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We consider the discrimination of lossy bosonic channels and focus on the case when one of the values for
the loss parameter is zero, i.e., we address the detection of a possible loss against the alternative hypothesis of
an ideal lossless channel. This discrimination is performed by inputting one- or two-mode squeezed thermal
states with fixed total energy. By optimizing over this class of states, we find that the optimal inputs are pure,
thus corresponding to single- and two-mode squeezed vacuum states. In particular, we show that, for any value
of the damping rate smaller than a critical value, there is a threshold on the energy that makes the two-mode
squeezed vacuum state more convenient than the corresponding single-mode state, whereas for damping larger
than this critical value, two-mode squeezed vacua are always better. We then consider the discrimination in
realistic conditions, where it is unlikely to have pure squeezing. Thus, by fixing both input energy and squeezing,
we show that two-mode squeezed thermal states are always better than their single-mode counterpart when all the
thermal photons are directed into the dissipative channel. Aside from that, this result also holds approximately
for unbalanced distribution of the thermal photons. Finally, we also investigate the role of correlations in the
improvement of detection. For fixed input squeezing (single mode or two mode), we find that the reduction
of the quantum Chernoff bound is a monotone function of the two-mode entanglement as well as the quantum
mutual information and the quantum discord. We thus verify that employing squeezing in the form of correlations
(quantum or classical) is always a resource for loss detection whenever squeezed thermal states are taken as input.
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I. INTRODUCTION

One of the main obstacles to the development of quantum
technologies is the decoherence associated to losses and
absorption processes occurring during the propagation of a
quantum signal. The description of the dynamics of systems
subject to noisy environments [1], as well the detection,
quantification, and estimation of losses, and, more generally,
the characterization of lossy channels at the quantum level,
received much attention in recent years [1–4]. An efficient
characterization of decoherence is relevant for quantum
repeaters [5], quantum memories [6], cavity QED systems [7],
superconducting quantum circuits [8], quantum teleportation
[9], quantum cryptography [10,11], and secret-key capacities
[12,13].

In this paper, we address the discrimination of lossy
channels, i.e., we consider a situation where the loss (damping)
rate of a channel may assume only two possible values and we
want to discriminate between them by probing the channel
with a given class of states. In particular, we address the
discrimination of lossy channels for bosonic systems using
squeezed thermal states as probing states, and focus attention
on the case when one of the values for the loss parameter is
zero, i.e., we address the detection of a possible loss against
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the alternative hypothesis of an ideal lossless channel. Such
kind of discrimination is crucial since a recent analysis [14]
has revealed the importance of assessing the deviation from
ideal conditions, i.e., the identity channel, in implementing
large-scale quantum communication.

Despite the fact that discrimination of lossy channels
has been already considered in the literature, the approach
of this paper is alternative. Previous works have, in fact,
considered this kind of discrimination by constraining the
energy irradiated over the unknown lossy channel but not
the total energy employed in preparing the input states. For
instance, in the quantum reading of digital memories [15],
the discrimination of lossy channels has been analyzed by
fixing the mean total number of photons irradiated over the
channel, independently on the number of probing modes (this
approach has been also followed by the recent Ref. [16]).
Previously, in the quantum illumination of targets [17,18],
the channel discrimination was performed by fixing the mean
number of photons in each of the modes probing the channel.
In both these models, there was no restriction for the energy
involved in the use of ancillary modes. Our approach considers
the discrimination of lossy channels by constraining the total
energy of the input state, thus, including both the probing mode
(irradiated over the unknown lossy channel) and a possible
ancillary mode (bypassing the lossy channel and detected by
the output measurement). Thus, while previous models were
more focused on restricting the energy irradiated over the
channel, we address the problem from the point of view of the
input source, i.e., considering the global effort in preparing this
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source. By fixing the input energy, we then optimize over an
important class of Gaussian states, i.e., single- and two-mode
squeezed thermal states. The choice of these states relies in
their experimental accessibility, being routinely generated in
today’s quantum optics laboratories where they can be reliably
controlled [19]. Furthermore, because of the squeezing, they
represent important examples of nonclassical states, i.e., states
with nonpositive P representation [20]. This is another feature
which diversifies our study from previous works [15,17],
where the main goal was the comparison between nonclassical
states and classical states (i.e., with positive P representation).
Note also that our problem, involving a discrete channel
discrimination, is completely different from problems of
parameter estimation, where one has to infer a parameter taking
continuous values. The estimation of the damping constant of a
bosonic channel has been recently addressed by Refs. [21–24].

It is clear that, for a given input state, any problem of
channel discrimination collapses into a problem of state dis-
crimination [25–29], where we have to compute the minimum
error probability in identifying one of two possible output
states. By assuming M identical copies of the input state and
a memoryless quantum channel, we have M output states that
are exact replicas of two equiprobable states. In this case,
the minimum error probability is well approximated by the
quantum Chernoff bound (QCB) [30–34]. Now, the crucial
step is to vary the input state, trying to optimize the value of
the output QCB. In the case of two lossy bosonic channels,
this kind of optimization must be constrained, meaning that
we have to fix some crucial parameters of the input states,
in particular, their energy. As we have already mentioned
before, in our investigation, we optimize the QCB on the class
of single- and two-mode squeezed thermal states by fixing
their total energy. Single-mode thermal states are sent through
the lossy channel, while two-mode thermal states probe the
channel with one of the modes (probing mode) while bypassing
the channel and assisting the output measurement with the
other mode (reference mode). In this scenario, we find that
the pure version of these states, i.e., single- and two-mode
squeezed vacuum states, are optimal for detecting losses, i.e.,
discriminating a lossy from a lossless channel. Furthermore,
we are able to show that, for any value of the damping rate
smaller than a certain critical value, there is a threshold on the
energy that makes the two-mode squeezed vacuum state more
convenient than the corresponding single-mode state. More
interestingly, for damping rates larger than the critical value,
the two-mode squeezed vacuum state performs always better
than the single-mode squeezed vacuum state with exactly the
same energy.

