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A quantum illumination protocol exploits correlated light beams to enhance the probability of detection of a par-
tially reflecting object lying in a very noisy background. Recently a simple photon-number-detection-based im-
plementation of a quantum illumination-like scheme was provided in Phys. Rev. Lett. 101, 153603 (2013), where
the enhancement was preserved despite the loss of nonclassicality. In the present paper, we investigate the source
for quantum advantage in that realization. We introduce an effective two-mode description of the light sources and
analyze the mutual information (MI) as a quantifier of total correlations in the effective two-mode picture. In the
relevant regime of a highly thermalized background, we find that the improvement in the signal-to-noise ratio
achieved by the entangled sources over the unentangled thermal ones amounts exactly to the ratio of the effective
MIs of the corresponding sources. More precisely, both quantities tend to a common limit specified by the squared
ratio of the respective cross correlations. A thorough analysis of the experimental data confirms this theoretical
result. © 2014 Optical Society of America

OCIS codes: (270.5570) Quantum detectors; (270.6570) Squeezed states; (270.5585) Quantum information
and processing.
http://dx.doi.org/10.1364/JOSAB.31.002045

1. INTRODUCTION
Quantum illumination is a scheme for target detection
embedded in very noisy environments which provides
improvement when using entangled input probes over any
possible separable state [1,2]. This is notable since the scheme
revolves around the presence of realistic noise and loss, which
are typically the enemies of quantum enhanced schemes [3,4].
The continuous variable version of quantum illumination [2] is
based on states with Gaussian–Wigner function [5–7] such as
the so-called twin beams, which are routinely produced by
parametric processes or by the interference of squeezed states
[8–12]. The noisy environment is mimicked by an incoherent,
thermal background [2]. Surprisingly, the advantage appears
even though the entanglement is completely compromised by
the noise, posing the question of where the quantum enhance-
ment comes from.

In its most general formulation, quantum illumination con-
siders rigorous discrimination theory based on the Chernoff
bound [1,2]. This allows the distinction between two hypoth-
eses (target present or target absent), represented by different
probability distributions (or density matrices in quantum
theory) [13,14]. However, no detector has yet been conceived
of saturating the bound and even suboptimal detectors,
though theoretically proposed, have not been experimentally
realized [15].

Recently, a pragmatic implementation of a continuous var-
iable quantum illumination-like scheme was experimentally
achieved by Lopaeva et al. [16]. This particular scheme is real-
ized as an “intensity-interferometry” type experiment, wherein

the output intensities of two detectors are correlated, yielding
a fourth-order correlation in the field operators. The noise is
introduced by a pseudo-thermal field directly addressed to the
detector in the object arm, whose photons are regarded as
indistinguishable from the ones of the twin beam if only
one detector output is considered; that is, they only differ in
the nature of their correlations. This experiment, aimed to
demonstrate quantum enhancement in target detection in a
realistic situation, presents some differences with the pre-
vious theoretical schemes. The noise modes additively in-
crease the number of detected photons, without interfering
with any light reflected by the target. Thus, the detected field
has a multimode structure and cannot be represented by a sin-
gle Gaussian mode in the usual form. This prevents us from
gaining much insight from previous theoretical analysis and
renders entanglement at the detector difficult to evaluate.
On the other hand, by using quantumness criteria related to
the Glauber–Sudarshan P-representation, it is possible to
show that the quantum scheme is largely more powerful than
any classical schemewith the same local statistical properties,
in terms of photon number detection and correlation measure-
ments. As in the case of [1,2], in the scheme of [16], entangle-
ment is completely destroyed before the detection stage.

The interesting question that naturally arises is about the
actual source of the quantum enhancement. This was dis-
cussed in the original exposition of Gaussian quantum illumi-
nation [2] (see also the very recent further experiment in [17]):
if we take identical single-mode statistics, then the only differ-
ence between using entangled light and unentangled light is
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the maximum allowable magnitude of the cross correlations.
Therefore, these are expected to yield the enhancement. This
question has also recently been addressed for a discrete var-
iable setting, in which case it was suggested that quantum dis-
cord can account for the resilience of quantum illumination
[18]. Quantum correlations of the discord type have also been
investigated as resources for parameter estimation [19,20] and
channel discrimination [21], including quantum illumination
settings, in worst case scenarios.

