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In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P

classicality, based on the properties of the Glauber-Sudarshan P function; and C classicality, based on the
entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static
(metric) sense, as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively
this inequivalence by addressing the dynamical relation between these types of nonclassicality in a paradigmatic
quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal
reference state. Specifically, we show that almost all P -classical input states generate outputs that are not C

classical. Indeed, for the case of zero thermal reference photons, the more P -classical resources at the input the
less C classicality at the output. In addition, we show that the P classicality at the input—as quantified by the
nonclassical depth—does instead determine quantitatively the potential of generating output entanglement. This
endows the nonclassical depth with a new operational interpretation: it gives the maximum number of thermal
reference photons that can be mixed at a beam splitter without destroying the output entanglement.
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I. INTRODUCTION

Since the early days of quantum mechanics considerable
efforts have been spent in establishing whether a given
physical system possesses genuinely quantum features. As far
as bosonic systems are concerned, Wigner first attacked this
problem introducing a quantum analogue to the classical phase
space [1]. Later on, a systematic approach was finally devel-
oped in the framework of quantum optics, with the introduction
of various classes of quasi-probability distributions defined
over the quantum phase space. Specifically, the analytical
features of such distributions unveil physical constraints:
whenever the normally ordered distribution function—called
the Glauber-Sudarshan P function [2,3]—behaves like a
regular probability distribution, the corresponding state can
be described as a statistical ensemble of classical fields and, in
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this sense, it cannot show any nonclassical feature [4]. In the
following, these states will be referred to as P -classical states.

On the other hand, the more recent development of quantum
information theory promoted a reconsideration of the quan-
tumness of physical systems from an information-theoretical
perspective. Since quantum systems can be correlated in ways
unaccessible to classical ones, the discrimination between
classical and nonclassical states of a given system is pursued
by studying the nature of the correlations among its subparts.
In particular, quantum entanglement accounts for quantum
correlations that may lead to the violation of local realism
[5]. Moreover, even separable (i.e., nonentangled) states have
been recognized to retain nonclassical features, leading to
the introduction of an entropic measure, called quantum
discord, to capture the quantum features of correlations beyond
entanglement [6]. Following this criterion, classical states can
be defined as states with vanishing discord, and we will refer
to this notion as C classicality.

Although both acceptable and well grounded, the two fore-
going notions of classicality have been shown to be radically
different, indeed maximally inequivalent, in the following
sense: only a zero-measure set of states is classical according to
both criteria [7]. Besides embodying a matter of fundamental
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interest, this conclusion is also relevant for practical purposes,
since it enlightens different resources in quantum information
processing [8]. However, such a characterization is based on
purely geometrical considerations and, as a consequence, it is
intrinsically static. In particular, the relation between C and P
classicality in common physical processes remains unclear. In
addition, a quantitative comparison between these two notions
in terms of their respective figures of merit still lacks.

In this work, we address the above issues in the context
of quantum optics, whose description in term of the phase
space offers a natural framework to develop a quantitative
analysis [9]. A paradigmatic setting in quantum optics is
constituted by Gaussian states and operations, due to their
relevance for quantum technologies and their thorough theo-
retical characterization [10–12]. Specifically, we address the
dynamical relation of P - and C-nonclassical states arising
from the linear mixing of Gaussian states at a beam splitter.
In this setting, the availability of analytical expressions to
quantify the departure from P classicality—in terms of the
nonclassical depth—and Gaussian discord and entanglement,
is crucial to work out a quantitative comparison between the
various notions of nonclassicality.

In particular, we consider the mixing of a generic Gaussian
state with a reference thermal state, and explore the relation-
ships between the P and C classicality of the output states
compared the input ones. Specifically, we show that almost
all P -classical input states generate output states that are not
C classical, while the generation of P nonclassical states is
only possible above a certain threshold. Indeed, for the case of
zero thermal reference photons below that threshold, the more
P -classical resources at the input the less C classicality at the
output. These findings strengthen the inequivalence between
P and C classicality by quantitatively extending it to a process
in which correlations are dynamically generated, rather then
statically analyzed as in Ref. [7]. In addition, we show that the
P classicality at the input does instead determine quantitatively
the potential of generating output entanglement. This endows
the nonclassical depth with a new operational interpretation: it
gives the maximum number of thermal reference photons that
can be mixed at a beam splitter without destroying the output
entanglement.

The paper is structured as follows. In Sec. II we give
a brief account on Gaussian states and their phase-space
representation, focusing on their bilinear interaction in linear
optical devices. In Sec. III we review the two notions of
nonclassicality and establish the notation for Gaussian discord,
nonclassical depth, and entanglement used in the following.
The reader familiar with the foregoing topic can skip the
respective sections. In Sec. IV we analyze in detail the
generation of P and C nonclassicality by mixing of a Gaussian
state with the vacuum, whereas in Sec. V we focus attention to
the mixing with a thermal state, also introducing the concept
of effective nonclassicality. Section VI closes the paper with
some concluding remarks.

II. LINEAR MIXING OF GAUSSIAN STATES

The simplest bilinear interaction involving two bosonic
field modes described by the annihilation operators â1 and
â2 (with [âk,â

†
k] = Î) corresponds to the mode mixing, and

it is described by an effective Hamiltonian of the form
HI ∝ (â†

1â2 + â1â
†
2). This kind of interaction is very common

in different quantum systems, ranging from optical modes in
linear optical devices [13] to collective modes in ultracold
atoms [14], opto- and nanomechanical oscillators [15–18], and
superconducting resonators [19,20]. For the sake of clarity,
in this paper we focus on the quantum optics realm and we
address the correlation properties of the two optical modes
emerging from a beam splitter (BS) when the input ones are
excited in Gaussian states.