In order to stay close to schemes that are feasible with
current technology, we also analyze the effect of the mixedness
in the probe states. In this case, we study the channel
discrimination by fixing not only the total energy of the input
state, but also its total amount of squeezing. Then, we are able
to show that two-mode squeezed thermal states are always
better than their single-mode counterparts when all the thermal
photons are directed into the dissipative channel. We have
numerically verified that this result also holds, approximately,
for unbalanced distribution of the thermal photons. Finally,
we also investigate the role of correlations in the improvement
of loss detection. In order to quantify correlations, aside

from entanglement and mutual information, we exploit the
recent results on the quantum discord [35–40], which has been
defined with the aim of capturing quantum correlations in
mixed separable states that are not quantified by entanglement.
Thus, at fixed input squeezing, we study the reduction of
the QCB as a function of various correlation quantifiers,
i.e., quantum mutual information, entanglement, and quantum
discord. This analysis allows us to conclude that employing
squeezing in the form of correlations, either quantum or
classical, is beneficial for the task of loss detection whenever
squeezed thermal states are considered as input probes.

The paper is structured as follows. In Sec. II, we review
the discrimination of quantum states together with the general
definition of the QCB. In Sec. III, we give the basic notation
for Gaussian states and, in Sec. IV, we review the formula of
the QCB for Gaussian states. Then, in Sec. V, we discuss the
discrimination of lossy channels by considering single- and
two-mode squeezed thermal states. In particular, we provide
the details on how to compute the QCB for distinguishing
an ideal lossless channel from a lossy channel. Section VI
reports the main results regarding the single- and two-mode
states as a function of the total energy and squeezing. Finally,
in Sec. VII, we analyze the role of correlations in enhancing
the discrimination. Section VIII closes the paper with some
concluding remarks.

II. QUANTUM STATE DISCRIMINATION AND QUANTUM
CHERNOFF BOUND

As we have mentioned before, the problem of quantum
channel discrimination collapses to the problem of quantum
state discrimination when we fix the input state. As a result,
mathematical tools such as the quantum fidelity and the QCB
are fundamental in our analysis. Despite the fact that it has
been introduced only very recently, the QCB has been already
a crucial tool in several areas of quantum information: It
has been exploited as a distinguishability measure between
qubits and single-mode Gaussian states [30,31], to evaluate
the degree of nonlassicality for single-mode Gaussian states
[41], or the polarization of a two-mode state [42]. It has
also been applied in the theory of quantum phase transitions
to distinguish between different phases of the XY model
at finite temperature [43], and to the discrimination of two
ground states or two thermal states in the quantum Ising
model [44]. For continuous variable systems, the quantum
discrimination of Gaussian states is a central point in view
of their experimental accessibility and their relatively simple
mathematical description [45,46]. In fact, in the case of
Gaussian states, the QCB can be computed from their first
and second statistical moments. A first formula, valid for
single-mode Gaussian states, was derived in [30]. Later,
Ref. [34] provided a general closed formula for multimode
Gaussian states, relating the QCB bound to their symplectic
spectra. Furthermore, from these spectra, one can derive larger
upper bounds, which are easier to compute than the QCB [34].

In this section, we start by establishing notation and review-
ing the problem of quantum state discrimination, together with
the general definition of QCB. Then, from the next section, we
will specialize our attention to the case of Gaussian states, and
we will review the formula for Gaussian states in Sec. IV.
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In its simplest formulation, the problem of quantum
state discrimination consists in distinguishing between two
possible states ρA and ρB , which are equiprobable for a
quantum system. We suppose that M identical copies of the
quantum system are available. Then, we have the follow-
ing equiprobable hypotheses HA and HB about the global
state:

HA : ρM
A = ρA ⊗ . . . ⊗ ρA︸ ︷︷ ︸

M

,

HB : ρM
B = ρB ⊗ . . . ⊗ ρB︸ ︷︷ ︸

M

.

In order to discriminate between these two hypotheses, one
can measure the global system by using a two-outcome
positive-operator-valued measure (POVM) {EA,EB}, with
EA + EB = I and EA,EB ! 0. After observing the outcome
j = A or B, the observer infers that the state of the system
was ρM

j . The error probability of inferring the state ρM
j

when the actual state is ρM
k is thus given by the Born rule

Pjk = Tr[ρM
k Ej ]. As a result, the optimal POVM for this

discrimination problem is the one minimizing the overall
probability of misidentification, i.e., Pe = 1

2 (PBA + PAB).
Since EA = I − EB , we have

Pe = 1
2 Tr

[
ρM

A EB

]
+ 1

2 Tr
[
ρM

B EA

]

= 1
2 (1 − Tr [EB"]) , (1)

where

" = ρM
B − ρM

A

is known as the Helstrom matrix [25]. Now, the error
probability Pe has to be minimized over EB . Since Tr["] = 0,
the Helstrom matrix has both positive and negative eigenvalues
and the minimum Pe is attained if EB is chosen as the
projector over "+, i.e., the positive subspace of ". Assuming
this optimal operator, we have Tr[EB"] = Tr["+] = 1

2 Tr |"|
with |"| =

√
"†". Thus, the minimal error probability is

given by

Pe = 1
2

[
1 − T

(
ρM

A ,ρM
B

)]
,

where

T (ρ,σ ) = 1
2 Tr |ρ − σ |

is the so-called trace distance. The computation of the trace
distance may be rather difficult. For this reason, one can resort
to the QCB that gives an upper bound to the probability of
error Pe [30–34]:

Pe " QM

2
, (2)

where

Q = inf
0"s"1

Tr
[
ρs

Aρ
1−s
B

]
. (3)

The bound of Eq. (2) is attainable asymptotically in the limit
M → ∞ as follows from the results in [31,32]. One may think
that the trace distance has a more natural operational meaning
than the QCB. In spite of this, it does not adapt to the case

of many copies; indeed, one can find states ρ,σ,ρ ′,σ ′ such
that

T (ρ,σ ) < T (ρ ′,σ ′) but T (ρ ′M,σ ′M ) < T (ρM,σM ) .

By contrast, the QCB does resolve this problem since

Q(ρ,σ ) < Q(ρ ′,σ ′) =⇒ Q(ρM,σM ) < Q(ρ ′M,σ ′M ) .

Because of this property, the minimization of the QCB over
single-copy states (ρ and σ ) implies the minimization over
multicopy states (ρM and σM ). This is true as long as the
minimization is unconstrained or if the constraints regard
single-copy observables (e.g., the mean energy per copy).

