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Quantum-classical distance as a tool to design optimal chiral quantum walks
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Continuous-time quantum walks (CTQWs) provide a valuable model for quantum transport, universal quan-
tum computation, and quantum spatial search, among others. Recently, the empowering role of new degrees
of freedom in the Hamiltonian generator of CTQWs, which are the complex phases along the loops of the
underlying graph, was acknowledged for its interest in optimizing or suppressing transport on specific topologies.
We argue that the quantum-classical distance, a figure of merit which was introduced to capture the difference in
dynamics between a CTQW and its classical, stochastic counterpart, guides the optimization of parameters of the
Hamiltonian to achieve better quantum transport on cycle graphs and spatial search for the quantum speed limit
without an oracle on complete graphs, the latter also implying fast uniform mixing. We compare the variations of
this quantity with the 1-norm of coherence and the inverse participation ratio, showing that the quantum-classical
distance is linked to both, but in a topology-dependent relation, which is key to spot the most interesting quantum
evolution in each case.
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I. MOTIVATION AND LAYOUT

Continuous-time quantum walks (CTQWs) are intensively
studied as simplified models for a wide range of applications,
spacing from quantum transport [1–7], e.g., excitonic trans-
port in biochemical complexes involved in some instances of
bacterial photosynthesis [8–10], to universal quantum compu-
tation [11] or specific quantum algorithms such as the spatial
search [12–18]. They are usually defined [19] on the same
line of classical random walks (RWs) on undirected, simple
graphs by promoting the graph Laplacian L, which is the
generator of the time evolution of an unweighted RW, to a
Hamiltonian H . Going from the classical transfer matrix to the
quantum unitary evolution operator, together with the shift of
focus from probabilities to amplitudes, make CTQW radically
different from classical RW, with reliable prospects of achiev-
ing a quantum advantage in specific tasks [20]. To mention
a few, it is known that CTQW exhibit ballistic propagation
of probability on lattices, contrary to the diffusive behavior
of classical RW, and that they can solve search problems in
shorter times.

Fairly recently, however, it has been suggested that con-
straining the Hamiltonian of the CTQW to be the Laplacian
of the graph is an unnecessary restriction, and richer phe-
nomenology can be observed when the off-diagonal matrix
elements of H are allowed to be generic complex phases, in
compliance just with Hermiticity: the resulting systems are
called chiral CTQWs [21,22], because they exhibit asymme-
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try under time-reversal and directional bias in the propagation
of probability. Further motivation for this generalization of
CTQW has been provided in Ref. [23], where the most general
correspondence between classical and quantum continuous-
time random walks was also derived. Acknowledging this
larger space of opportunities offered by quantum walks, which
stems from the one-to-many nature of the step from classical
to quantum, one is immediately faced with a new challenge:
if assuming H = L leads to a single choice of CTQW for a
given unweighted graph, enlarging the focus to include chiral
CTQW offers many free, real parameters that can be adjusted
to optimize the quantum advantage in a specific task, at fixed
graph topology.

In this paper, we show through a variety of relevant exam-
ples and an analytic discussion that a previously introduced
quantity [24], the quantum-classical distance DQC, is a valu-
able tool to guide this optimization: it correctly captures
the distinction between classical and quantum evolutions of
random walks on graphs. Quite generally, quantum walks
outperform classical random walks because of faster hitting,
which is related to quantum transport and targeting, and
faster mixing [25,26], when the walker spreads out towards
a maximally coherent, uniform superposition of all sites. By
maximizing the value of DQC at short timescales over the
free parameter space, one is quickly directed towards chiral
CTQWs which least resemble the corresponding classical RW
and could therefore exhibit a quantum advantage, either be-
cause of quick hitting or mixing [25,26] depending on the
graph’s topology. Indeed, although from their very introduc-
tion in Ref. [19] the quantum advantage of CTQW has been
linked with quantum coherence, it is clear that it cannot reduce
to this sole quantum phenomenon, since the target state in a
transport task on a graph has very little coherence, for example
(although it does play a role throughout the evolution).
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After setting the notation for continuous-time classical and
(chiral) quantum walks in Sec. II, we bring attention to the
three dynamical quantities that will be employed through-
out the article: the quantum-classical distance, the 1-norm
of coherence, and the inverse participation ratio, which are
all defined in Sec. III and accompanied by a comparison of
their short-time expansions for generic chiral Hamiltonians.
We then argue the effectiveness of DQC in the identification of
“optimal” phase configurations at fixed topology by looking
at four very different and emblematic examples. We start with
cycle graphs in Sec. IV, which allow for analytical expressions
also in the presence of phases and constitute a test bed for
our ideas. For odd cycles we show that the quantum-classical
distance correctly signals the best phase for quantum trans-
port and, conversely, spots the characteristic suppression of
transport in even cycles for a resonant phase value, which is
associated with a dip in the value of DQC.