Gaussian states (GSs) are states with Gaussian Wigner
functions [21] and an exhaustive information about them is
provided by the knowledge of the first and second statistical
moments of the quadrature operators. Information about
correlations is contained in the second moment and from now
on we set the first moments to zero, without loss of generality.
Upon introducing the quadrature operators q̂ = (â + â†)/

√
2

and p̂ = (â − â†)/(i
√

2), the covariance matrix (CM) of a
single-mode GS of â is defined as [σ ]kl = 1

2 ⟨{Rk,Rl}⟩ −
⟨Rk⟩⟨Rl⟩, with k,l = 1,2, and RT = (R1,R2) ≡ (q̂,p̂) being
the vector of the quadratures and {·,·} the anticommutator.
Now, the canonical commutation relations take the form
[Rk,Rl] = i ωkl , where ωkl = (1 − δkl)(−1)l are the entries of
the is the 2×2 symplectic form ω. The set of the eigenvalues
(q,p) ∈ R2 of the position and momentum-like operators,
endowed with the symplectic form ω, spans the real symplectic
space # = (R2,ω), which is referred to as the phase space of
the mode â1. A single-mode GS may always be written as

ϱ1(nt ,ns) = S(r)ν(nt )S†(r), (1)

where S(r) = exp[ 1
2 (ra†2 − r∗a2)], r ∈ C, is the squeezing

operator and

ν(nt ) = (nt + 1)−1[nt/(nt + 1)]a
†a

is a thermal state with nt average number of photons; the
quantity ns = sinh2 |r| will be referred to as the number of
squeezed photons.

By choosing a suitable rotating frame, the lossless BS
exchange interaction is described by the unitary evolution
Uτ = exp[θ (â†

1â2 − â1â
†
2)], with θ ∈ R and where τ = cos2 θ

denotes the transmissivity of the BS. If τ = 1/2, the BS is
said to be balanced. Being a bilinear interaction of modes, this
evolution preserves the Gaussian character of the state, and in
turn induces a symplectic transformation Sτ in the quantum
phase space of the composite system, namely

Sτ =
( √

τ I
√

1 − τ I

−
√

1 − τ I
√

τ I

)

, (2)

where I = diag(1,1). Given two uncorrelated single-mode
GSs, with CMs σ 1 and σ 2, respectively, the symplectic
transformation Sτ , acting by congruence on the initial CM
#0 = σ 1 ⊕ σ 2, leads to the evolved CM # = Sτ #0 ST

τ . As
mentioned above and schematically depicted in Fig. 1, in this
work we will consider a bipartite quantum system of modes
â1 and â2. The mode â1 is initially in the zero-mean GS
ϱ = ϱ(ns,nt ) while mode â2 is in a thermal state ν = ν(n2).
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FIG. 1. (Color online) Linear mixing of Gaussian states. The two
input modes â1 and â2, initially excited in the zero-mean Gaussian
state ϱ = ϱ(ns,nt ) and in the thermal state ν = ν(n2) respectively,
enter a beam splitter of transmissivity τ , after which quantum
correlations are eventually established.

Without loss of generality we will assume a real squeezing
parameter r ∈ R. Using this parametrization, the average
number of photons in the first mode ⟨â†

1â1⟩ϱ ≡ Tr[â†
1â1 ϱ

(ns,nt )] explicitly reads

⟨â†
1â1⟩ϱ = nt + (1 + 2nt )ns ≡ n1. (3)

In the phase space, the GSs ϱ and ν are represented by the
2×2 CMs

σ ϱ = diag
( 1

2 + n1 + (, 1
2 + n1 − (

)
(4)

and

σ ν =
( 1

2 + n2
)
I, (5)

respectively, where ( = (1 + 2nt )
√

ns(1 + ns). Since the
initial state R0 of the bipartite system is chosen to be
factorized, namely R0 = ϱ ⊗ ν, the total number of excitations
is given by ⟨â†

1â1 + â
†
2â2⟩R0 = n1 + n2 ≡ N. Now we let the

state R0 evolve through a lossless BS of transmissivity τ
using the symplectic transformation Sτ given by Eq. (2).
The 4×4 CM of the two-mode output state R = UτR0U

†
τ is

# = Sτ (σ ϱ ⊕ σ ν)ST
τ and it reads

# =

⎛

⎜⎝

a+ 0 c+ 0
0 a− 0 c−
c+ 0 b+ 0
0 c− 0 b−

⎞

⎟⎠ , (6)

where

a± =
( 1

2 + n2
)
(1 − τ ) +

( 1
2 + n1 ± (

)
τ, (7a)

b± =
( 1

2 + n2
)
τ +

( 1
2 + n1 ± (

)
(1 − τ ), (7b)

c± =
[( 1

2 + n2
)
−

( 1
2 + n1 ± (

)]√
τ (1 − τ ). (7c)

It is useful to introduce the following local symplectic
invariants, which in this case are given by I1 = a+a−, I2 =

b+b−, I3 = c+c−, and I4 = det #. Via symplectic diagonaliza-
tion # can be cast into the diagonal form diag(λ+,λ+,λ−,λ−)
where the expression of the symplectic eigenvalues is given
by [22]

λ± =

√
I1 + I2 + 2I3 ±

√
(I1 + I2 + 2I3)2 − 4I4

2
. (8)

Positivity of R requires λ− ! 1/2.

III. NONCLASSICALITY FOR BOSONIC SYSTEMS

Let us now review in some details the concepts of
nonclassicality we are going to consider, together with their
respective figures of merit. The reader familiar with those
concepts can skip this section.

A. Nonclassicality in the phase space: P classicality

Any bipartite bosonic state described by the density matrix
ϱAB can be always expanded in terms of coherent states as
follows:

ϱAB =
∫

C
d2α

∫

C
d2β P (α,β)|α⟩⟨α| ⊗ |β⟩⟨β|, (9)

where |α⟩ and |β⟩ are coherent states of the two modes and
P (α,β) is the Glauber-Sudarshan P representation of the
state. P (α,β) provides a complete characterization of the state.
Equation (9) suggests that the state of the electromagnetic field
can be regarded as a mixture of coherent states, weighted by
P (α,β). However, in general the P function cannot be regarded
as a probability density function. On the other hand, when all
the conditions for the P function to be a probability density
are satisfied, one can conclude that it describes a classical state
of the bosonic field, motivating the following definition:

Definition 1 (P classicality). A state ϱAB of a two-mode
bosonic field is called P classical if P (α,β) is a regular and
normalized positive function.