Finally, note that there is a close relation between the QCB
and the Uhlmann fidelity

F (ρA,ρB) = Tr(
√√
ρAρB

√
ρA)2,

which is one of the most popular measures of distinguisha-
bility for quantum states. In fact, for the single-copy state
discrimination (M = 1), we have [30,34,47,48]

1 −
√

1 − F (ρA,ρB)
2

" Pe " Q

2
"

√
F (ρA,ρB)

2
. (4)

More generally, by exploiting the multiplicativity of the fidelity
under tensor products of density operators, i.e.,

F (ρA ⊗ σA,ρB ⊗ σB) = F (ρA,ρB)F (σA,σB),

we can write

F
(
ρM

A ,ρM
B

)
= F (ρA,ρB)M = FM.

This leads to the general multicopy version of Eq. (4), which
is given by [49]

1 −
√

1 − FM

2
" Pe " QM

2
" FM/2

2
. (5)

From the previous inequalities, it is clear that the QCB gives a
tighter bound than the quantum fidelity. However, if one of the
two states is pure, then the QCB just equals the fidelity, i.e.,
we have

Q(ρA,ρB) = F (ρA,ρB) = Tr[ρA ρB].

III. GAUSSIAN STATES

In this section, we give the basic notions on bosonic systems
and Gaussian states, ending with the definition of squeezed
thermal states.

An n-mode bosonic system is described by a tensor-product
Hilbert space H⊗n and a vector of canonical operators R =
(q1,p1, . . . ,qn,pn)T satisfying the commutation relations

[Rl,Rm] = i$lm,

where l,m = 1, . . . ,2n and $lm are the elements of the
symplectic form

! =
n⊕

k=1

(
0 1

−1 0

)
. (6)
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Alternatively, we can use the mode operators ak , which
are given by the Cartesian decomposition of the canonical
operators, i.e.,

qk = 1√
2

(ak + a
†
k), pk = 1

i
√

2
(ak − a

†
k).

These operators satisfy the commutation relations [ak,a
†
k′] =

δkk′ with k,k′ = 1, . . . , n.
An arbitrary quantum state ρ of the system is equivalently

described by the characteristic function

χ [ρ](λ) = Tr[ρD(λ)],

where D(λ) = ⊗n
k=1Dk(λk) is the n-mode displacement

operator, with λ = (λ1, . . . ,λn)T , λk ∈ C, and Dk(λk) =
exp{λka

†
k − λ∗

kak} is the single-mode displacement operator.
A state ρ is called Gaussian if the corresponding characteristic
function is Gaussian:

χ [ρ](#) = exp
{

− 1
2#T σ# + X T !#

}
, (7)

where # is the real vector

# = (Reλ1,Im λ1, . . . ,Reλn,Imλn)T .

In this case, the state is described by its first two statistical
moments, i.e., the vector of mean values X and the covariance
matrix (CM) σ , the elements of which are defined as

Xl = 〈Rl〉,
σlm = 1

2 〈{Rl,Rm}〉 − 〈Rl〉〈Rm〉, (8)

where {A,B} = AB + BA denotes the anticommutator, and
〈O〉 = Tr[ρO] is the mean value of the operator O.

In the remainder of this section, we consider only zero-mean
Gaussian states, i.e., Gaussian states with X = 0, which are
therefore fully specified by their CM. The properties of these
states may be expressed in very simple terms by introducing
the symplectic transformations. A matrix S is called symplec-
tic when it preserves the symplectic form of Eq. (6), i.e.,

S!ST = !.

Then, according to Williamson’s theorem, for every CM σ ,
there exists a symplectic matrix S such that

σ = SW ST , (9)

where

W =
n⊕

k=1

dk

(
1 0
0 1

)
,

and the dk’s are called the symplectic eigenvalues of σ . The
physical statement implied by the decomposition of Eq. (9) is
that every zero-mean Gaussian state ρ can be obtained from
a thermal state by performing the unitary transformation US
associated with the symplectic matrix S, i.e., we have

ρ = USνU
†
S,

where ν = ν1 ⊗ . . . ⊗ νn is a tensor product of single-mode
thermal states

νk = 1
n̄k + 1

∑

m

(
n̄k

n̄k + 1

)m

|m〉k〈m|

with average number of photons given by n̄k = dk − 1/2. For
a single-mode system, the most general zero-mean Gaussian
state may be written as

ρ = S(ζ )νS†(ζ ),

where S(ζ ) = exp{ 1
2 (ζa†2 − ζ ∗a2)} is the single-mode

squeezing operator and ζ = reiφ ∈ C. The corresponding
covariance matrix is given by

σ =
(

a c

c b

)
, (10)

where

a =
(

n̄ + 1
2

)
[cosh(2r) − sinh(2r) cosφ] ,

b =
(

n̄ + 1
2

)
[cosh(2r) + sinh(2r) cosφ] , (11)

c =
(

n̄ + 1
2

)
sinh(2r) sinφ.

In particular, we can consider the case of a real squeezing
parameter, e.g., by fixing ζ = −r [50]. In this case, the
previous expressions of Eq. (11) simplify into

a = 1
2 (2n̄ + 1) exp(2r),

b = 1
2 (2n̄ + 1) exp(−2r), (12)

c = 0.

This state defines the single-mode squeezed thermal state. It
depends on two real parameters only, i.e., we have

ρ = S(r)νS†(r) = ρ(r,n̄).

In particular, for n̄ = 0, the state is pure and corre-
sponds to a single-mode squeezed vacuum state ρ(r,0) =
S(r) |0〉 〈0| S†(r).

Now, let us consider two-mode (zero-mean) Gaussian
states. They are completely characterized by their 4 × 4 CM

σ =
(

A C
CT B

)
, (13)

where A, B, and C are 2 × 2 blocks. It is useful to introduce
the symplectic invariants

I1 = det A, I2 = det B ,
(14)

I3 = det C, I4 = det σ .