In this paper, we focus on the continuous variable system
considered in [16] and we approach the problem from the
view-point of information analysis. As mentioned above, the
main obstacle to pursuing this goal is the multimode nature
of the involved states, which prevents direct use of the most
basic tools of Gaussian quantum information [5–7]. Never-
theless, it has been observed in [22] that for interferometric
setups based on intensity measurements on bipartite multi-
mode Gaussian states, e.g., ghost imaging, it is possible under
particular assumptions to introduce an effective two-mode
description, which is useful to obtain theoretical predictions
for some particular quantities of interest. In particular, it was
pointed out that for separable light modes the signal-to-noise
ratio (SNR) is closely related to mutual information (MI),
which represents total correlations in the effective two-mode
picture.

Here, we adopt methods similar to those of [22] in order to
achieve a novel and simple quantitative investigation of the
quantum enhancement obtained in the experimental demon-
stration of [16]. Ultimately, we show that the correspondence
between SNR and MI also holds for this scheme. More
precisely, we demonstrate that the ratio between the SNRs
obtained with entangled and unentangled light, respectively,
which was measured in the experiment [16] and can be
regarded as an indicator of the quantum enhancement,
converges to the ratio between the respective MIs. While spe-
cialized to a particular implementation, this result facilitates
interpretation and understanding of the phenomenon of
quantum illumination.

The paper is structured as follows. In Section 2, we
illustrate the setup of the considered quantum illumination
protocol and introduce the effective description to deal with
the presence of a very large number of modes and a high
level of thermal noise. Section 3 reports on the theoretical
results, which are then compared with the experimental ones
in Section 4. We conclude the paper with a discussion in
Section 5.

2. SETUP AND ANALYSIS
In the experimental setup implemented in [16] the object to
detect is a 50∶50 beam splitter (BS) embedded in a “bath”
of thermal modes. The light source used to probe the presence
of the object consists of multiple identical and independent
pairs of either twin beams (TWBs) or classical-correlated ther-
mal beams (THBs). Charge-coupled device (CCD) arrays are
placed in each of the signal and reference planes, as outlined
in the scheme of Fig. 1. Each pixel in the signal plane collects
M TWB (or THB) modes resulting in a net photon count
per pixel NI (excluding the bath), which are correlated with
M corresponding modes intercepting another pixel in the
reference plane counting Nr photons (see also [23,24]). In
our analysis, we dub the mean value of the count of the

illuminating field as N ! hNri, while Nβ and Mβ are the pho-
ton count and the number of modes per pixel of the bath. The
losses are taken into account by the detection efficiencies η
for the illuminating light (where this quantity does not include
the nonunit reflectivity of the object in the reference plane)
and ηβ for the bath.

The covariance of photon counts per pixel on the signal
plane Ns ! NI " Nβ and on the reference plane Nr is evalu-
ated averaging over the set of pixel pairs Npix in one shot of
the CCD (Npix ! 80 in the experiment). The covariance is ex-
pected to vanish when the object is absent, so the detection of
the target is declared when the covariance is larger than a cer-
tain threshold value. The SNR (normalized by N1∕2

pix ) for the
measurement, given by the difference of covariances in the
cases when the object is present (in) or absent (out), is [16]

SNR !
jhΔin

− Δoutij!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
δ2Δin " δ2Δout

p #1$

for Δ ! NsNr − hNsihNri, where δ2X ! hX2i − hXi2. Remark-
ably, the TWB entangled input, representing the maximal
allowable cross correlation between two modes, harbors a
hefty improvement over the case of maximally correlated
modes within the bounds of separability, i.e., with a proper
P-representation, as experimentally demonstrated in [2,16].

The complete experimental setup we are investigating is
extremely complicated due to the presence of many modes
and high levels of noise. This makes it unfeasible to pursue
a direct analytical approach to the problem. We can overcome
this difficulty by invoking a practical, effective description,
which takes into account both the multimodal nature of the
involved fields and the “coarse-graining” occurring at the de-
tection stage, in which each CCD pixel collects a quite high
number of modes. Fortunately, since the system involves
Gaussian states, we can consider the approach introduced
in [22], which allows us to reduce the description to a simple
two-mode effective system. Considering the nature of the in-
volved states, for each pixel we can introduce the following
effective operators:

Correlated 
Source 

Object Thermal 
bath 

Combined bath and 
illuminating field 

Correlator 

Detector arrays 

Fig. 1. Schematic diagram of a quantum illumination scheme. Here
the object under consideration is a beam splitter. A portion of the light
produced by the correlated source will be reflected by the beam split-
ter, and the challenge is to detect this beneath the dominant thermal
noise, thereby discriminating the presence of the object.
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âeff !
1!!!!!!!!!!!!!!!!!!