In the case of a single-mode state ϱ, we can introduce
a generalized s-ordered Wigner function which encompasses
all the quasiprobability distributions

Ws(α) =
∫

C

d2λ

π2
eαλ∗−α∗λ+(s/2)|λ|2 Tr[D(λ)ϱ], (10)

where D(α) ≡ exp(αâ† − α∗â) is the displacement operator.
In the case of s = −1,0,1 one recovers the Husimi, Wigner,
and Glauber-Sudarshan functions, respectively. The latter,
more than any other representation, can depart from being
a well-behaved probability density. In order to understand this
fact, let us observe that the s-ordered Wigner function of a state
is related to the P function (s = 1) of the same state through
a Gaussian convolution, namely

Ws(α) = 2
π (1 − s)

∫

C
d2β exp

{
−2|α − β|2

1 − s

}
P (β), (11)

that can be seen as a smoothing operation. Given the P function
of the state of interest, as the parameter s moves towards −1,
the resulting distributions Ws(α) get smoother and smoother.
Since for s = −1 the Husimi Q function is recovered, we
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obtain a continuous interpolation between P and Q functions,
and we are guaranteed that this smoothing operation always
succeeds in giving a true probability distribution.

Based on this, it is possible to define a quantitative measure
of P nonclassicality; that is, the nonclassical depth of a
quantum state [23,24]. To this aim it is useful to introduce
the parameter T = (1 − s)/2. For T large enough, Eq. (11)
leads to a P -classical state and the smoothing operation is
referred to as complete. If - denotes the set of all T which
give a complete smoothing of the initial the P function, the
nonclassical depth is defined as

Tm = inf
T ∈ -

(T ). (12)

The nonclassical depth ranges from 0 for coherent states to 1
for Fock states [25], whereas for a single-mode GS ϱ we have
[26]

Tm = max
[

1
2

(
1 − e−2r

µ

)
, 0

]
, (13)

where µ = Tr[ϱ2] is the purity of the state and r is the
squeezing parameter introduced in Eq. (1).

B. Nonclassicality of correlations: C classicality

The total amount of correlations between two clas-
sical systems A and B is quantified by the mu-
tual information I (A : B) = H (A) + H (B) − H (A,B) where
H (X) = −

∑
x pX(x) ln pX(x) is the Shannon entropy

of the random variable X. By exploiting the relation
pAB(a,b) = pA(a|b)pB(b) one also gets the equivalent ex-
pression of the mutual information I (A : B) = H (A) −
H (A|B) in terms of the conditional entropy H (A|B) =
−

∑
a,b pB(b) pA(a|b) ln pA(a|b). The first expression of the

mutual information has an immediate extension to quantum
systems, simply by replacing the Shannon entropy with the von
Neumann entropy S[ϱ] = −Tr[ϱ ln ϱ], namely IM (ϱAB) =
S(ϱA) + S(ϱB) − S(ϱAB); if we address GSs, it can be ex-
pressed as [22]

IM (ϱAB) = f (
√

I1) + f (
√

I2) − f (λ+) − f (λ−), (14)

where f (x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x − 1

2 ). On the
other hand, the extension of the second expression to the
quantum realm involves a measurement on one of the two
parties, say B, described by the positive operation-valued mea-
sure (POVM) {.k}, .k ! 0,

∑
k .k = Î. The probability to

obtain the outcome k is given, according to the Born rule,
by pk = Tr[ϱAB Î ⊗ .k] and the conditional state of A with
respect to the k outcome ϱ

.k

A|B = (pk)−1TrB[ϱAB Î ⊗ .k]. The
maximum amount of information we can gain on the part A
by locally measuring the other part thus has the nontrivial
expression

CA|B(ϱAB) = max
{.k}

{

S(ϱA) −
∑

k

pkS
(
ϱ

.k

A|B

)}

, (15)

and invokes an optimization procedure over the set of all
measurements. The quantum discord is properly defined as
the difference between these two quantities [27]

DA|B(ϱAB) = IM (ϱAB) − CA|B(ϱAB). (16)

We can thus conclude that a system shows some quantumness
as soon as the discord is different from zero, providing us with
the following criterion:

Definition 2 (C classicality). A state ϱAB of a two-
mode bosonic field is called C classical if DA|B(ϱAB) =
DB|A(ϱAB) ≡ 0.

If we restrict to the subclass of GSs and Gaussian measure-
ments, an analytical expression of the quantum discord can be
derived, which is called Gaussian discord, and is given by

DA|B(ϱAB) = f
(√

Emin
A|B

)
+ f (

√
I2) − f (λ+) − f (λ−),

(17)
where Emin

A|B has an analytical expression as a function of the
local symplectic invariants Ik [28–32]. It is worth noting that
for a large class of Gaussian states [33] the Gaussian discord of
Eq. (17) coincides with the quantum discord, i.e., the maximum
in Eq. (15) is achieved by a Gaussian measurement.

A stronger form of quantum correlations with respect
to discord is given by quantum entanglement. In the case
of two-mode GSs a necessary and sufficient condition can
be derived to assess the presence of entanglement [34]. It
is essentially based on the positivity of ϱAB under partial
transposition (PPT), that is the positivity of the density matrix
obtained by the transposition applied only to one part of
a system [35]. One can show in fact that the symplectic
eigenvalues of the partially transposed states are given by

λ̃± =

√
I1 + I2 − 2I3 ±

√
(I1 + I2 − 2I3)2 − 4I4

2
, (18)

and a Gaussian state ϱAB is entangled if and only if λ̃− < 1/2.
In fact, a measure of entanglement is given by the logarithmic
negativity [36], that is E(σ ) = max[− ln(2λ̃−),0].

IV. NONCLASSICALITY ARISING FROM MIXING
A GAUSSIAN STATE WITH THE VACUUM

We start considering the case in which the reference input
state of mode â2 is the vacuum, i.e., n2 = 0 and, in particular
σ ν → σ 0 ≡ 1

2I and n1 = N .