By means of these invariants, we can simply write the two
symplectic eigenvalues as

d± =

√
+±

√
+2 − 4I4

2
,

where+ = I1 + I2 + 2I3 [51,52]. By means of local symplec-
tic operations, the CM of Eq. (13) can be recast in the standard
form, where the three blocks A and B are proportional to the
identity and C is diagonal [51]. In the particular case of a
two-mode squeezed thermal state, we can write

σ = 1
2

(
AI2 Cσz

Cσz BI2

)
, (15)
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where

A = cosh(2r) + 2n̄1 cosh2 r + 2n̄2 sinh2 r,

B = cosh(2r) + 2n̄1 sinh2 r + 2n̄2 cosh2 r, (16)

C = (1 + n̄1 + n̄2) sinh 2r,

with I2 the 2 × 2 identity matrix and σz = diag(1,−1) the
z Pauli matrix. This corresponds to considering a density
operator of the form

ρ = S2(r) (ν1 ⊗ ν2) S2(r)† ,

where S2(r) = exp{r(a†b† − ab)} is the two-mode squeezing
operator. This state depends on three real parameters: the
squeezing parameter and the two thermal numbers, i.e., we
have

ρ = ρ(r,n̄1,n̄2).

In particular, for n̄1 = n̄2 = 0, the state is pure and corre-
sponds to a two-mode squeezed vacuum state ρ(r,0,0) =
S2(r)(|0〉1 〈0| ⊗ |0〉2 〈0|)S†

2(r).

IV. QUANTUM CHERNOFF BOUND
FOR GAUSSIAN STATES

Here, we review the formula of the QCB for multimode
Gaussian states [34]. In particular, we adapt this formula to
our notation and physical units (here the vacuum noise is 1/2,
while in Ref. [34] it was equal to 1). Let us consider two
Gaussian states ρ (with statistical moments X and σ ) and ρ ′

(with statistical moments X ′ and σ ′). The CMs of these two
states can be decomposed as

σ = SW (n̄1, . . . ,n̄n)ST , (17)

σ ′ = S′W (n̄′
1, . . . ,n̄

′
n)S′T , (18)

where {n̄k} and {n̄′
k} are their thermal numbers, and

W (x1, . . . ,xn) =
n⊕

k=1

(2xk + 1)I2.

Now, let us define the functions

Gs(x) = 1
(x + 1)s − xs

and

"s(x) = xs

(x + 1)s − xs
.

Then, the QCB is given by

Q = inf
0 " s " 1

Qs,

where

Qs = ,s√
det &s

exp
(

−1
2

dT &−1
s d

)
. (19)

In the formula of Eq. (19), we have d = X − X ′,

,s =
n∏

k=1

Gs(n̄k)G1−s(n̄′
k),

and

&s = SW ["s(n̄1), . . . ,"s(n̄n)]ST

+ S′W ["1−s(n̄′
1), . . . ,"1−s(n̄′

n)]S′T .

A. Discrimination of squeezed thermal states

For the discrimination of squeezed thermal states, the
previous formula simplifies a lot. First of all, since they are
zero-mean Gaussian states, we have d = 0 and, therefore, the
exponential factor in Eq. (19) disappears. Then, the symplectic
decompositions in Eqs. (17) and (18) are achieved using
symplectic matrices S and S′, which are just one-parameter
squeezing matrices, i.e., S = S(r) and S′ = S′(r ′).

Thus, let us consider the discrimination of single-mode
squeezed thermal states ρ = ρ(r,n̄) and ρ ′ = ρ ′(r ′,n̄′). In this
case, the QCB can be computed using

Qs = ,s(n̄,n̄′)√
det &s(r,n̄,r ′,n̄′)

, (20)

where

,s(n̄,n̄′) = Gs(n̄)G1−s(n̄′)

and

&s(n̄,n̄′,r,r ′) = S(r)W ["s(n̄)]S(r)T

+ S(r ′)W ["1−s(n̄′)]S(r ′)T .

For the discrimination of two-mode squeezed thermal states
ρ = ρ(r,n̄1,n̄2) and ρ ′ = ρ ′(r ′,n̄′

1,n̄
′
2), we can use

Qs = ,s(n̄1,n̄2,n̄
′
1,n̄

′
2)

√
det &s(r,n̄1,n̄2,r ′,n̄′

1,n̄
′
2)

, (21)

where

,s(n̄1,n̄2,n̄
′
1,n̄

′
2) = Gs(n̄1)Gs(n̄2)G1−s(n̄′

1)G1−s(n̄′
2)

and

&s(r,n̄1,n̄2,r
′,n̄′

1,n̄
′
2) = S(r)W ["s(n̄1),"s(n̄2)]S(r)T

+ S(r ′)W ["1−s(n̄′
1),"1−s(n̄′

2)]S(r ′)T.

V. DETECTION OF LOSSES BY THERMAL PROBES

In what follows, we study the evolution of a Gaussian state
in a dissipative channel E- characterized by a damping rate
-, which may result from the interaction of the system with
an external environment as, for example, a bath of oscillators,
or from an absorption process. We consider the problem of
detecting whether or not the dissipation dynamics occurred.
Given an input state ρ, this corresponds to discriminating
between an output state identical to the input ρ, and another
output state storing the presence of loss E-(ρ). Lossy channels
are Gaussian channels, meaning that they transform Gaussian
states into Gaussian states. Furthermore, if the input is a
squeezed thermal state, then the output state is still squeezed
thermal (this is discussed in detail afterward).

In general, we consider the schematic diagram depicted in
Fig. 1. In order to detect loss, we consider either a single-
mode squeezed thermal state evolving in the lossy channel
with parameter - followed by a measurement at the output, or
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FIG. 1. Single- and two-mode schemes for the detection of losses.
Top: A single-mode squeezed thermal state ρ enters the lossy channel
with damping rate -. A measurement apparatus detects the output
state ρ ′. Bottom: The lossy channel acts on the probing mode (1) of
a two-mode squeezed thermal state ρ, while the reference mode (2)
bypasses the channel. The output state ρ ′ of both the modes is then
measured.

a two-mode squeezed thermal state with the damping process
occurring in only one of the two modes (the probing mode),
followed by a measurement on both of the modes. Our aim
is to minimize the error probability in discriminating between
the ideal case - = 0 and the lossy case - > 0. In the next
section, this will be done by fixing some important parameters
of the input state, such as total energy and squeezing [53].