M "Mβ
p

XM"Mβ

k!1

âk; (2)

where âk refer to the individual mode operators in our system.
The effective modes are therefore a linear combination of the
original ones, respecting the canonical commutation relations
%âeff ; â†eff & ! 1. An intuitive, operational picture of this averag-
ing can be obtained by considering the combination of all
M "Mβ modes equally by using a series of M "Mβ beam
splitters with appropriate transmissivities. While it is entirely
impractical to actually perform this step in an experimental
setting, we can still deduce an equivalent quantity with the
given experimental setup. Moreover, since the detectors in the
actual experiment do not resolve individual modes, this
coarse-graining provides a feasible average of what the detec-
tor “sees”: for example, if all the modes are identical and
pairwise correlated with a mode in the opposite plane, then
the effective operators for each detector give identical corre-
lations to those of the individual mode pairs impinging upon
the detectors [22].

We take the propagation of light from the source to the far
field enacted by a lens, such that we achieve a one-to-
one correspondence between the transverse momentum-
parametrized modes in the source plane and the transverse
position-parametrized modes in the detection planes. Never-
theless, by analogy with previous works on the topic, the
results of our analysis are reproducible for near-field propa-
gation as well [22,25]. By merit of the far-field propagation we
have hâ†kâk0 i ! δk;k0 hâ†kâk0 i and the coarse-graining in Eq. (2)
establishes the arithmetic mean of the second-order autocor-
relation and cross correlation [26].

As noted, the effective modes are a linear combination of
the original ones, hence informational quantities that depend
on the first and secondmoments of the mode operators will be
employed. In this case, we can further simplify our description
by resorting to the established tools of bosonic Gaussian quan-
tum information [5–7,27]. In fact, we can construct effective
two-mode covariance matrices of the quadrature operators,
with elements

σkj ! Tr%ρ̂#R̂kR̂j " R̂jR̂k$&:

Here R̂k, k ! 1; 2; 3; 4, are the elements of the quadrature
vector given by R̂ ! #q̂eff;s; p̂eff;s; q̂eff;r ; p̂eff;r$T , where âeff !
#q̂eff " ip̂eff$∕

!!!
2

p
. From these covariance matrices we can

fully extract any relevant informational measure based on
the first and second moments.

In particular, here we consider the MI calculated via the
Rényi entropy S2 [28] as an informational quantity to compare
with the SNR. Rényi MI is a measure of total correlations
which, for Gaussian states, is equally valid as the conventional
one defined in terms of von Neumann entropy, and which en-
joys a clear operational interpretation in terms of phase-space
sampling of the two-mode Wigner function by homodyne de-
tections [29]. Precisely, the Rényi MI measures the extra in-
formation (in natural bits) that needs to be transmitted
over a continuous variable channel to reconstruct the com-
plete joint Wigner function of a two-mode state, rather than
the sole marginal Wigner functions of each of the two subsys-
tems separately. In this respect, it is an intuitive measure
of total quadrature correlations between the two modes.

We further observe that the Rényi MI is simpler to compute
than the von Neumann MI, which makes it a convenient
choice for our continuous variable setup, at variance with
qubit scenarios where von Neumann entropic measures of
correlations can be efficiently evaluated [18].

3. THEORETICAL RESULTS
For a Gaussian state ρ with covariance matrix σ, the Rényi
entropy of order 2 is simply given by S2#ρ$ ! 1∕2 ln#det σ$.
Our quantity of interest is then given by the total correlations
between the two effective modes, quantified by the (Rényi)
MI, defined as [29]

MI#r∶s$ ! S2#ρr$ " S2#ρs$ − S2#ρrs$: (3)

The effective two-mode covariance matrices σTHB;TWB when
the illuminated object is a balanced beam splitter and the light
source S consists of THBs or TWBs, respectively, take the
standard form

σS !

0

BB@

aS 0 cS 0
0 aS 0 dS
cS 0 bS 0
0 dS 0 bS

1

CCA;

with S ! THB, TWB, and

aTHB ! aTWB ! 1" 2ημ1; (4a)

bTHB ! bTWB ! 1"
ημ1M " 2ηβμβMβ

M "Mβ
; (4b)

cTHB ! dTHB ! ημ1

!!!!!!!!!!!!!!!!!!
2M

M "Mβ

s

; (4c)

cTWB ! −dTWB ! η
!!!!!!!!!!!!!!!!
μ21 " μ1

q !!!!!!!!!!!!!!!!!!
2M

M "Mβ

s

; (4d)

where μ1 ! N∕#ηM$ is the mean photon count per mode at
the source and μβ ! Nβ∕#ηβMβ$ is the analogous quantity
with respect to values for the bath.