A. P classicality

The initial state of the system R0 is clearly C classical. On
the contrary, P nonclassicality has to be addressed both in the
input and output channels, in order to see wether differences
arise. The Glauber-Sudarshan P representation of R0 is given
by

R0 =
∫

C
d2α

∫

C
d2β Pϱ(α) P0(β) |α⟩ ⟨α| ⊗ |β⟩ ⟨β|, (19)

where the P function PR0 is factorized in the product of
Pϱ and P0, the latter being the Glauber-Sudarshan P-P
function of the vacuum. Moreover, since P0 is a well-behaved
probability density, any possible P -nonclassical feature of
the input state is due to the pathological behavior of Pϱ

alone, and is quantified by the nonclassical depth of Eq. (12).
Since the action of the BS evolution on the two-mode
displacement operator is Uτ Da(α) ⊗ Db(β) U †

τ = Da(
√

τα +√
1 − τβ)⊗Db(

√
τβ −

√
1 − τα), and it amounts to a
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FIG. 2. (Color online) Nonclassicality by mixing with the vac-
uum: Plot of the implicit function Tm = 0, which defines the P -
classicality threshold. It takes the explicit expression of Eq. (22) as a
function of nt , while as a function of ns it is given by Eq. (23). In this
case the nonclassicality threshold nP

s and the separability threshold
nsep

s coincide. The black lines are curves of fixed total energy N =
ns + nt + 2nsnt : dashed for odd values N = 2k + 1, k = 0,1, . . . and
dot-dashed for even values N = 2k, k = 1,2, . . . of the total energy.

rotation of the arguments, one obtains the following P
representation of R:

PR(α,β) = Pϱ(
√

τα −
√

1 − τβ) P0(
√

1 − τα +
√

τβ).

(20)

It is apparent that the effect of the evolution only amounts to
a reparametrization of the argument, that does not affect the
functional form of both Pϱ and P0. Thus we can conclude
that output state R is P nonclassical if and only if ϱ
is P nonclassical, that is, for our configuration the two-
mode P nonclassicality of the output equals single-mode P
nonclassicality of the input. Let us remark, for the sake of
Sec. V, that the foregoing argument applies as well for the
case of mixing with a reference thermal state with positive
temperature, given that the P function of a general thermal
state is a well-behaved probability density. The nonclassical
depth in Eq. (12) relative to the mode â1, can be expressed as

Tm = max
[

1 − 2u

2
,0

]
, (21)

where u = 1
2 + n1 − ( is the minimum eigenvalue of the CM

σ ϱ, as it is apparent from Eq. (4). The condition Tm = 0 singles
out a P -classicality threshold, as shown in Fig. 2, which can
be made explicit either as a function of the thermal component
nt , hence having

nP
s = n2

t

1 + 2nt

, (22)

or of the squeezed one

nP
t = ns +

√
ns(1 + ns). (23)

2 4 6 8 10
N

0.5

1

1.5
D

5 10 15 20
N

0.5

1.0

1.5

2.0
C

FIG. 3. (Color online) Nonclassicality by mixing with the vac-
uum: In the upper panel we show the discord D as a function of
the number of squeezed and thermal photons ns , nt for a balanced
BS τ = 1/2. The dotted red line corresponds to the case of a
squeezed vacuum state entering the beam splitter. The solid blue
line corresponds to a thermal input state, while the dashed black
curve is the discord at the P -classicality threshold. Finally the dashed
magenta curve points out the minimum value of the discord, obtained
via numerical maximization. The lower left panel shows the discord
as a function of the total energy N ; solid blue for thermal state,
dashed red for squeezed vacuum, black dot-dashed for P -classicality
threshold. The right panel shows the classical correlations for the
same input states and with the same color codes.

Whenever the average number of squeezed photons exceeds
nP

s or the thermal component falls below nP
t , the state ϱ turns

out to be P nonclassical. From now on, otherwise differently
stated, nP

s shall be employed as the P -classicality threshold.

B. C classicality and generation of Gaussian discord

We now address general quantum correlations, and investi-
gate the generation of Gaussian discord. The parties involved
being the output modes b̂1 = U † â1 U and b̂2 = U † â2 U ,
we will refer to D1|2 as the b1-discord and D2|1 to the
b2-discord; when they both coincide the symbol D will be
employed. In fact, this is the case of a balanced BS, namely
D1|2(ns,nt ,1/2) = D2|1(ns,nt ,1/2) ∀ ns, nt .

In Fig. 3 we show a plot of the Gaussian discord as a
function of the squeezed and thermal component of the input
state ϱ, for the balanced case τ = 1/2. Except for the trivial
case of a vacuum input state ϱ = |0⟩⟨0|, it is apparent that
the discord is always positive and therefore, contrary to the
case of P classicality, there is no C-classicality threshold:
whatever the input state, a balanced BS is capable of generating
quantum correlations. This is also in agreement with the fact
that typically almost all states possess positive discord [37].

From Fig. 3 a quantitatively relevant feature emerges.
Considering input states below the P -classicality threshold
(denoted by the dashed black curve), one can observe that
the output discord and hence the C nonclassicality increases
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as the input nonclassical resources decreases. By decrease
of input nonclassical resources we mean that the squeezing
parameter, and hence ns , diminishes. It is worth noting that this
is true regardless of the constraints that one considers: either
moving along the curves at constant ns , nt , or total energy N ,
the discord increases as ns decreases or nt increases. This is
a quantitative feature that strikingly confirms—together with
the absence of a C-classicality threshold—the inequivalence
between the two notions of classicality considered here.
Notice that the behavior is actually reversed for states with a
sufficiently high P -nonclassical content (specifically for states
lying above the dashed magenta curve in Fig. 3), namely by
increasing the input nonclassical resources one gets higher
values of the discord, and hence more C nonclassicality. This
fact directly signals the participation of entanglement to the C
nonclassicality of the output modes. A full physical account
of it will be given in the next subsection, where generation of
entanglement will be discussed.