Then in Sec. V we move to complete graphs, hav-
ing maximal connectivity. After a preliminary exploration
based on randomly generated Hamiltonians, we maximize the
quantum-classical distance at short times and find a particular
set of Hermitian Hamiltonians which permit quantum search
without oracle in a time which exactly achieves the optimal
quantum speed limit, outperforming Grover’s algorithm in the
constant prefactor and holding for any size of the complete
graph. Interestingly, here DQC is larger for evolutions which
quickly lead to highly delocalized states, in stark contrast with
its behavior for cycles. This is consistent with the other typical
behavior of quantum walks, which is fast mixing. Indeed, the
same optimal chiral evolution on complete graphs achieves
uniform mixing, contrary to the nonchiral evolution, also with
a quadratic speedup with respect to the standard protocol that
involves hypercube graphs [25].

As a third case, in Sec. VI we examine quantum switches,
constructed from a triangle graph with independent chains
of sites attached to each vertex of the polygon. It is already
known that, for resonant value of the sole free phase, this
topology allows for directional quantum transport from one
arm of the triangle to another, with minimal losses on the
excluded, third arm. We show that the quantum-classical dis-
tance again spots the best value of the phase. Moreover, since
these graphs are nonregular, an ambiguity about the diagonal
entries of H arises, since the nonchiral association H = L
indirectly introduces a potential field landscape. We argue that
setting all the diagonal phases of H to the same, arbitrary
value, instead of the nonuniform connectivities of the different
sites, is the unbiased choice and also the most efficient one for
directional quantum transport.

Finally, we tackle the cube graph in Sec. VII, on which
perfect quantum transport from one vertex to the opposite
one, with the Laplacian as generator, is known to happen. The
quantum-classical distance here suggests that phases cannot
improve this standard evolution. However, minimal values
of DQC are achieved in correspondence with evolutions that
suppress transport at all times on half of the vertices of the
cube.

It is worth stressing that we are not stating that chiral
CTQWs achieving higher values of DQC(t ) will necessarily
provide a quantum advantage. Rather, considering the little
guidance that we currently have in devising new quantum algo-

rithms and the enormous parameter space of chiral CTQWs on
large graphs, we claim that the quantum-classical distance can
offer a simple criterion to spot the quantum evolution which
is the least similar to the classical one and therefore could
potentially display a quantum advantage.

II. QUANTUM AND CLASSICAL WALKS ON GRAPHS

Continuous-time quantum walks are traditionally intro-
duced through an analogy with classical random walks on
graphs. For the latter, one considers an undirected simple
graph G = (V, E ) of N vertices, where V is the set of ver-
tices or sites, and E is the set of edges. To G corresponds
an N × N symmetric matrix, namely the Laplacian matrix
of the graph, which is defined as L = D − A where A is the
adjacency matrix of G, such that [A] jk = 1 if there is an edge
in E connecting sites j and k and 0 otherwise, including the
diagonal elements, whereas D is a diagonal matrix encoding
the connectivities of each vertex, i.e., the number of edges
departing from it. Since the sum of the rows and of the
columns of L is zero, it generates a semigroup of bistochastic
transformations Et = e−tL for t ∈ R+. Therefore, acting on a
vector p

0
∈ RN of occupation probabilities for each site at the

initial time, one has a continuous-time autonomous stochastic
process on the graph, which we will call a continuous-time
(classical) random walk:

p(t ) := Et
[
p
]

:= e−tL p
0
. (1)

Farhi and Gutmann [19] noticed a suggestive similarity
between Eq. (1) and the Schrödinger equation for an N-
level quantum system. Therefore, they proposed to define a
continuous-time quantum walk on the same graph G by pro-
moting L to a quantum Hamiltonian matrix H = L acting on
an N-dimensional complex Hilbert space H ∼ CN which has
a preferred basis {| j〉} j=1,...,N whose elements describe local-
ized quantum states on the sites of the graph. The quantum
evolution of any initial state |ψ0〉 ∈ H now comes automati-
cally:1

|ψ (t )〉 = Ut |ψ0〉 = e−it Ĥ |ψ0〉. (2)

Recently it was pointed out that imposing H = L is too re-
strictive on the quantum side, since a generic Hamiltonian
compatible with the graph topology does not need to be a real
matrix, but just a Hermitian one. We will focus on unweighted
graphs, such that the nonzero elements of the adjacency ma-
trix A are equal to 1 for all the links. Therefore, the most
general H has off-diagonal entries:

[H]k j = eiϕk j ( j �= k), (3)

if sites j and k are linked in G, and zero otherwise. Here
ϕk j ∈ [0, 2π ) is a phase depending on the link and ϕk j = −ϕ jk

is required by Hermiticity of H . On the other hand, the diag-
onal elements of H must be real numbers, but they do not
need to satisfy any further constraint. For regular graphs, the

