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Abstract. We review minimum Kullback entropy principle for estima-
tion of quantum states and operations and discuss its application to
qubit and harmonic oscillator systems. In particular, we address the
estimation of displacement and squeezing operations from incomplete
data and show how to estimate the displacement or squeezing ampli-
tude starting from photon-number resolving or on/off photodetection.

1 Introduction

A quantum system may be characterized by measuring an observable, or a set of
observables, on repeated preparations of the system. As a matter of fact, the set
of observables is generally not complete, i.e., it is not sufficient to give a complete
quantum information on the system [1,2]. In these cases, the question is not that of
finding the actual state of the system, but rather that of estimating the state that best
represents the knowledge we have acquired about the system from the measured data
[3–5]. The problem is thus to find the most appropriate density matrix ! describing a
quantum state satisfying some given constraints, which in turn express the results of
the measurements performed on the system itself. If there is no a priori information,
then the optimal choice is given by the density matrix ! which maximizes the von
Neumann entropy (MaxEnt principle) [3,4]

S(!) = −Tr[! log !], (1)

and satisfies the constraints, i.e., reproduces the observed data. This principle
directly generalizes the classical Jaynes maximum-entropy principle (MaxEnt) [7,8],
which formalizes the idea that we have to include only the information obtained by
measurements, while not allowing any conclusions not warranted by the data them-
selves.
On the other hand, when some a priori information about the system under

investigation is accessible, then the state to be estimated has a bias toward a prior
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one τ . This is the case, for example, of a quantum system evolved according to an
unknown but weak Hamiltonian starting from a known initial state. An estimation
scheme for these situations may effectively constructed starting from the quantum
relative (Kullback) entropy. Quantum Kullback entropy is defined as follows [9–12]:

K(!|τ) = Tr [!(log !− log τ)] , (2)

and quantifies the relative quantum entropy of the density matrix ! with respect to
τ . This leads to formulate a minimum Kullback-entropy principle (mKE) [13], which
states that an estimate of ! may be found by minimizing K(!|τ) with the constraint
of reproducing the data. The intuition behind mKE is that the quantum way to incor-
porate some a priori information is that of bias of the state to be estimated toward a
given quantum state and, with the Kullback entropy effectively quantifying this bias.
Quantum mKE principle generalizes classical mKE principle [14–21], which found
applications in several branches of science [22–26]. Indeed, minimizing the relative
entropy has all the important attributes of the maximum entropy approach with the
advantage that prior information may be easily included.
If we assume that the mean values of N different observables Ak, k = 1, . . . , N

are experimentally accessible, then we have N constraints 〈Ak〉, to be considered. In
this case the best estimate according to mKE is given by [27,28]:

! =
1

Z
e−

1
2

∑
k Akλk τ e−

1
2

∑
k Akλk (3)

where the partition function is given by Z = Tr[τ e−
∑
k Akλk ], and the values of

the Lagrange multipliers λk, coming from the minimization [13,27], are obtained by
solving the system of equations

Tr[!Ak] = 〈Ak〉 k = 1, . . . , N . (4)

Let us now consider a scenario in which the measurement of the full distributions of
a single observable is achievable. In this case the set of observables to be taken into
account are the orthogonal (commuting) eigenprojectors Ak = |ϕk〉〈ϕk|, 〈ϕk|ϕs〉 =
δks of the measured observables. The constraints Tr[!Ak] = pk, correspond to the
measured distribution. The partition function and the probabilities rewrites as

Z =
∑

k

e−λk 〈ϕk|τ |ϕk〉, pk =
1

Z
e−λk〈ϕk|τ |ϕk〉 . (5)

Finally, taking the matrix elements of (3), back-substituting the Lagrange multipliers,
and using (5) it is possible to reconstruct the posterior state, given the initial density
matrix τ and the measured probabilities pk:

! =
∑

n,m

〈ϕm|τ |ϕn〉√
〈ϕm|τ |ϕm〉〈ϕn|τ |ϕn〉

√
pm pn |ϕm〉〈ϕn|. (6)