The propagation of a mode of radiation in a lossy channel
corresponds to the coupling of the mode a with a zero-
temperature reservoir made of a large number of external
modes. By assuming a Markovian reservoir and weak coupling
between the system and the reservoir, the dynamics of the
system is described by the Lindblad master equation [54]

ρ̇ = -

2
L[a]ρ, (22)

where L[a]ρ = 2aρa† − a†aρ − ρa†a. The general solution
may be expressed by using the operator-sum representation
of the associated completely positive map, i.e., upon writing
η = e−-t , we have

/(η) =
∑

m

Vm/V
†
m,

where

Vm =
√

(1 − η)m

m!
amη

1
2 (a†a−m) ,

and / is the initial state.

A. Single-mode case

Let us now start with single-mode states. Equation (22)
can be recast into a Fokker-Planck equation for the Wigner
function in terms of the quadrature variables q and p,

Ẇ = -

2

[
∂T

X X + ∂T
Xσ∞∂

T
X

]
W,

where X = (q,p)T , ∂X = (∂q,∂p)T , and we introduced the
diffusion matrix σ∞ = diag(1/2,1/2). By solving the equation
for the Wigner function of a single-mode Gaussian state, one
can obtain the evolution equation for the CM σ . This is given
by [55]

σ̇ = −-(σ − σ∞),

which yields to

σ (t) = e−-tσ 0 + (1 − e−-t )σ∞.

The latter equation describes the evolution of an initial
Gaussian state with CM σ 0 toward the stationary state given
by the Gaussian state of the environment with CM σ∞. For
simplicity, from now on, we omit the index of σ 0, we replace
σ (t) → σ ′, and we insert the time t into the damping parameter
-. Thus, the evolved CM of the single-mode case simply reads
as

σ ′ = e−-σ + (1 − e−-) σ∞.

Now, let us consider the specific case of an input squeezed
thermal state ρ = ρ(r,nT ) with squeezing r and thermal
number nT . According to Eqs. (10) and (12), its CM is given
by

σ =
(

a 0
0 b

)
,

with

a = 1
2 (1 + 2nT )e2r , b = 1

2 (1 + 2nT )e−2r . (23)

At the output of the channel, the state ρ ′ has CM

σ ′ =
(

a- 0
0 b-

)
,

where

a- = 1
2 (1 + 2n-)e2r- , b- = 1

2 (1 + 2n-)e−2r- , (24)

and

n- =
√

det[σ ′] − 1/2, (25)

r- = 1
4

log
[
e−-a + (1 − e−-)/2
e−-b + (1 − e−-)/2

]
. (26)

Thus, we still have a squeezed thermal state ρ ′ = ρ ′(r-,n-)
with squeezing r- and thermal number n- . Now, the dis-
crimination between a lossless (- = 0) and a lossy channel
(- > 0) corresponds to the discrimination between the input
state ρ = ρ(r,nT ) and the output state ρ ′ = ρ ′(r-,n-). In order
to estimate the error probability affecting this discrimination,
we can compute the quantum Chernoff bound. This is achieved
by replacing

(r,n̄) → (r,nT ) and (r ′,n̄′) → (r-,n-)

in Eq. (20).

B. Two-mode case

According to the scheme of Fig. 1, the map describing
the evolution of a two-mode state is E- ⊗ I, where the lossy
channel E- acts on the probing mode, while the identity
channel I acts on the reference mode. At the level of the
CM, it corresponds to the following transformation:

σ ′ = (e−-/2I2 ⊕ I2)σ (e−-/2I2 ⊕ I2)

+ (I4 − e−-I2 ⊕ I2)σ∞. (27)
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As input state, let us consider a two-mode squeezed thermal
state ρ = ρ(r,nT1 ,nT2 ). Its CM is provided in Eq. (15) with
the elements given in Eq. (16) by replacing (r,n̄1,n̄2) →
(r,nT1 ,nT2 ). The CM of the output state can be derived
using Eq. (27). This CM can be put in the normal form
of Eq. (15) with elements given by Eq. (16) by replacing
(r,n̄1,n̄2) → (r-,n-1 ,n-2 ). Here, the squeezing parameter r-
and the thermal numbers n-1 and n-2 are functions of the input
parameters r , nT1 , and nT2 (the explicit expression is too long
to be shown here). Thus, the output state is still a two-mode
squeezed thermal state ρ ′ = ρ ′(r-,n-1 ,n-2 ).

As before, the discrimination between a lossless (- = 0)
and a lossy channel (- > 0) corresponds to the discrimination
between the input state ρ = ρ(r,nT1 ,nT2 ) and the output
state ρ ′ = ρ ′(r-,n-1 ,n-2 ). The error probability affecting this
discrimination is estimated by the QCB, which is com-
puted by replacing (r,n̄1,n̄2) → (r,nT1 ,nT2 ) and (r ′,n̄′

1,n̄
′
2) →

(r-,n-1 ,n-2 ) in Eq. (21).

VI. OPTIMIZATION OF THE THERMAL PROBES

In this section, we optimize the discrimination of a lossless
(- = 0) from a lossy channel (- > 0) by maximizing over
thermal probes, i.e., single- and two-mode squeezed thermal
states. For this sake, we evaluate the QCB as a function of
the most important parameters of the input state, i.e., its total
energy and squeezing. In our first analysis, we show that, for
fixed total energy, single- and two-mode squeezed vacuum
states are optimal. In particular, we show the conditions where
the two-mode state outperforms the single-mode counterpart.
Then, by fixing both the total energy and squeezing, we
will find the optimal squeezed thermal state. According
to Sec. II, the minimization of the QCB over single-copy
states implies the minimization over multicopy states (when
the minimization is unconstrained or subject to single-copy
constraints). This implies that finding the optimal input state
ρ at fixed energy automatically assures that ρ ⊗ ρ ⊗ . . . is
the optimal multicopy state at fixed energy per copy when
we consider a multiple access to the unknown (memoryless)
channel.

In order to perform our investigation, we introduce a
suitable parametrization of the input energy. Given a single-
mode squeezed thermal state ρ = ρ(r,nT ), its energy (mean
total number of photons) can be written as

N1 = nT + nS + 2nSnT , (28)

where nT accounts for the mean number of thermal photons,
nS = sinh2 r quantifies the squeezing, and nSnT is a cross term.
Alternatively, we can introduce a squeezing factor β1 ∈ [0,1]
such that

nS = β1N1, (29)

nT = (1 − β1)N1

1 + 2β1N1
. (30)

Thus, the single-mode squeezed thermal state can be
parametrized as ρ = ρ(N1,β1), i.e., in terms of its total energy
N1 and the squeezing factor β1. Note that, for β1 = 0, the state
is completely thermal with energy N1 = nT , while for β1 = 1,
the state is a squeezed vacuum with energy N1 = nS . In our

problem of loss detection (- = 0 versus - > 0), we denote by
Q1(N1,β1) the output QCB, which is computed by using the
input state ρ = ρ(N1,β1).