Adopting the SNR (1) as figure of merit, we can quantify the
enhancement achieved by the TWB over the THB by consid-
ering the ratio of the respective SNRs [16],

RSNR !
SNRTWB

SNRTHB
; (5)

for identical single-mode statistics. Similarly, we can analyze
the “enhancement” in total effective correlations by defining
the corresponding ratio of the MIs,

RMI !
MITWB

MITHB
: (6)

It is instructive to illustrate our findings by first plotting
theoretical expectations for the comparisons of the respective
ratios RSNR and RMI. In Fig. 2, we keep all parameters constant
apart from the bath photon count Nβ. We notice that in the
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regime of highly thermal bath, which is the relevant regime for
which the phenomenon of quantum illumination was defined
[1,2], the ratios of SNR and MI converge to each other and
become asymptotically identical. This is observed in all useful
parameter regimes. If one fixes indeed Nβ to a sufficiently
large number which ensures a dominant bath (e.g., Nβ !
5000), and lets the photon number N of the illuminating field
vary in a broad yet realistic regime (say from 102 to 104), an
essentially perfect identity between RMI and RSNR is retrieved.

As one can intuitively expect, the common value attained
by both the SNR and MI ratios in practical parameter regimes
(Nβ ≫ 1) for quantum illumination is determined exactly by
the cross correlations squared, namely,

lim
Nβ→∞

RSNR ! lim
Nβ→∞

RMI !
""""
cTWB

cTHB

""""
2
; (7)

where the effective correlation elements cTWB;THB are defined
by Eq. (4). The proof of this for the case of the MI ratio follows
by a generalization of the appendix in [30]. For what concerns
the SNR ratio, when the bath is dominant, the noise terms in
the denominator of the SNRs are effectively independent
of the source, TWB or THB, actually considered in the proto-
col and cancel each other, provided they have the same single
beam fluctuation (see [16] for details). Thus,

RSNR ≈
jhΔin

− ΔoutijTWB

jhΔin
− ΔoutijTHB

: (8)

It can be shown through the Gaussian moment factoring that
this equates the ratio of cross correlations squared, Eq. (7).

Interestingly, this finding provides a link between recent
pieces of work that examined the role of various kinds of cor-
relations in intensity interferometry schemes: in particular,
previous studies compared either the SNR to the MI of effec-
tive operators [22], or the MI to the ratio of intensity covarian-
ces (though in quite a different context) [30]. Within the
quantum illumination setting considered here, in which all
of these quantifiers can be defined and jointly analyzed, we
find that they are all quantitatively connected.

In [16], the SNR enhancement was also linked to the ratio of
the generalized Cauchy–Schwartz parameter ε ≡ h∶δNsδNr∶i∕
#h∶δ2Ns∶ih∶δ2Nr∶i$1∕2, where h∶∶i is the normally ordered
quantum expectation value and ε ≤ 1 indicates a classical re-
gime, i.e., corresponding to a state having positive well-
defined P-representation. In particular it has been shown that
the quantum enhancement with respect to the optimal
classical strategy, in the limit of dominant bath, is RSNR !
εTWB∕εTHB > 1. Remarkably, in the presence of the bath one
finds εTWB ≤ 1, indicating classicality although the enhance-
ment survives. Lastly, we mention that the same transition

to the classical regime without affecting the performance im-
provement has been observed in [31] for yet another common
parameter of nonclassicality, the noise reduction factor
hδ2#Ns − Nr$i∕#hNs " Nri$ [23,24,32,33].

This series of observations shows how different parame-
ters, originally introduced to assess experimental quality,
are in fact all capturing the same physics in the case of Gaus-
sian light sources for quantum illumination, and are thus all
able to reveal the quantum advantage of the scheme, even
in a regime in which quantumness in the form of entanglement
appears not to manifestly survive.

4. COMPARISONS WITH EXPERIMENT
The practical description introduced in the previous section
allows us to directly assess the experimental results obtained
in [16]. Assuming knowledge of the mode count, we can ex-
tract our effective second-order correlations from intensity
measurements and covariances. For example, hâ†eff âeffi !
hN∕Mi, from which the autocorrelations can be deduced
with ease.