Remarkably, mKE principle may be effectively applied also to the estimation of quan-
tum operations, at least when they are weak, i.e., not too different from the identity.
In these cases the evolved state is not so different from the initial one and, then, there
is a natural bias toward the unperturbed state. Therefore the estimation of a weak
Hamiltonian H may be pursued by means of the mKE and suitable measurements
onto the evolved states. This allows one to estimate the parameters (matrix elements)
of the operations from data obtained by an incomplete set (i.e. not tomographically
complete [2,29]) of measurements on the evolved state, i.e., to use mKE principle as
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a effective tool for process estimation. In particular, for the sake of simplicity, we will
focus on weak Hamiltonian processes.
The paper is structured as follows. In Sect. 2 we apply the mKE principle to

estimate states and operations for a qubit system, whereas Sect. 3 is devoted to con-
tinuous variable systems (harmonic oscillators). Section 4 closes the paper with some
concluding remarks.

2 mKE estimation for qubit systems

In this section we exploit mKE to estimate the state of a qubit and the (coupling)
parameters of a weak qubit Hamiltonian. Let us start with the estimation of a qubit
state starting from the measurement of a single observable [30]. In order to apply the
mKE principle we assume to have a bias toward the state τ = 1

2 (1+τ ·σ), |τ | ≤ 1,
where τ = (τ1, τ2, τ3) is the Bloch vector associated to τ and we have defined σ =
(σ1,σ2,σ3), σk, k = 1, 2, 3, being the Pauli matrices. The measured quantity is the
spin along direction n, which is described by the operator A = n · σ. Eq. (3)
rewrites as

! =
1

2
(1 + v · σ), v = τ + 2 sinh

2(λ/2)(n · τ )n− sinhλn
coshλ− τ · n sinhλ , (7)

Now, the constraint Tr[!n ·σ] = 〈n ·σ〉, leads to the following estimate of the vector
v [13]:

v · n1 = 〈n · σ〉 (8)

v · nk = τ · nk

√
1− 〈n · σ〉2
1− (τ · n)2 (k = 2, 3), (9)

where we considered an operator basis composed by spin operators along three
orthogonal directions n1 ⊥ n2 ⊥ n3, with n1 ≡ n. Eqs. (8) and (9) say that the
estimated Bloch component in the direction of the measured observable is equal to
the measured mean value, whereas the two other orthogonal components are obtained
from the prior one by a common shrinking factor.
Let us now exploit the above results for the estimation of “weak” interactions,

i.e. Hamiltonians that can be written as H =
∑3
ν=0 hν σν where h is unknown and

small, i.e. |h|( 1. Under this assumption we may expand the evolution equation for
initial state τ !t = e−iHtτ eiHt at the first order in h, thus obtaining

!t = τ + it[τ,H] + o(|h|2), [τ,H] = i
3∑

k,s=1

τs hk εksl σl, (10)

where εksl is the totally antisymmetric tensor, ε123 = 1. Being the Hamiltonian weak,
the evolved state !t has a natural bias toward the initial one and it can be written as
!t =

1
2 (1 +w · σ), where the Bloch vector is now given by :

w ≡ τ + 2h× τ . (11)

Eq. (11) represent a system of equation for the unknowns h. The transfer matrix is
singular, but the system may be anyway inverted using the Moore-Penrose generalized
inverse [45,46], thus leading to the following estimate for h [13]:

h =
1

2|τ |2
(1−

√
1− κ2) τ · n− κ
1− τ · n κ τ × n, κ =

τ · n− 〈n · σ〉
1− 〈n · σ〉(τ · n) . (12)

By a repeated randomized choice of the measurement, an effective reconstruction may
be achieved for any, but weak, qubit Hamiltonian.
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3 mKE estimation for harmonic systems

In this section we exploit mKE to estimate the state of a single-mode field (harmonic
oscillator) and the (coupling) parameters of a weak oscillator Hamiltonian.
Let us start with the problem of estimating the state of a harmonic oscillator with

a bias toward a coherent state τ = |α〉〈α|, with α ∈ C. Let us consider a photon
number measurement, i.e., if a denotes the annihilation operator, [a, a†] = 1, then the
observable is expressed by A ≡ a†a =

∑
n n|n〉〈n|, {|n〉} being the photon number

basis. Since 〈n|τ |m〉 = (n!m!)−1/2αnᾱm e−|α2|, we have that the mKE estimated
state is [13]:

! = e−N
∑

nm

(
N/|α|2

)(n+m)/2 αnᾱm√
n!m!

