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Abstract
Quantum input–output relations for a generic n-port ring cavity are obtained
by modelling the ring as a cascade of n interlinked beam splitters. Cavity
response to a beam impinging on one port is studied as a function of the beam-
splitter reflectivities and the internal phase shifts. Interferometric sensitivity
and stability are analysed as a function of the number of ports.

(Some figures in this article are in colour only in the electronic version)

Multiport ring cavities represent the natural generalization of two-port Fabry-Perot
interferometers [1] to several modes of the radiation field. They find application in advanced
interferometry, division multiplexing and optical cross connects. Recently, a three-port fibre
ring laser was suggested and demonstrated to improve sensing resolution [2], whereas multiport
optical circulators have been used for interconnecting single-fibre bidirectional ring networks
[3]. In addition, a three-port reflection grating was demonstrated [4] and the corresponding
input–output relations have been derived [5]. From a more fundamental perspective, multiport
couplers, either multiport beam splitters or ring cavities, are crucial devices for generating
and engineering multiphoton entangled states [6]. In fact, the cavity response is linear in the
input modes for both kinds of devices, with ring cavities offering the additional feature of
a high nonlinearity with respect to the internal phase shifts of the cavity. The use of ring
cavities, supplemented by nonlinear media, has also been suggested to realize nondemolitive
measurement and photon filtering [7].

In this communication, fully quantum input–output relations for a generic n-port ring
cavity are obtained by modelling the ring as a cascade of n interlinked, suitably matched,
beam splitters. In this way, the cavity response to an impinging beam, as well as the use of
the cavity in interferometry, can be evaluated as a function of the beam-splitter reflectivities,
the internal phase shifts and the number of ports.

Let us first illustrate the results in detail for the case of a three-port ring cavity, which has
been schematically depicted in figure 1. We assume that the three beam splitters used to build
the cavity have the same transmissivity τ . We also assume that losses at the beam splitters
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Figure 1. Three-port ring cavity as a cascade of three interlinked beam splitters. The cavity is built
by three beam splitters with equal transmissivity τ . The matching relations dk = eiφk ck should be
satisfied together with the input–output relations (1) for each beam splitter.

are negligible. The reflectivity of each coupler is thus given by ρ = 1 − τ . The input–output
relations for the three beam splitters are given by

BSk :

{
bk = τ

1
2 dk + ρ

1
2 ak

c1⊕k = −ρ
1
2 dk + τ

1
2 ak

(1)

with k = 1, 2, 3 and ⊕ denoting sum modulo 3. Any additional phase shift at the beam
splitters may be absorbed into the internal phase shifts φk . In order to build the cavity the
matching relations dk = eiφk ck should also be satisfied, together with equations (1). After
lengthy but straightforward calculations one arrives at the input–output relations for the cavity

b1 = 1

A3
{√ρ[1 +

√
ρ eiφ]a1 − τ

√
ρ eiφ13a2 + τeiφ1a3}

b2 = 1

A3
{τ eiφ2a1 +

√
ρ[1 +

√
ρ eiφ]a2 − τ

√
ρeiφ12a3} (2)

b3 = 1

A3
{−τ

√
ρ eiφ23a1 + τ eiφ3a2 +

√
ρ[1 +

√
ρ eiφ]a3},

where φjk = φj + φk, φ = φ1 + φ2 + φ3 and A3 = 1 + ρ
3
2 eiφ . Unitarity of the mode

transformations (2) can be explicitly checked through the normalization of the output modes[
bj , b

†
k

] = δjk .
The above model can be generalized to a cavity with an arbitrary number of ports, see

figure 2. We have

b
(n)
k =

n∑
j=1

M
(n)
kj aj (3)

where
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(4)

and cyclic transformations for Mkj , k = 2, . . . , n, with φ = ∑n
k=1 φk,An = 1+ρ

n
2 (−1)1+n eiφ

and θ
(n)
tj = φt +

∑n
k=j+1 φk .
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Figure 2. Multiport ring cavity as a cascade of interlinked beam splitters.

