∈Xλ

[
Tr

[
W ReZ[X̂ ]

]
+ ‖

√
W ImZ[X̂ ]

√
W‖1

]
, (A.1)

where the elements of the Hermitian d × d matrix Z are

Z[X̂ ]μν = Tr[�λX̂ μX̂ ν ], (A.2)

while X̂ is an array of d Hermitian operators such that

Tr[�λX̂ μ] = 0 (A.3)

Tr[X̂ μ∂ν�λ] =
1
2

Tr[�λ{X̂ μ, L̂S
ν}] = δμν. (A.4)

Appendix B. Multiparameter estimation for continuous-variable Gaussian
states

In this section we focus on estimation problems in bosonic continuous variable systems. In
particular, we study n modes Gaussian state [59, 60], which are properly described in terms of
quadrature operators r̂ = {q̂1, p̂1, . . . , q̂n, p̂n}. They satisfy the canonical commutation relation[

r̂ j, r̂k

]
= iΩ jk, (B.1)

where Ω = iσ⊕n
y . A Gaussian state � is completely determined by its vector of first moments

d = Tr[�r̂] and its CM σ = Tr[�{(̂r − d), (̂r − d)T}], with {̂l, l̂T} jk = l̂ jl̂ k + l̂ k l̂ j [59, 60].
In order to derive the SLD-QFI matrix elements, several approaches have been proposed in

the literature [60, 61, 66–69]. As we are interested also in the Uhlmann curvature matrix, in
the following we will focus on the derivations pursued in [60, 61] that are indeed based on the
writing the SLD operators in terms of the moments of the Gaussian states defining the quantum
statistical model. Let us then assume that a set of parameters λ defines a quantum statistical
models in a family of Gaussian quantum states �λ. One shows that the SLD for a parameter
α ∈ λ is at most quadratic in the moments [60] and can be written as

L̂S
α = L(0)

α I+ L(1)
α · r̂ + r̂T · L(2)

α · r̂, (B.2)

where L(0)
α is a real number, L(1)

α is 2n real vector and L(2)
α is a 2n × 2n real symmetric matrix.

After some algebra, one can find that the SLD-QFI matrix elements are given by [60, 61]

Qαβ =
1
2

Tr[L(2)
α (∂βσ)] + 2(∂αdT )σ−1(∂βd). (B.3)
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Here below we derive the analogous result for the Uhlmann curvature matrix. First, we evaluate
the commutator of L̂S

α and L̂S
β , that is

[
L̂S
α, L̂S

β

]
=

[
L(1)T

α r̂, L(1)T

β r̂
]
+
[
L(1)T

α r̂, r̂T L(2)
β r̂

]
+
[
r̂TL(2)

α r̂, L(1)T

β r̂
]

+
[
r̂T L(2)

α r̂, r̂T L(2)
β r̂

]
. (B.4)

By recalling that
[
r̂ j, r̂k

]
= iΩ jk, the first term of the latter is (we use Einstein convention on

indexes summations)[
L(1)T

α r̂, L(1)T

β r̂
]
= L(1)

α,iL
(1)
β, j

[
r̂i, r̂ j

]
= iL(1)T

α ΩL(1)
β I; (B.5)

the second term is (we recall that L(2)
α, jk = L(2)

α,k j)[
L(1)T

α r̂, r̂T L(2)
β r̂

]
= L(1)

α,iL
(2)
β, jk

[
r̂i, r̂ jr̂k

]
= L(1)

α,iL
(2)
β, jk

([
r̂i, r̂ j

]
r̂k + r̂ j [r̂i, r̂k]

)
= L(1)

α,iL
(2)
β, jk

(
iΩi jr̂k + r̂ jiΩik

)
= 2iL(1)T

α ΩL(2)
β r̂; (B.6)

while the third term is[
r̂TL(2)

α r̂, L(1)T

β r̂
]
= 2îrTL(2)

α ΩL(1)
β ; (B.7)

and eventually the fourth term is (we used the symmetry of L(2)
α and the skew-symmetry of Ω)[

r̂TL(2)
α r̂, r̂TL(2)