≡ |
√
Neiφ〉〈

√
Neiφ| , (13)

with N = Tr[! a†a] and φ = argα: the best estimate according to mKE is a coherent
state with average number of photons equal to the measured one and phase equal
to that of the prior coherent state. Notice that the best estimate obtained using the
MaxEnt principle with the same constraint on the average number of photons, but
without the bias, would have been a thermal state with N thermal photons [13].
If by some means the complete photon distribution pn is available, the recon-

structed state, given by Eq. (6), reads as follows (we assumed that the bias is still
toward τ = |α〉〈α|, α ∈ C ):

! =
∑

n,m

√
pn pm e

iφ(n−m)|n〉〈m| . (14)

Remarkably, Eq. (14) no longer depends on the amplitude of the prior state, which
enters only trough the phase φ. This makes the above scheme quite promising though
measuring the photon distribution is, in general, a challenging task. On the other
hand, in the optical case it is possible to reconstruct the pn by means of on/off
photodetection and maximum likelihood algorithm [31–34], a method that has been
recently verified in laboratory [35,36]. Multichannel fiber loop detectors [37–39], and
hybrid photodetectors [40–42] may be also used.
Finally, we notice that a special case of bias is that toward a Gaussian state. In

fact the Kullback relative entropy of a state ! with respect to a Gaussian state τ , with
the same covariance matrix reduces to the difference of the Von Neumann entropies
K(!|τ) = S(τ) − S(!) and thus the mKE principle reduces to MaxEnt and it is
equivalent to minimizing the nonGaussianity of the estimated state [43,44]. Notice,
however, that this is not in contrast with the results above, since in that case the
results of the measurement do not impose the equality of the covariance matrices.
Let us now assume that the expansion !(t) = τ + it[τ,H] + o(|H|2), describe the

state of a harmonic oscillator evolving under the action of a weak HamiltonianH that
we want to estimate. We also assume that the full distribution of a single observable
of the evolved state can be measured. Therefore, the evolved density matrix !t may
be reconstructed by mKE starting from the observation level Ak = |ϕk〉〈ϕk|, and thus
obtaining the state (6). Using the basis {|ϕk〉} we can write the matix element of the
evolved state as follows:

!mn(t) = τmn + it
∑

s

(Hmsτsn + τmsHsn) , (15)

with Hmn ≡ 〈ϕm|H|ϕn〉. Using the mKE estimate (6) for the evolved density matrix
we obtain the following hierarchy of equations

∑

s

(
Hmsτsn + τmsHsn

)
=
i

t
τmn

(
1−
√

pnpm
〈ϕn|τ |ϕn〉〈ϕm|τ |ϕm〉

)
(16)
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where pn are the measured probabilities (the constraints used for the mKE) and the
matrix elements Hnm are the unknowns.
A relevant example, in which the Hamiltonian can be effectively estimated using

mKE, is that corresponding to H = (ga + h.c.), a being the annihilation opera-
tor starting from the sole measurement of the photon distributions. The evolution
imposed by the Hamiltonian H corresponds to the unitary displacement operator
D(β) = exp(βa† − β∗a), β = gt. The problem is then to estimate the displace-
ment amplitude β from the measured photon distribution. We assume that the ini-
tial state is a coherent state !(α) = |α〉〈α|. For the sake of simplicity we take α
and β as real. Using the photon number basis the evolved state may be written
as !(β) = e(α+β)

2∑
n,m (n!m!)

−1/2(α+ β)n+m |n〉〈m|. Now, upon assuming that the
measurement of the photon number is made on the evolved state, and that mKE prin-
ciple is used to estimate the density matrix, we equate the above expression to that
given in Eq. (14) for φ = 0 (recall that α and β are taken as real). We thus obtain
the following set of equations:

−(α+ β)2 + (n+m) ln(α+ β) = ln
√
n!m! pn pm, (17)

to be solved for β. It is worth noting that in order to estimate β one can choose to
measure a finite number of pk, i.e., k = 0, . . . , N − 1. As a matter of fact, this choice
also select a subspace of the Hilbert space where the reconstructed state is defined.
In turn, (17) corresponds to N2 determinations of the same parameter β. Notice
that without using the mKE principle the only way to exploit the information at
disposal, i.e., the elements of the probability distribution pn = e−(α+β)