Explicitly, for a four-port cavity we have

b
(4)
1 = 1

A4
{√ρ[1 − ρ eiφ]a1 + τρ eiφ134a2 − τ

√
ρ eφ14a3 + τ eiφ1a4} (5)

and cyclic transformations, where φ134 ≡ θ
(4)
12 = φ1 + φ3 + φ4.

Let us now consider the situation in which one of the ports (say, port 1) is fed by a
coherent beam |α〉, whereas the other ports are left unexcited. Using mode transformations (3)
one may analyse the cavity response to a given excitation, i.e. how the input mean
energy

〈
a
†
1a1

〉 ≡ 〈α|a†
1a1|α〉 = |α|2 is distributed among the n output photocurrents

I
(n)
k = b

(n)†
k b

(n)
k , k = 1, . . . , n, obtained by detecting light at the n output ports of the cavity.

As the mode transformations are linear, the output beams are coherent states with amplitudes∣∣β(n)
k

〉
. Upon defining the cavity response as

f
(n)
k (ρ, φ) =

〈
b
†(n)

k b
(n)
k

〉
〈
a
†(n)

1 a
(n)
1

〉 ,
one has β

(n)
k = α

√
f

(n)
k exp

{
iθ(n)

k

}
with θ

(n)
k = arg M

(n)
k1 and

f
(n)
1 = ρ

|An|2 [1 + ρn−2 + 2(−)1+n cos φρ
n
2 −1] (6)

f
(n)
k = (1 − ρ)2

|An|2 ρn−k 2 � k � n (7)

where |An|2 = 1+ρn +2(−)1+nρ
n
2 cos φ. The cavity response explicitly depends on the mirror

reflectivity ρ, while, remarkably, it depends on the internal phase shifts φk only through the
total phase shift φ. The following sum rule holds

f
(n)
1 +

n∑
k=2

f
(n)
k = 1 ∀n,∀φ,∀ρ,

which, in turn, assures energy conservation. In figure 3, we show the cavity responses f
(n)
k

for n = 4 as a function of the mirror reflectivity for different values of the total internal phase
shift. Note that 0 � f

(4)
k � 1 for k = 1, 4 and 0 � f

(4)
k � 1

4 otherwise.
In general, the minimum of the cavity response at the first port is achieved for φ = 0 for

n even and for φ = π for n odd. For these values (cavity at resonance), we have

f
(n)
1 = ρ

(
1 − ρ

n
2 −1

1 − ρ
n
2

)2

(8)
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Figure 3. Cavity responses f
(4)
k , k = 1, . . . , 4, of a four-port ring cavity as a function of the

mirrors’ reflectivity for different values of the total internal phase shift. In plot of f
(4)
1 (f (4)

k for
k �= 1), from bottom to top (from top to bottom), the curves correspond to φ = 0, π

20 , π
10 , π

5 , π
2 , π ,

respectively.

f
(n)
k = ρn−k

(
1 − ρ

1 − ρ
n
2

)2

2 � k � n, (9)

either for n even or odd. In the high-reflectivity limit ρ → 1 we have f
(n)
1 = (

1 − 2
n

)2
and

f
(n)
k = 4

n2 ∀k �= 1. In other words, in a two-port cavity at resonance the energy is completely
transferred to the second mode, while increasing the number of ports the energy is unavoidably
‘more distributed’. For large n, the input beam is mostly reflected on the beam b

(n)
1 and the

cavity becomes opaque. An equal distribution at the output is obtained for n = 4
(
f

(4)
k = 1

4

)
.

The cavity response f
(n)
1 at the first port (last port f (n)

n respectively) monotonically increases
(decreases) as the mirror reflectivity approaches unit value. On the other hand, f (n)

k ,∀k �= 1, n,

show a maximum value, whose location depends on the internal phase shift, as well as the
number of ports of the cavity.