1Here and in the following we fix h̄ = 1. The units of energies are
reabsorbed in the timescale so as to conveniently keep everything
dimensionless.
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simplest and most unbiased choice is to assume [H] j j = d
for all j = 1, . . . , N so that they are all equal and they can be
discarded as they generate an overall, unobservable phase shift
on the whole Hilbert space. For nonregular graphs, instead, the
choice is less obvious and we shall return to this point in a later
section (see also Ref. [27]). Continuous-time quantum walks
whose Hamiltonian is a generic Hermitian matrix compatible
with the graph topology are also called chiral CTQWs to
distinguish them from the most standard case with H = L (or
H = A), which is by far the most studied in the literature as of
now.

In this work, we are interested in optimizing the additional
degrees of freedom of a chiral CTQW on a given graph
to achieve the maximal advantage over the corresponding,
unique classical RW. It is thus convenient to formulate both
evolutions in the Hilbert space formalism to facilitate the
comparison. To do this, we first remark that quantum coherent
states in the site basis do not exist at the classical level, there-
fore we shall assume a localized state | j〉 with j = 1, . . . , N
as the initial condition for both the quantum and the classical
evolution, to make a fair comparison. Then the classical evo-
lution can be defined by the standard embedding of a classical
probability onto a Hilbert space with respect to a preferred
basis, that is

Et [| j〉〈 j|] =
N∑

k=1

〈k|e−tL| j〉|k〉〈k| =
N∑

k=1

pk j (t )|k〉〈k|, (4)

which ensures that the classically evolved state is always
incoherent in the localized basis. Also the quantum evolution
can be rewritten in a similar way:

Ut [| j〉〈 j|] = e−iĤt | j〉〈 j|eiĤt = |ψ j (t )〉〈ψ j (t )|, (5)

where

|ψ j (t )〉 =
N∑

k=1

αk j (t )|k〉, (6)

αk j (t ) = 〈k|e−iĤt | j〉 = [
e−iHt

]
k j . (7)

Chiral quantum walks and gauge invariance of
transition probabilities

By a diagonal, unitary change of basis, which is a local
phase transformation, many of the phases of H can be set
to 0. This is particularly useful when considering site-to-site
transition probabilities, as it is often the case when dealing
with quantum walks. Indeed, quantities such as Pj→k (t ) =
|〈k|e−iHt | j〉|2 and functions thereof do not depend on phases
which can be removed by those local phase transformations.
These are effectively gauge transformations and, at least for
some regular topologies of the underlying graphs, the change
in the Hamiltonian’s phases can be accounted for by a gauge
transformation of the gauge connection field. Since to each
edge of the graph can correspond a phase in H and the phase
of the localized state on each vertex can be modified indepen-
dently, the maximal number of phase degrees of freedom that
affect the transition probabilities Pj→k (t ) is |E | − N + 1 =
1 − χ (G), where |E | is the number of edges of the graph,
whereas χ (G) is the Euler characteristic for generic graphs,
including nonplanar ones. For planar graphs, this number is

precisely the number of loops, while for nonplanar ones the
number of loops is not obvious to define. In particular, phases
cannot affect transition probabilities on tree graphs, while
cycle graphs all have just a single relevant phase, which can
be distributed over each link or concentrated on a single one.
However, given a particular choice for the Hermitian matrix
H , it is not trivial to determine whether it is equivalent to a
real, symmetric Hamiltonian. It has been shown [28] that this
is the case if and only if the product of phase factors along
each directed, simple, closed path on G is 1.

III. QUANTUM-CLASSICAL DISTANCE

By combining Eq. (4) and Eqs. (5) and (6), it is possi-
ble to define a time-dependent quantity which compares the
quantum evolution to the classical one, when both start in the
same, localized initial state ρ̂0

j = | j〉〈 j|. This quantity is the
quantum-classical distance [24]:

D j
QC(t ) := 1 − F

[
Et
(
ρ̂0

j

)
,Ut

(
ρ̂0

j

)]
(8)

= 1 −
N∑

k=1

pk j (t )|〈k|ψ j (t )〉|2. (9)

It is related to the fidelity F[ρ̂, σ̂] = Tr[(
√

ρ̂σ̂
√

ρ̂)1/2]2

between the classical and the quantum evolved states [24].
Equation (9) follows from Eq. (8) when the initial state is
localized, but it is clearly not valid when the initial state
is mixed, in which case Eq. (8) should be used directly.
Notice that D j

QC(t ) is zero at a given time if and only if
the classically and quantum evolved states are exactly the
same at that time. Despite the fact that, analogously to other
measures of similarity between two probability distributions,
its value becomes uninformative whenever one of the two
states is proportional to the identity, being equal to 1 − 1