2
(α+β)2n/n!,

n = 0, . . . , N − 1, is to invert those relations. In order to estimate β one should solve
the set of equations

−(α+ β)2 + 2n ln(α+ β) = ln(n! pn), (18)

which provide only N determinations of β. In Fig. 1 we plot the estimated displace-
ment βest as a function of the actual one β, taken as real, with and without the use
of the mKE principle in the case of a simulated experiment. The photon distribution
pn of the coherent state has been obtained by using on/off photodetection and max-
imum likelihood algorithm [31–34]. Even if the estimation actually depends on the
reconstructed pn, we can see that mKE achieves better results (see the plots on the
left in Figs. 1). It is worth noting that in this particular scenario, i.e., displacement
onto coherent states, we have good results also when the Hamiltonian is not so weak.
Let us consider the estimation of a weak squeezing amplitude starting from the

sole photon distribution. The squeezing Hamiltonian is given by H = (g′a2 + h.c.)
and the evolution operator corresponds to the unitary squeezing operator S(r) =
exp(12ra

†2− 12ra
2), r = 2g′t ∈ R . The problem is to estimate the squeezing amplitude

r from the measured photon distribution assuming that r is small. To this aim we
assume that the initial state of the harmonic oscillator is the vacuum |0〉, then it is
evolves according to the squeezing Hamiltonian, and finally we measure the photon
distribution on the output state. Since the squeezing is small the measured state has
a bias toward the vacuum and therefore the estimated mKE state in that Eq. (14).
The squeezed vacuum state S(r)|0〉 may be written as

!r =
∑

nm

f2m(r)f2n(r)|2n〉〈2m| , (19)

where

f2n(r) =

(
tanh r

2

)n√(
2n
n

)
1

cosh r
.
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Fig. 1. Displacement amplitude βest estimated using the mKE principle as a function of the
actual one β: triangles and disks refer to the estimation with and without mKE, respectively.
We set the amplitude of the initial coherent state to α = 0.5 (left) or α = 1.5 (right). The
insets show the absolute deviations δβ = βest − β (symbols have the same meaning).

Now, upon denoting the measured photon distribution by pn, the above estimate,
with the condition r ( 1, may be exploited to obtain a set of equations for r.
We have

r + 2
[
1

p2k p2s

(
2k
k

)(
2s
s

)]− 1
2(k+s)

(20)

where k, s = 0, . . . , N − 1, N being a suitable truncation of the Hilbert space, e.g.
corresponding to the maximum discrimination power of the detectors employed to
measure the photon distribution. As in the previous examples, this choice also select
a subspace of the Hilbert space where the reconstructed state is defined. Eq. (20)
exploits the estimation of the off-diagonal elements by the mKE principle to provide
N2 determinations of the same parameter r, whereas without using the mKE prin-
ciple the only way to employ the information at disposal, i.e., the elements of the
probability distribution, would have been that of inverting the relations pn = fn(n)
(for even n), leading to only N determinations of r.

4 Conclusions

We have considered quantum estimation of states and weak Hamiltonian operations
in situations where one has at disposal data from the measurement of an incomplete
set of observables and, at the same time, some a priori information on the state
itself. By expressing the a priori information in terms of a bias toward a given state
the best estimate is obtained using the principle of minimum Kullback entropy, i.e.,
by taking the state that reproduces the data while minimizing relative entropy with
respect to the bias. The mKE principle has been used to estimate the quantum state
from the measurement of a single observable. In particular, we have analyzed qubit
and harmonic systems with some details. We have also considered the problem of
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estimating a weak Hamiltonian processes. In this case there is natural bias of the
evolved state toward the initial state and the mKE principle can be used as a tool
to estimate the Hamiltonian from a incomplete data. In particular, we have applied
mKE principle to estimate the amplitude of a displacement imposed to a single-mode
radiation field. We found that mKE principle improves estimation and, in the case of
a coherent input signal, may be applied also when the Hamiltonian is not so weak.
Overall the minimum Kullback entropy principle appears to be a convenient approach
for quantum estimation in realistic situations and a useful tool for the estimation of
weak Hamiltonian processes.
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M. Genoni and K. Banaszek for useful discussions. SO acknowledges financial support from
the University of Trieste through the grant “FRA 2009”.
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