In Fig. 3 the Gaussian discord corresponding to three
families of input states has been highlighted: the discord
generated by a thermal input state D th = D(0,nt ) corresponds
to the solid blue curve; the dotted red line is obtained when the
input state is the squeezed vacuum state, i.e., D sq = D(ns,0);
and the black dashed line represents the value of the discord
at the P -classicality threshold, i.e. D P = D(nP

s ,nt ). For these
limiting cases, analytical expressions of the discord in terms
of the total energy N are available, even if quite cumbersome,
and hence not reported. Being functions of a single quantity,
they are suitable for comparison and have been plotted in the
lower panel of Fig. 3, together with the relative values of the
classical correlations C = IM − D. Moreover, in Fig. 3 we
also show, by a dashed magenta line, the curve corresponding
to the minimum value attained by the discord (for fixed nt )
obtained via numerical minimization.

From the left bottom panel in Fig. 3, we can see that the
discord is a monotonically increasing function of the total
energy N . The discord saturates to a finite value both for a
thermal input state, for which we find

lim
N→∞

D th = ln 2,

and at the P -classicality threshold [38], where

lim
N→∞

D P = 1
2 ln(3 + 2

√
2) − 3

2 ln
√

2 ≈ 0.2067. (24)

Again we see that, for a fixed value of the total energy, a thermal
input state results in more quantum correlations than a state
lying on the nonseparability boundary, although in the latter
case squeezing is involved. Actually, as we can see from Fig. 3,
the states corresponding to the P -classicality threshold do not
correspond to the states with minimum output discord (dashed
magenta curve), confirming again the inequivalence between
P and C classicality. The minimum output discord curve has
been obtained numerically and we have not found any clear
physical picture of the class of states for which this minimum
is achieved. On the other hand, for a squeezed vacuum state
the discord grows logarithmically for large N values.

If we now release the restriction of a balanced BS and
inquire the behavior of the discord with respect to τ , we see that
D1|2(R) and D2|1(R) differ from each other; for a generic value
τ of the transmissivity, b1-discord and b2-discord are simply

FIG. 4. (Color online) Nonclassicality by mixing with the vac-
uum: plot of the discord D1|2(R) as a function of the transmissivity τ

for a given total energy N = 10. Colors as in Fig. 3.

related by an exchange of the symplectic invariants of I1 and
I2, which amounts to a swap of the BS transmissivity from τ to
1 − τ . In Fig. 4, the b1-discord has been plotted as a function of
τ , for the relevant cases already mentioned. Being obtained by
the exchange of transmissivity and reflectivity, the b2-discord
is simply given by a reflection about the axis τ = 1

2 . Of course,
in the limiting cases of transmissivity 0 and 1, the discord
falls to zero. Furthermore, apart for a squeezed vacuum input
state, the behavior of D1|2(R) is not symmetric with respect to
τ = 1

2 . By increasing the incoming energy, the maximum of
D1|2(R) (D2|1(R)), and hence the optima transmissivity, shifts
towards τ = 1 (0).

C. Generation of Gaussian entanglement

Let us now focus on the generation of Gaussian entangle-
ment. The explicit expressions of the symplectic invariants are
given by

I1 = 1
4 + nt (1 + nt )τ + N (1 − τ )τ, (25a)

I2 = 1
4 + nt (1 + nt )(1 − τ ) + N (1 − τ )τ, (25b)

I3 = −[(1 − nt )nt + N ](1 − τ )τ, (25c)

I4 = 1
16 (1 + 2nt )2. (25d)

By solving the equation λ̃−(ns,nt ,τ ) = 1
2 with respect to

ns , one finds an analytic expression for the the number of
squeezing photons at the separability threshold:

nsep
s = n2

t

1 + 2nt

, (26)

which does not depend on τ and, most importantly, it equals
the P -classicality threshold, Eq. (22) (see Fig. 2). This is
in agreement with the general fact that P nonclassicality is
necessary and sufficient for the generation of entanglement at
a BS, regardless the Gaussian nature of the input state [39–46].
We can recover this trait from Fig. 3 (upper panel): we can see
that in the P -nonclassical region—in fact above the magenta
dashed line—a higher input P nonclassicality determines
higher C-nonclassicality values, witnessing that entanglement
is playing a prominent role in the establishment of quantum
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FIG. 5. (Color online) Nonclassicality by mixing with the vac-
uum: plot of the minimum symplectic eigenvalue of the partial
transpose CM λ̃− versus the discord D1|2(R) for randomly generated
input states ϱ(ns,nt ) evolving through a balanced BS (dark gray
points), and for random values of the transmissivity τ (light gray
points). The vertical dashed lines correspond to 1 − ln 2 ≈ 0.3069,
ln 2 ≈ 0.6931, which is an asymptotic value for thermal states
entering a balance BS, and 1, beyond which only entangled states
(λ̃− < 1/2) can be found. The black circle stresses the portion of the
plane occupied by states attaining the maximum value of the discord
and still being separable; the black arrow points the maximum value
of the discord achieved at the separability threshold λ̃− = 1/2 in the
case of a balanced BS.

correlations. Moreover, from the left plot in the lower panel,
it is apparent that as the energy increases the discord saturates
for P -classical—and hence separable—input states, while it
grows unbounded for the case of a squeezed vacuum input,
again confirming that entanglement significantly participates
to the overall C nonclassicality.

We are now going to analyze in more detail the relationship
between the generation of Gaussian discord and entanglement.
Since, although analytical, the expression of the Gaussian
discord is far too involved, being in particular noninvertible, we
proceed in our analysis by randomly sampling a large number
of input Gaussian states and making them evolve through
a BS of random transmissivity τ ∈ [0,1]; for each of them,
minimum symplectic eigenvalues of the partially transposed
CM and Gaussian discord are then computed.