Now, given a two-mode squeezed thermal state ρ =
ρ(r,nT1 ,nT2 ), its total energy can be written as

N2 = nT1 + nT2 + 2nS + 2nS(nT1 + nT2 ), (31)

where nT1 (nT2 ) quantifies the thermal photons in the prob-
ing (reference) mode, nS = sinh2 r quantifies the two-mode
squeezing energy, and the last energetic term is a cross term.
In this case, aside from the squeezing factor β2, we can also
introduce an asymmetry parameter γ ∈ [0,1], which quantifies
the fraction of thermal energy used for the probing mode. In
other words, we can write

nS = 1
2β2N2, (32)

nT1 = γ (1 − β2)N2

1 + β2N2
, (33)

nT2 = (1 − γ )
(1 − β2)N2

1 + β2N2
. (34)

Thus, the two-mode squeezed thermal state can be
parametrized as ρ = ρ(N2,β2,γ ), i.e., in terms of the total
energy N2, the squeezing factor β2, and the asymmetry
parameter γ . Note that, for β2 = 0, we have two thermal
states, one describing the probing mode with thermal energy
nT1 = γ N2, and the other one describing the reference mode
with thermal energy nT2 = (1 − γ )N2. For β2 = 1, we have
instead a two-mode squeezed vacuum state with total energy
N2 = 2nS . In this case, the thermal energy is zero and γ can
be therefore arbitrary. In our problem of loss detection (- = 0
versus - > 0), we denote by Q2(N2,β2,γ ) the output QCB,
which is computed by using the input state ρ = ρ(N2,β2,γ ).

A. Optimal input at fixed total energy

In our first investigation, we fix the mean total number of
photons of the input state. In other words, we fix

N1 = N2 = N. (35)

Then, we minimize the output QCB among single- and two-
mode squeezed thermal states. As a first step, we compute the
optimal quantities

Q1(N ) := inf
β1

Q1(N,β1), (36)

Q2(N ) := inf
β2,γ

Q2(N,β2,γ ). (37)

Then, we compare Q1(N ) with Q2(N ).
According to our findings, in Eqs. (36) and (37), the infima

are achieved for β1 = β2 = 1. This is numerically shown in
Fig. 2 for the single-mode case and in Fig. 3 for the two-
mode case. Thus, we have found that, at fixed input energy
N , the optimal thermal probes are given by single- and two-
mode squeezed vacuum states. In this case, the input state is
pure and the QCB corresponds to the fidelity [which is the case
when the s overlap in Eq. (3) is minimized for s approching the
border]. Let us adopt the transmissivity η = e−- to quantify
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FIG. 2. Output QCB Q1(N,β1) optimized over input single-mode
squeezed thermal states ρ = ρ(N,β1). From left to right, we consider
different values of the transmissivity: η = 0.1 (left panel), η = 0.5
(middle panel), and η = 0.9 (right panel). In each panel, we plot
Q1(N,β1) as function of the energy N for different values of β1.
From top to bottom: β1 = 0.1 (dashed line), β1 = 0.5 (dotted line),
and β1 = 1 (solid line). The minimum curve is always achieved for
β1 = 1, i.e., for an input single-mode squeezed vacuum state.

the damping of the channel, so that - = 0 (ideal channel)
corresponds to η = 1, and - > 0 (lossy channel) corresponds
to 0 " η < 1. Then, for single mode, we can write

Q1(N ) = 1
√

1 + N (1 − η2)
, (38)

and for two modes, we derive

Q2(N ) = 4
[2 + N (1 − √

η)]2
. (39)
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FIG. 3. Output QCB Q2(N,β2,γ ) optimized over input two-mode
squeezed thermal states ρ = ρ(N,β2,γ ). From left to right, we
consider different values of the transmissivity: η = 0.1, 0.5, and 0.9.
From top to bottom, we consider different values of the asymmetry
parameter γ = 0, 0.5, and 1. In each panel, we then plot Q2 as
function of the energy N for different values of β2. From top to
bottom: β2 = 0.1 (dashed line), β2 = 0.5 (dotted line), and β2 = 1
(solid line). The minimum curve is always achieved for β2 = 1
corresponding to an input two-mode squeezed vacuum state.
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FIG. 4. (Color online) Single-mode QCB Q1(N ) (solid lines) and
two-mode QCB Q2(N ) (dashed lines) as a function of the input
energy N for different damping rates. From top to bottom, - =
0.1, 0.3, and 1 (red, green, and blue, respectively) corresponding to
η . 0.9, 0.74, and 0.37. By comparing curves with the same color
(fixed damping -), we can see that Q2(N ) outperforms Q1(N ) only
after a certain value of the input energy N .

In Fig. 4, we show the behaviors of the single-mode QCB
Q1(N ) and two-mode QCB Q2(N ) as function of the input
energy N for several values of transmissivity η (or, equiva-
lently, the damping rate -). As expected, the discrimination
improves by increasing the input energy N and decreasing the
transmissivity η.