β r̂
]
= L(2)

α,i jL
(2)
β,kl

[
r̂ir̂ j, r̂kr̂l

]
= L(2)

α,i jL
(2)
β,kl

(
iΩ jkr̂ir̂l + iΩik r̂ jr̂l + iΩ jlr̂k r̂i + iΩilr̂kr̂ j

)
= 2îrT

(
L(2)
α ΩL(2)

β − L(2)
β ΩL(2)

α

)
r̂. (B.8)

So eventually we obtain

[
L̂S
α, L̂S

β

]
= i

(
L(1)T

α ΩL(1)
β I+ 2BT r̂ + 2r̂TAr̂

)
, (B.9)

where A and B are respectively a d × d symmetric matrix and a d vector

A = L(2)
α ΩL(2)

β − L(2)
β ΩL(2)

α = 2L(2)
α ΩL(2)

β , (B.10)

B = L(2)
α ΩL(1)

β − L(2)
β ΩL(1)

α . (B.11)

Now we can evaluate

Uαβ = − i
2

Tr
[
�λ

[
L̂S
α, L̂S

β

]]
(B.12)

=
1
2

L(1)T

α ΩL(1)
β + L(1)T

α ΩL(2)
β d + dTL(2)

α ΩL(1)
β + Tr

[
�λr̂TAr̂

]
. (B.13)
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Since Ai jΩi j = 0, we obtain that

Tr
[
�λr̂TAr̂

]
= Ai j Tr

[
�λr̂ir̂ j

]
= Ai j

(
σi j

2
+

iΩi j

2
+ did j

)

=
1
2

Tr [Aσ] + dTAd

= Tr
[
L(2)
α ΩL(2)

β σ
]
+ 2dTL(2)

α ΩL(2)
β d. (B.14)

From [60] we recall that L(1)
α = 2σ−1(∂αd) − 2L(2)

α d and so we derive the following

1
2

L(1)T

α ΩL(1)
β = 2

(
(∂αd)Tσ−1Ωσ−1(∂βd) − dTL(2)

α Ωσ−1(∂βd)+ (B.15)

− (∂αd)Tσ−1ΩL(2)
β d + dT L(2)

α ΩL(2)
β d

)
(B.16)

L(1)T

α ΩL(2)
β d = 2

(
(∂αd)Tσ−1ΩL(2)

β d − dTL(2)
α ΩL(2)

β d
)

(B.17)

dT L(2)
α ΩL(1)

β = 2
(

dTL(2)
α Ωσ−1(∂βd) − dT L(2)

α ΩL(2)
β d

)
. (B.18)

By inserting these last calculations, we end up with the following Uhlmann matrix

Uαβ = Tr
[
L(2)
α ΩL(2)

β σ
]
+ 2(∂αd)σ−1Ωσ−1(∂βd). (B.19)

Please notice that our result differ from that in [61] by a factor 2 in the first term of the Uhlmann
matrix.

If we now focus on single-mode Gaussian state, we can write (B.3) and (B.19) only in terms
of the CM σ, the vector d and the purity of the state μ = 1/

√
det σ as

Qαβ =
1
2

Tr[(σ−1∂ασ)(σ−1∂βσ)]
1 + μ2

+
2∂αμ∂βμ

1 − μ4
+ 2(∂αd)Tσ−1(∂βd) (B.20)

Uαβ =
μ2

2(μ2 + 1)2
Tr

{
σΩ

[
∂ασσ

−1, ∂βσσ−1
]}

+ 2μ2(∂αd)Ω(∂βd). (B.21)

ORCID iDs

Alessandro Candeloro https://orcid.org/0000-0003-0582-4941
Matteo G A Paris https://orcid.org/0000-0001-7523-7289
Marco G Genoni https://orcid.org/0000-0001-7270-4742

References

[1] Giovannetti V, Lloyd S and Maccone L 2011 Advances in quantum metrology Nat. Photon. 5 222–9
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