The results are shown in Fig. 5 (light gray points), together
with the plot obtained for evolutions through a balanced
BS (dark gray points). Inspecting the latter distribution it
is easy to recover all the features already addressed in
Fig. 3. In particular, since for input thermal states of large
energy the discord has been found to reach the limiting value
ln 2 ≈ 0.6931, the distribution displays an asymptote, so that
we can conclude that the region of high λ̃ corresponds to
highly excited input thermal states. Moreover, as can be seen
following the dashed black line in Fig. 3, by moving on the
separability threshold, i.e., considering the points laying on the
line λ̃− = 1/2, we move from zero discord to the asymptotic
value of Eq. (24), which is obtained for infinite input energy
and pointed out by the black arrow. It is also possible to note
that the minimum value of the discord is attained slightly below
λ̃− = 1/2, as shown by the dashed magenta line of Fig. 3.

More in general, considering arbitrary transmissivity (light
gray points in Fig. 5) if the evolved state has a discord
D1|2(R) > 1, it will be necessarily entangled [28,29]: the
avoided region of the plane {(D,λ̃−) | D > 1 ,λ̃− > 1/2}
shows that the discord for separable states is always smaller
than 1. It means that for separable—and hence P -classical—
input states, whatever the transmissivity, the discord between
the output modes cannot grow indefinitely [29], by simply
pumping more energy. On the other hand, in the region
0 " D1|2(R) " 1, both entangled and separable states are
present. Another region of interest is the entangled region,
namely {(D,λ̃−) | λ̃− " 1/2}, where the random generated
points get “horn-shaped.” One remarkable feature is that, when
λ̃− approaches zero, i.e., entanglement is high, the discord
becomes, loosely speaking, nearly a function of λ̃−, and hence
of entanglement itself. In this case, we note that for D # 1 the
extent of the region in Fig. 5 is bounded by two convergent
quantities. To better clarify this point we set τ = 1/2 and
consider an input squeezed vacuum state. For large N ≫ 1 the
analytic expression of the discord D sq reads (at the leading
order)

D sq ≈ ln
(√

N

2

)
+ 1, (27)

while the minimum symplectic eigenvalue of the partial
transpose λ̃

sq
− is

λ̃
sq
− ≈ 1

4
√

N
. (28)

Form the previous equations it follows that in this limit
λ̃

sq
− ≈ e1−D sq

/8, valid for high discord value. It turns out to
be an upper bound for the random distribution of symplectic
eigenvalues in the entangled region, and hence will be denoted
as λ̃M

− . Upon omitting the superscript sq, we may write

λ̃− " λ̃M
− ≈ e1−D

8
for D # 1 (29)

Analogously, our numerical analysis in the same region shows
that the random generated points are always bounded from
below by λ̃m

−, whose expression is

λ̃− ! λ̃m
− ≈ e−D

4
for D # 1. (30)

Putting together Eqs. (29) and (30) we conclude that, for a
fixed value of the discord D # 1, the distribution of minimum
symplectic eigenvalues of the partially transpose CM, is
constrained in the range

λ̃m
− " λ̃− " λ̃M

− . (31)

Therefore, for D ≫ 1, λ̃− is an exponentially decreasing
function of the Gaussian discord.

Particularly interesting is finally the region corresponding
to highly discordant—yet separable—states, stressed by a
circle in Fig. 5. These are states sharing the maximum amount
of quantum correlations without invoking entanglement. This
region is occupied, although not exclusively, by highly
energetic thermal states entering a BS of extremely high
transmissivity. In fact in the limit of infinite energy we get
limN→∞ D th

τ = τ ln τ/(τ − 1), from which we recover the
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value ln 2 in the case of a balanced BS. For high transmissivity
we obtain limτ→1 limN→∞ D th

τ = 1, thus showing that with
just thermal resources at our disposal we can still generate
quantum correlated output states up to the maximum value
D1|2 = 1 attainable by separable states. This actually repre-
sents a further instance of the inequivalence between P and
C classicality, since the most P -classical states saturate the
amount of C nonclassicality available. If, always keeping
the BS transmissivity close to 1, the fraction of squeezed
photons is such to render the input state a P -nonclassical one,
the corresponding points in the plane will lie just below the
separability threshold, but the value of the discord can increase
only up to the value 1 − ln 2 ≈ 0.3069 (indicated by a red
dashed line). By further increasing the amount of squeezing,
the resulting states will eventually occupy more entangled and
more discordant regions of the lower branch.

V. NONCLASSICALITY ARISING FROM MIXING
A GAUSSIAN STATE WITH A THERMAL STATE

We now consider the general case, allowing for thermal
photons to enter the second port of the BS. In fact, in practical
scenarios a certain amount of thermal noise (e.g., in the
form of blackbody radiation or scattered light) unavoidably
participates in the interference phenomenon and affects the
statistics of the outgoing fields.

Although P classicality, as already discussed, retains the
expression (22) for the threshold value, the presence of another
source of photons affects the properties of the output state. The
relevant changes both to quantum discord and entanglement
can be again evaluated via the symplectic invariants, which
now read

I1 = 1
4 + n2

2(1 − τ )2 + τ
[
nt + ns(1 + 2nt )(1 − τ ) + τ n2

t

]

+ n2(1 − τ )[1 + 2n1 τ ],

I2 = 1
4 + n2

t (1 − τ )2 + τ
[
n2 + ns(1 + 2n2)(1 − τ ) + τ n2

2

]

+ nt (1 − τ )[1 + 2(ns + n2 + 2nsn2)τ ],

I3 =
[
n2

2 + n2
t − ns(1 + 2nt ) − 2n1n2

]
(1 − τ )τ,

I4 = 1
16 (1 + 2nt )2(1 + 2n2)2, (32)

whence, recalling the expression for the total energy in mode
â1 Eq. (3), we can see that I1 and I2 are related to each other
via the exchange of the number of thermal photons nt and n2.

A. Generation of Gaussian discord

As in the previous Section, we first focus on the case of
a balanced BS (τ = 1/2). In Fig. 6 we show the contours
of quantum discord as a function of ns and nt for different
thermal-photon numbers n2 of mode a2. We can see that,
despite the P classicality of the output state remaining
invariant, the C classicality is much affected by the presence
of an additional source of thermal photons. In particular,
for a low number of thermal photons n2 the region with
minimal discord (darker areas in Fig. 6) localizes close to
the P -classicality threshold, whereas it tends to get closer to
the zero squeezed-photon axis for larger n2. Also in this case,
the inequivalence of the two notions of nonclassicality is
apparent.