As we can see from Fig. 4, for a given value of the
transmissivity η, the two-mode QCB Q2(N ) outperforms
the single-mode QCB Q1(N ) only after a threshold en-
ergy. In fact, for any value of the transmissivity η larger
than a critical value ηc, there is a threshold energy Nth =
Nth(η) that makes the two-mode squeezed vacuum state
more convenient than the single-mode counterpart. This
threshold energy decreases for decreasing values of η. In
particular, for transmissivities less than the critical value
ηc, the threshold energy becomes zero, i.e., the two-mode
state is always better than the single-mode state. We have
numerically evaluated the critical value ηc . 0.296 (corre-
sponding to -c . 1.22). This phenomenon is fully illustrated
in Fig. 5, where we have plotted the threshold energy as
function of the transmissivity Nth = Nth(η). For N > Nth
(dark area), the optimal state is the two-mode squeezed
vacuum state, while for N < Nth (white area), it is the
single-mode squeezed vacuum state. In particular, note that
Nth = 0 at η = ηc. Close to the critical transmissivity we
have [56]

Nth . 4(η − ηc) + 5.5(η − ηc)2. (40)

B. Optimal input at fixed energy and squeezing

It should be said that, in realistic conditions, it is unlikely
to have pure squeezing. For this reason, it is important to
investigate the performances of the squeezed thermal states
by fixing this physical parameter together with the total
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FIG. 5. (Color online) Threshold energy as a function of the
transmissivity Nth = Nth(η) (solid curve dividing the dark and the
white areas). The dark area indicates the values of the energy N for
which the two-mode squeezed vacuum state is optimal. The white
region indicates where the single-mode squeezed vacuum state is
optimal. The dashed line denotes the behavior of the threshold energy
Nth close to the critical transmissivity ηc . 0.296.

energy. Thus, in this section, we fix both the input energy
and squeezing, i.e., we set

N1 = N2 = N,
(41)

β1 = β2 = β (0 " β " 1).

Then, we compare the single-mode squeezed thermal state
ρ = ρ(N,β) with the two-mode squeezed thermal states ρ =
ρ(N,β,γ ) for various values of γ . In other words, we compare
Q1(N,β) and Q2(N,β,γ ).

For fixed N and β, we find that the minimum of Q2(N,β,γ )
is achieved for γ = 1 (easy to check numerically). This means
that two-mode discrimination is easier when all the thermal
photons are sent through the lossy channel. In this case, we
find numerically that

Q2(N,β,1) < Q1(N,β)

for every value of the input parameters N and β, and every
value of damping rate- in the channel. In other words, at fixed
energy and squeezing, there is a two-mode squeezed thermal
state (the asymmetric one with γ = 1) able to outperform the
single-mode squeezed thermal state in the detection of any
loss. In order to quantify the improvement, we introduce the
QCB reduction

+Q = Q1(N,β) − Q2(N,β,1).

The more positive this quantity is, the more convenient is
the use of the two-mode state instead of the single-mode
one. In Fig. 6, we show the behavior of +Q as a function
of the input energy and squeezing for two different values
of the damping. As one can see from the plot, the QCB
reduction is always positive. Its value increases with the energy
while reaching a maximum for intermediate values of the
squeezing. By comparing the two panels of Fig. 6, we can also
note that the QCB reduction increases for increasing damping
- (i.e., decreasing transmissivity).

Thus, we have just shown that, for fixed values of N and
β, the asymmetric two-mode squeezed thermal state (γ = 1)
is the optimal thermal probe in the detection of any loss -.
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FIG. 6. (Color online) Density plot of the QCB reduction+Q as
function of the input energy N and the squeezing β. The left plot is
for - = 0.1 and the right one for - = 0.9.

Here, we also show that this is approximately true for γ # 1.
In other words, we show that the inequality Q2(N,β,γ ) <
Q1(N,β) is robust against fluctuations of γ below the optimal
value γ = 1. This property is clearly important for practical
implementations. To study this situation, let us consider the
γ -dependent QCB reduction

+Qγ = Q1(N,β) − Q2(N,β,γ ). (42)

In Fig. 7, we have specified this quantity for different values
of the asymmetry parameter γ (each panel refers to a different
value of γ ). Then, for every chosen γ , we have computed+Qγ

over a sample of 103 random values of N , β, and - (in each
panel). As one can see from the figure, the quantity +Qγ is
approximately positive also when γ is quite different from the
unity.

VII. ANALYSIS OF THE CORRELATIONS

Since two-mode squeezed thermal states are able to out-
perform the single-mode counterparts under several physical
conditions, it is natural to investigate this improvement directly
in terms of the correlations of the input state. The quantification
of the correlations is realized by using the entanglement, the
quantum discord, and the quantum mutual information. In
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FIG. 7. (Color online) QCB reduction+Qγ for different values of
γ (top left γ = 0.99, top right γ = 0.9, bottom left γ = 0.8, bottom
right γ = 0.7). In each panel,+Qγ is computed over a sample of 103

random values of N , β, and -.
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order to quantify the degree of entanglement of a two-mode
Gaussian state, we can use the logarithmic negativity. Let us
consider a bipartite Gaussian state with CM given in Eq. (13).
It is easy to derive the symplectic eigenvalues of the partially
transposed state. These are given by

d̃± =

√
+̃−

√
+̃2 − 4I4

2
,

where +̃ = I1 + I2 − 2I3, and the symplectic invariants I1,
I2, I3, and I4 are defined in Eq. (14). From the smallest of
these symplectic eigenvalues, we can compute the logarithmic
negativity, which is equal to

E = max{0, − log 2d̃−}.
A bipartite Gaussian state is entangled if d̃− < 1/2, so that
the logarithmic negativity gives positive values for all the
entangled states and 0 otherwise.

The quantum discord is defined as the mismatch of two
different quantum analogs of classically equivalent expres-
sions of the mutual information and may be used to quantify
quantum correlations in mixed separable states. For a two-
mode squeezed thermal state with CM as in Eq. (15), the
quantum discord may be written as [38]

D = h(
√

I2) − h(d−) − h(d+)

+h

(√
I1 + 2

√
I1I2 + 2I3

1 + 2
√

I2

)
, (43)

where

h(x) =
(

x + 1
2

)
log

(
x + 1

2

)
−

(
x − 1

2

)
log

(
x − 1

2

)

is the binary Shannon entropy. We have that, for 0 " D " 1,
the state may be either entangled or separable, whereas all the
states with D > 1 are entangled [38,39].

Finally, the quantum mutual information, which quantifies
the amount of total, classical plus quantum, correlations,
is given by I = S(ρA) + S(ρB) − S(ρAB), where S(ρ) = −
Tr[ρ log ρ] is the von Neumann entropy of the state ρ
and ρA(B) = TrB(A)[ρAB] are the partial traces over the two
subsystems. For a two-mode squeezed thermal state with
CM as in Eq. (15), the quantum mutual information can be
computed using the formula

I = 1
2 [h(

√
I1) + h(

√
I2) − h(d+) − h(d−)] .