The sensitivity of the cavity in detecting perturbations to the internal phase shift decreases
as the number of ports increases. This is true either monitoring the cavity output at resonance
or doing the same at a fixed working point in an interferometric set-up. In figure 4, we show
the cavity responses f

(n)
1 and f (n)

n as a function of the internal phase shift for different numbers
of ports. As is apparent from the plot the curves flatten as the number of ports increases. The
full-width half-minimum (maximum) of f

(n)
1

(
f (n)

n

)
, for a generic value of n, is given by

δφ(n)
HW 	 1 − ρn/2

2ρn/4

ρ→1	 n

4
(1 − ρ), (10)

showing a linear increase of the half-width.
More generally, if one aims to detect the fluctuations of the internal phase shift around a

fixed working point φ = φ∗ by monitoring the output photocurrents I
(n)
k then the minimum
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Figure 4. Cavity responses f
(n)
1 (left) and f

(n)
n (right) for a multiport ring cavity as a function of

the internal phase shift φ. The responses for n = 2, 3, 4, 5 and ρ = 0.99 are reported. The smaller
the value of n, the more peaked the curves.

(This figure is in colour only in the electronic version)

Figure 5. Rescaled sensitivity y(n) = |α|δφ(n) as a function of working point φ for ρ = 0.99 and
for different values of n. From bottom to top n = 2, 3, 4, 5.

detectable fluctuation corresponds to the quantity [8]

δφ
(n)
k =

∣∣∣∣∣∣
(

δ
〈
I

(n)
k

〉
δφ

)
φ=φ∗

∣∣∣∣∣∣
−1 √〈

	I
(n)2
k

〉
, (11)

where
〈
	I

(n)2
k

〉 = 〈(
b

(n)†
k b

(n)
k

)2〉 − 〈
b

(n)†
k b

(n)
k

〉2
denote the rms fluctuations of the output

photocurrents. When a single input port is excited in a coherent state |α〉 the output signals
are also coherent and equation (11) is rewritten as

δφ
(n)
k =

√
f

(n)
k

|α|

∣∣∣∣∣∣
(

∂f
(n)
k

∂φ

)
φ=φ∗

∣∣∣∣∣∣
−1

, (12)

where |α| corresponds to the square root of the incoming average number of photons. The
optimal working point φ∗, corresponding to maximum sensitivity, is the internal phase shift
that minimizes the value of δφ

(n)
k . We found that φ∗ is close, but not equal, to φ = 0 for n

even and to φ = π for n odd. Only slight differences are observed for different values of k,
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which vanish in the high-reflectivity regime. As a matter of fact, by increasing n the optimal
working point φ∗ moves away from φ = 0 (φ = π) and the minimum value of δφ increases.
Since in the high-reflectivity regime ρ → 1, the quantities δφ

(n)
k do not depend on k at fixed

n, i.e. δφ
(n)
k = δφ

(n)
1 ,∀k = 1, . . . , n, the overall sensitivity of the cavity may be evaluated as

δφ(n) = δφ
(n)
1

/√
n. In figure 5, we report the rescaled sensitivity y(n) = |α|δφ(n) as a function

of φ for ρ = 0.99 and for different values of n. As is apparent from the plot, the overall
sensitivity slightly degrades with increasing n, despite the fact that the factor 1/

√
n decreases.

The curves versus φ flatten for increasing n and this implies that the need for tuning of the
cavity at the optimal working point also becomes less stringent, i.e. stability slightly increases.

In conclusion, by modelling a n-port ring cavity as a cascade of n interlinked beam splitters
we obtained its input–output relations in terms of the involved modes of the quantized radiation
field. Using this approach, the cavity response to an impinging beam, as well as sensitivity to
perturbations, can be straightforwardly evaluated as a function of the beam splitters reflectivity
and the internal phase shifts. We found that by increasing the number of ports the input energy
is unavoidably distributed over the output ports. The sensitivity of the cavity in detecting
fluctuations of the internal phase shift, either at resonance or at a fixed optimal working point,
slightly degrades as the number of ports increases while, on the other hand, stability slightly
increases.
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