FIG. 6. (Color online) Nonclassicality by mixing with a thermal
state: contour plots of Gaussian discord as a function of squeezed
and thermal photons ns and nt in mode a1. From panel (a) to (d) the
numbers of thermal photons in mode a2 are given by n2 = 0,0.1,1,3
[panel (a) is in fact the contour plot of Fig. 3]. Colors go from black
(0) to white (0.7).

Since there is no threshold for the production of discord, it
is legitimate to analyze the generation of quantum correlations
at a BS for the “cheapest” conceivable scenario, namely having
at one’s disposal only thermal resources in the input. Given a
certain amount of total thermal photons N = n1 + n2, which is
the most convenient redistribution of the total energy between
the two modes, in order to maximize the Gaussian discord
at the output? The answer to this question is shown in In
Fig. 7, where b1-discord as a function of the photon imbalance
d = n1 − n2 between the two input modes has been plotted.
For each transmissivity, the b1-discord is a monotonically
increasing function of the imbalance d, so we can conclude that
the optimal configuration is the most asymmetric one, where
all the thermal photons are sent in on channel, leaving the other
in the vacuum state. Moreover, an even distribution of photons
(d = 0) between the input modes always leads to zero output
discord. This fact is apparent by looking at Eq. (7) where for
equal input states, no matter the transmissivity, the correlation
terms c± of the CM identically vanish; the phenomenon is
referred to as transparency, since the evolution trough the
BS does not leave any imprint on the input states. Being the
optimal configuration the one with a thermal input in one port
of the BS and the vacuum in the other, we already know that,
for a given amount of energy N , there will be an optimal value
of the transmissivity maximizing the b1-discord (as shown
by the blue curve of Fig. 4); this fact is also manifest in the
crossing of the blue curve and the red dot-dashed one in Fig. 7,
corresponding to τ = 0.5 and τ = 0.8 respectively, when
approaching the maximum imbalance. Finally, the dashed
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FIG. 7. (Color online) Nonclassicality by mixing with a thermal
state: logarithmic plot of the b1-discord D1|2(R) as a function of the
imbalance d for different values of the transmissivity τ and fixed total
energy N = 5. The solid blue curve is for a balanced BS τ = 0.5, the
dot-dashed red line is for τ = 0.8, while the black dashed line is for
τ = 0.99.

curve corresponds to an extremely unbalanced BS, namely
τ = 0.99, and, provided that high-enough thermal energy is
available, the corresponding value of the b1-discord close to
the imbalance would be the greatest, eventually achieving the
limiting value of D1|2 = 1, as discussed above for the circled
points in Fig. 5.

B. Generation of Gaussian entanglement

As before, the equation λ̃(ns,nt ,n2,τ ) = 1/2, if solved with
respect to the squeezed number of photon ns , gives a threshold
on the generation of entanglement when n2 thermal photons
enter the BS. The explicit expression of n

sep
s is given by

nsep
s = µ1 µ2

τ (1 − τ )
/t,2 /2,t , (33)

where /k,l = nknl + nk − (nk − nl)τ and µ1,2 are the purities
of the two input states.

Contrary to the vacuum case, it is apparent that in the
presence of a thermal state the separability threshold n

sep
s

and the nonclassicality threshold nnc
s are no longer coincident.

In Fig. 8 several separability thresholds are shown, for
different values of n2. As soon as n2 differs from zero, the
number of squeezed photons ns required to have entanglement
increases—as shown both in Figs. 8 and 9. The previous
symmetry between the notions of nonclassicality in the phase
space and noneparability no longer holds: there exist P -
singular input states of the electromagnetic field, and hence
P -singular output states, which nevertheless are not entangled.
We can conclude that a hierarchy of nonclassicality has settled
down: nonseparability at the output imposes a stricter notion
of quantumness than the one put forward by P -singular
distributions. Injecting into the BS a nonclassical state is no
longer a sufficient condition to get entanglement between the
output modes.

In order to better investigate this point, we express the
separability threshold relative to n2 thermal photons as a
function of the P -nonclassicality threshold nP

s . We focus on

FIG. 8. (Color online) Nonclassicality by mixing with a thermal
state: plot of the separability thresholds nsep

s for fixed τ = 1
2 and

different values of n2. The solid blue line corresponds to n2 = 0,
and indeed coincides with the nonclassicality threshold nnc

s . The red
dot-dashed lines represent nsep

s for n2 = 0.1, and finally the black
dashed one is for n2 = 1. The black lines are curves of fixed energy in
the mode â1 n1 = ns + nt + 2nsnt : dashed for odd values n1 = 2k +
1, k = 0,1, . . . and dot-dashed for even values n1 = 2k, k = 1,2, . . .

of the total energy.

the optimal case of a balanced BS, obtaining

nsep
s =

[
n2 + h

(
nP

s

)
(1 + 2n2)

]2

(1 + 2n2)
[
1 + 2 h

(
nP

s

)] , (34)

where h(nP
s ) = nP

s +
√

nP
s (1 + nP

s ) is a monotonically increas-
ing function of the nonclassicality threshold. Even if the

0 1 2 3 4 5
n1

0.2

0.4

0.6

0.8

1.0

ns

n1

FIG. 9. (Color online) Nonclassicality by mixing with a thermal
state: plot of the squeezed fraction of photons ns/n1 at the separability
threshold, as a function of the total number of photons n1 = ns + nt +
2nsnt entering the first port of the beam splitter, for different values
of n2. The solid blue line corresponds to n2 = 0, the red dot-dashed
line corresponds to n2 = 0.1, while the black dashed one to n2 = 1.
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FIG. 10. (Color online) Nonclassicality by mixing with a thermal
state: symplectic eigenvalue of the partial transpose λ̃− versus discord
for randomly generated input states ϱ(ns,nt ), random values of the
transmissivity τ , and randomly generated thermal states ν(n2) at the
second port of the beam splitter.