For pure states, the previous three measures are equivalent,
whereas for mixed states, as in the case under investigation
in this section, they generally quantify different kinds of
correlations. Here, we consider the QCB reduction +Qγ̄ =
Q1(N,β) − Q2(N,β,γ̄ ) between a single-mode squeezed
thermal state ρ = ρ(N,β) and a two-mode squeezed thermal
state ρ = ρ(N,β,γ̄ ) with γ̄ = 0.999. By fixing the input
squeezing β and varying the input energy N , we study the
behavior of+Qγ̄ as a function of the three correlation quanti-
fiers, i.e., quantum mutual information, quantum discord, and
entanglement (computed over the input two-mode state).

As shown in the upper panels of Fig. 8, the QCB
reduction+Qγ̄ is an increasing function of all three correlation
quantifiers for fixed input squeezing (β = 0.1 for the left

panel and β = 0.9 for the right one). Note that, in each
panel and for each quantifier, we plot three different curves
corresponding to different values of the damping - = 0.9,
0.5, and 0.1. The monotonicity of the QCB reduction in
all the correlation quantifiers suggests that the presence of
correlations should definitely be considered as a resource
for loss detection, whether these correlations are classical or
genuinely quantum, i.e., those quantified by entanglement.
In other words, employing the input squeezing in the form
of correlations is always beneficial for loss detection when
we consider squeezed thermal states as input sources. The
importance of correlations is confirmed by the plots in the
middle panels. Here, we consider again the QCB reduction
+Qγ̄ = Q1(N,β) − Q2(N,β,γ̄ ) for γ̄ = 0.999. Then, by
varying input squeezing β and energy N , we study +Qγ̄

as function of both discord and entanglement (damping is
- = 0.2 in the left panel and - = 0.8 in the right one).
These plots show how the QCB reduction is approximately
an increasing function of both discord and entanglement.
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FIG. 8. (Color online) Upper panels: QCB reduction +Qγ̄ (with
γ̄ = 0.999) as a function of the three correlation quantifiers X =
I,D,E, where I is the quantum mutual information (dotted red
line), D is the quantum discord (dashed blue line), and E is the
entanglement (solid black line). The plots are for fixed squeezing:
β = 0.1 for the left panel and β = 0.9 for the right one. For each
quantifier, we plot three different curves corresponding to different
values of the damping (from top to bottom - = 0.9,0.5, and 0.1).
Each curve is generated by varying the input energy N between 0
and 5 photons. Middle panels: Density plots of the QCB reduction
+Qγ̄ as a function of the input discord and entanglement. The plots
are for fixed damping: - = 0.2 in the left panel and - = 0.8 in the
right one. In each panel, the density plot is generated by varying
the squeezing 0 " β " 1 and the energy 0 " N " 5. Lower panels:
Entanglement (left) and discord (right) as a function of the quantum
mutual information. Plots are generated by taking a random sample
of 104 two-mode squeezed thermal states, i.e., random values of N

and β with γ = γ̄ .
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Finally, in the lower panels of Fig. 8, we also show how
entanglement (left) and discord (right) are increasing functions
of the quantum mutual information with good approximation
(these plots are generated by choosing a random sample of 104

two-mode squeezed thermal states).

VIII. CONCLUSIONS

In this paper, we have considered the quantum discrimi-
nation of lossy channels. In particular, we have focused on
the case when one of the two channels is the identity, i.e.,
the problem of discriminating the presence of a damping
process from its absence (loss detection). For this kind of
discrimination, we have considered thermal probes as input,
i.e., single- and two-mode squeezed thermal states. The
performance of the channel discrimination has been quantified
using the QCB, computed over the two possible states at the
output of the unknown channel for a given input state. Finding
the optimal input state ρ, which minimizes this bound, gives
automatically the optimal multicopy state ρ ⊗ ρ ⊗ . . . when
we consider many accesses to the unknown channel (under the
assumption of single-copy constraints). In this scenario, we
have fixed the total energy of the input state and optimized the
discrimination (detection of loss) over the class of single- and
two-mode squeezed thermal states. We have found numerically
that the optimal states are pure, thus corresponding to single-
and two-mode squeezed vacuum states. Furthermore, we
have determined the conditions where the two-mode state
outperforms the single-mode counterpart. This happens when
the energy exceeds a certain threshold, which becomes zero
for suitably low values of the transmissivity (i.e., high values
of damping).

It is worth noticing that our approach (where we fix the total
energy of probing and reference modes) also gives a sufficient
condition for the problem where only the probing energy is
fixed. In fact, if a two-mode state outperforms a single-mode
state above a certain threshold value Nth of the total energy, this
also happens when just the energy of the probing mode is above
that value Nth. This is a trivial consequence of the fact that the

total energy is bigger than the probing energy for two-mode
states (N2 > N

probe
2 ), while the two quantities are the same for

single-mode states (N1 = N
probe
1 ). Thus, N

probe
2 = N

probe
1 >

Nth can be written as N2 > N1 > Nth, which is a stronger
condition than N2 = N1 > Nth since the QCB is decreasing in
the total energy, as one can see from Eqs. (38) and (39).

In our investigation, we have then considered the problem of
loss detection in more realistic conditions where it is unlikely
to have pure squeezing. In this case, we have studied the
optimal state for fixed total energy and squeezing, i.e., by
fixing all the relevant resources needed to create the input
state. Under these constraints, we have shown that a two-mode
squeezed thermal state which conveys all the thermal photons
in the dissipative channel is the optimal thermal probe. In
addition, this result is robust against fluctuations, i.e., it holds
approximately also when the thermal photons are distributed
in a more balanced way between the probe mode (sent through
the dissipative channel) and the reference mode (bypassing the
channel).

Finally, we have closely investigated the role of correlations
in our problem of loss detection. We have found that, for
fixed input squeezing, the reduction of the QCB is an
increasing function of several correlation quantifiers, such
as the quantum entanglement, the quantum discord, and the
quantum mutual information. We then verify that employing
the input squeezing in the form of correlations (quantum or
classical) is always beneficial for the detection of loss by means
of thermal probes.

The results of our paper provide elements in the field of
quantum channel discrimination and can be applied to a wide
range applications, including the characterization of absorbing
materials. In particular, they are relevant in all the situations
where the physical constraints regard the creation of the input
resources rather than the channel to be discriminated.
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