In Figs. 3(a) and 3(b), we plot the SNRs for TWB and THB
as determined experimentally in [16]. In the same figure,
panels (c) and (d), we plot the corresponding MIs obtained
from the experimental data by constructing the effective
two-mode operators as detailed above. We observe that a very
good agreement is reached with the theoretical expectations
based on Eq. (4), especially in the case of TWB light. The THB
case is affected by considerably lower accuracy: this is con-
sistent with the intrinsic lower SNR of the measurement with
THB (since R ∼ 10, we note that in order to achieve the same
accuracy, a number of acquisitions 100 times larger than in the
case of TWB illumination would be required for THB sources).

According to the theoretical expectations, we should
find that

RSNR ≡
SNRTWB

SNRTHB
≈
MITWB

MITHB
≡ RMI;

or, equivalently,

~RTWB ≡
SNRTWB

MITWB
≈
SNRTHB

MITHB
≡ ~RTHB;

in the relevant regime of high Nβ. In Fig. 3(e), we plot the ra-
tios ~R for TWB and THB light, respectively, as calculated di-
rectly from the measured data. We see indeed that the two
quantities align with good precision along the same curve,
in agreement with the theory.

Finally, to quantify the quantum enhancement in the imple-
mented instance of continuous variable quantum illumination,
we extrapolate the confidence intervals for the direct ratios
RSNR and RMI and plot them in Fig. 3(f) against the theory (sim-
ilarly to Fig. 2). We conclude that the quantum enhancement
allowed by the TWB over the corresponding THB with the
same single-mode statistics is of a factor ≈15.1, as determined
by the asymptotic value of the ratios in the Nβ ≫ 1 regime,
Eq. (7). Note that we cannot directly calculate these ratios
from the experimental points without resorting to model fit-
ting, as the acquisitions in [16] correspond to different values
of Nβ between the TWB and THB settings [see, e.g., Fig. 3(e)].

Ratio
10

9
8
7

0 1000 2000 3000 4000 5000

RMI

N
RSNR

Fig. 2. Theoretical plot of the ratios RSNR (blue solid) and RMI (red
dashed) for quantum illumination with parameters set at realistic ex-
perimental values of N ! 4000, M ! 90000, Mβ ! 50, η ! 0.38, and
ηβ ! 0.5. The asymptotic limit for Nβ → ∞ is given by Eq. (7).
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5. CONCLUSION
We have shown that for a continuous variable realization of
quantum illumination [1,2] as demonstrated experimentally
in [16], the fractional increase of MI (in an effective two-mode
description) for entangled twin beams over correlated thermal
beams provides a close approximation for the equivalent ratio
of the SNR, which becomes exact in the practically relevant
regime of a lossy system with a large number of thermal
photons in the bath. This observation, as well as connecting
to previous work on correlations in intensity interferometry
setups [22,30], provides insight into the source of quantum
improvement in continuous variable quantum illumination.
We neatly observed the predicted correspondence from the
experimental data of [16].

We would like to point out that these results complement
and do not controvert the results of [18] or [21] for discrete
variable quantum illumination. In particular, in [18] the dis-
cord consumption, i.e., the difference between the discord
in the source light before and after the interaction with the
target, is linked quantitatively to the quality of the protocol.
Since some discord remains even when the initial entangle-
ment is destroyed, the authors of [18] conclude that discord
plays a key role in empowering quantum rather than classical
illumination. In the continuous variable setting, the Gaussian
discord consumption is known to relate to a quantum advan-
tage in a simple protocol of information encoding [34], but
such a scenario has not been investigated to date for the set-
ting of quantum illumination (and it can be a good topic for
further study).

Our paper offers an alternative perspective, where the cor-
relations evaluated just for the source light are chosen as the
object of study, in analogy to [22,30]. While clearly the MI in-
cludes both classical and quantum portions, we find that in the
coarse-grained two-mode description adopted here it is the
total effective correlation, rather than just the effective dis-
cord of the source, that is found to capture the quantum ad-
vantage in a quantitative fashion. The central observation is
that entangled states can be overall more correlated (classi-
cally and quantumly) than separable states, for a given mean
energy of the states. The resilience of these extra correlations,
which we quantify via the MI in the effective picture, is here
shown to capture the quantum enhancement, even when ex-
ternal noise degrades those correlations to the point that the
quantum signature of entanglement is completely suppressed.
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