two thresholds n
sep
s and nP

s now differ, their knowledge
enables one, given a known amount of thermal noise in â2,
to estimate the effective P nonclassicality required in â1; i.e.,
how much squeezing must we pump into the BS in order
to get entanglement. When we have a squeezed vacuum state
entering the BS in the mode â1, namely nt = 0, and n2 thermal
photons in b̂, the separability threshold in Eq. (33) reduces to
n2

2/(1 + 2n2), independently of τ . It is the value of the curves
n

sep
s at nt = 0, as can be seen from Fig. 8, and moreover it is the

same expression as nnc
s with nt replaced by n2. Thus, having a

squeezed vacuum state in mode â1 and a thermal state in mode
â2 (characterized by ns squeezed and n2 thermal photons,
respectively) is equivalent to have a single-mode Gaussian
state ϱ(ns,n2) in â1 and the vacuum in â2.

Finally, in Fig. 10 we propose the same random plot as in
Fig. 5, with the difference that a random number of thermal
photons is added in the second mode. We can see that the
lower branch is substantially unchanged by the presence of
thermal noise; even if the entanglement sets later, i.e., for
higher amount of squeezing, the relationship with Gaussian
discord remains the same. On the other hand, in the remaining
accessible region of the plane, compared with Fig. 5, the points
are scattered and the sharp pattern is now washed out. On
average the distribution drops towards lower values of the
discord.

C. Effective nonclassicality and nonclassical depth

As said above, in the case in which thermal photons are
injected in the second port of the BS, the P -non-classicality is
no longer a necessary and sufficient condition to obtain output
entanglement. However, remarkably, a quantitative relation
between these two notions can still be worked out. In particular,
we will now see that the nonclassical depth at the input
determines the potential of generating entanglement at the
output.

Let us first consider the implicit equation defining the
separability threshold λ̃−(ns,nt ,n2,τ ) = 1/2, and let us call

Eϱ(τ ) its solution with respect to the number of thermal photons
in the second port as a function of τ . It expresses (as a function
of the input parameters ns,nt ) the number of thermal photons
that can enter a BS of transmissivity τ in the â2 mode and
yield an output entangled state. The explicit form of Eϱ(τ ),
although analytical, is quite cumbersome and hence has not
been reported. If we now perform a maximization over the
transmissivity τ we obtain the following quantity:

Eϱ = max
τ

Eϱ(τ ). (35)

We shall refer to this quantity as to the effective nonclassicality
of the state ϱ, and it embodies the maximum allowed number
of thermal photons that can be mixed with ϱ at a BS and still
get an entangled output state.

While the nonclassical depth is a property of a single-mode
state of the field, the effective nonclassicality is a property of
the two-mode configuration that we are considering. In other
words, the effective nonclassicality Eϱ must be intended as an
attempt to characterize operationally the nonclassical feature
of a state. Thus, the relation between Eϱ and Tm, if any, is a
priori unclear. Let us stress that the operational interpretation
commonly associated with the Tm of a single-mode state ϱ
is that it gives the number of thermal photons that have to
be statistically mixed with the state ϱ in order to obtain a
classical state. In this sense, this operational interpretation of
Tm exclusively refers to single-mode states.

In order to clarify the relation between Eϱ and Tm we notice
first that, by means of a numerical maximization, it is possible
to show that Eϱ is always obtained for τ = 1/2. Thus the
balanced BS represents the overall optimal configuration, and
in this case the effective non classicality reads

Eϱ = ns − nt +
√

ns(1 + ns)
1 + 2nt

. (36)

If now we look at the expression of the nonclassical depth
Eq. (21) and insert it in Eϱ, after some manipulation we find
the relation

Eϱ = Tm

1 − 2Tm

. (37)

Thus, the two quantities Eϱ and Tm which, as said, are defined
in reference to different systems, are in fact related via a simple
expression. In other words, this endows the nonclassical depth
with a new operational interpretation: the nonclassical depth
of a state determines, via Eq. (37), the maximum number of
thermal photons that can be mixed with it at a beam splitter
without destroying the output entanglement.

VI. CONCLUSIONS

The quantum-to-classical transition for a single-mode
bosonic system may be fully characterized by the properties
of its Glauber-Sudarshan P function in the phase space. On
the other hand, for two-mode states, quantumness may be
recognized either by the presence of quantum correlations (C
nonclassicality) or in terms of its phase space distribution
(P nonclassicality). In this paper we have addressed the
generation of both types of nonclassicality by the linear mixing
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of a single-mode Gaussian state with a thermal state at a beam
splitter, and have explored in details the relationships between
the nonclassical features of the single-mode input and the P
and C nonclassicality of the two-mode outputs.

We have shown that, for mixing with vacuum, a balanced
BS is capable of generating C nonclassicality for any input
state, contrary to the case of P nonclassicality which exhibits
a threshold. In addition, below that threshold the C nonclassi-
cality increases as the amount of input squeezing diminishes,
which corresponds to a decrease of the input nonclassical re-
sources. These findings clearly confirm in a dynamical setting
the inequivalence between these two notions of nonclassicality
that was highlighted in Ref. [7] in a geometrical context. We
confirm this inequivalence also for mixing with a thermal state,
even if more complex behaviors emerge.

In addition, we have shown that input P classicality and
output separability single out two thresholds which coincide
only for the case of linear mixing with the vacuum, whereas
they are connected in a nontrivial way for linear mixing with a

thermal state. In fact, P classicality at the input, as quantified
by the nonclassical depth, does determine quantitatively the
potential of generating output entanglement. This allows us to
provide a new operational interpretation for the nonclassical
depth: it gives the maximum number of thermal reference
photons that can be mixed at a beam splitter without destroying
the output entanglement.

By reinforcing quantitatively the inequivalence between P
and C classicality, our results paves the way for analyzing the
dynamical relationship between different types of nonclassi-
cality in more general contexts.
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