N
in this instance,2 this quantity should be considered through-
out its whole time evolution, showing the departure between
the quantum and the classical dynamics. It is still true, by
the same token as in Ref. [24], that the maximum value of the
quantum-classical distances over all possible classical initial
states can be attained by a single localized state, at any given
time. Therefore we can still define a global quantum-classical
distance by3

DQC(t ) := max
j∈V

{
D j

QC(t )
}
, (10)

which is independent of the initial state but only depends on
the graph (specified by L) and the choice of H compatible with
the topology. Among pure initial states, instead, the maximum
has to be restricted over localized ones, since the classical evo-
lution cannot be defined on superpositions, while considering
mixed initial states that are diagonal in the site basis will be
less informative about the details of the two evolutions.

2This is true also for the relative entropy of the (pure) quantum
evolved state with respect to the classical one, which can be used
as an alternative measure of the distance between the two dynamics,
leading to essentially identical conclusions. Here N is the size of the
graph.

3V is the ordered set of vertices of the graph.
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Checking for a few graphs with different topologies and
number of vertices, the overall behavior of this quantity in
time seems very similar to the simpler scenario where L is a
Laplacian and the straightforward identification H = L can be
applied. In particular, the asymptotic value in the long-time
limit takes the same expression for any connected graph of
size N and it is given by

D j
QC(t 	 1) 
 1 − 1/N. (11)

Because of this saturation effect of DQC at large times,
fluctuations of the quantum-classical distance can be signif-
icant only if they happen before the classical evolution gets
close to equilibrium. This is a valuable property: indeed, since
the quantum evolution is aperiodic on general graphs, unpre-
dictable behavior can occur at sufficiently long times and it is
therefore mandatory, from a physical point of view, to impose
a cutoff on the relevant timescale to perform the required task.
A natural choice is precisely the timescale of the classical
evolution, especially if a quantum advantage is sought.

A. Quantum-classical distance at short times

To understand the behavior of the quantum-classical dis-
tance at short times, instead, we may expand pk j (t ) and
|〈k|ψ j (t )〉|2 up to second order in t and obtain

D j
QC(t ) = t ([H2] j j − [H]2

j j ) − t2

(
−[H2] j j + [H]2

j j

+ 1

2
[H2]2

j j − [H2] j j[H]2
j j + 1

2

∑
s

|Hjs|4
)

+O(t3).

(12)

If we focus on unweighted graphs, which means that we
assume |Hjk| to be either 1 or 0 depending on whether ver-
tices j and k are connected by an edge or not, then we can
considerably simplify the expression above. Indeed, we find
that [

H2
]

j j
− [H]2

j j = d j = Lj j, (13)

where d j is the connectivity of vertex j in the graph. Notice
also that

1

2

[
H2
]2

j j − [
H2
]

j j[H]2
j j + 1

2

∑
s

|Hjs|4 (14)

= 1

2

([
H2
]

j j − [H]2
j j

)2 + 1

2

∑
s �= j

|Hjs|4 (15)

= d2
j + d j

2
, (16)

where, in the last step, we used the fact that
∑

s �= j |Hjs|4 gets
a contribution of 1 for any s connected to j and 0 otherwise.
Therefore, the short-time expansion of the quantum-classical
distance to second order is

D j
QC(t ) = d jt − d j (d j − 1)

t2

2
+ O

(
t3
)
. (17)

It is relevant to stress that the coefficients of this expansion are
dictated just by the connectivity of the starting vertex and they
are not influenced by any other parameter involved in H : in

particular, neither the on-site average energies nor the phases
of the off-diagonal entries of H affect the short-time behavior
of the quantum-classical distance; however, the timescale at
which the second-order expansion can be trusted is typically
orders of magnitude smaller than the timescale at which we
maximize its value in the following examples.

B. 1-norm of coherence and inverse participation ratio

To understand what type of properties of the quantum walk
contribute to the quantum-classical distance and how DQC

relates to some figures of merit that are considered useful
for particular tasks, we now seek the short-time expansion of
other two quantities, the 1-norm of coherence and the inverse
participation ratio (IPR), to be later compared with Eq. (17).

Let us start with the 1-norm of coherence. With respect
to the localized basis, the coherence of the pure state |ψ j (t )〉
given by Eq. (5) can be written as [24]

C j (t ) =
(∑

k

|αk j (t )|
)2

− 1, (18)

with α jk (t ) defined according to Eq. (6). Here and in the
following, it will be helpful to start from the fourth-order short
time expansion of |αk j (t )|2:

|αk j (t )|2 = δ jk − t2
(
δ jk
[
H2
]

j j
− |Hjk|2

)
+ t3Im

[
Hjk

[
H2
]

k j

]
+ t4

(
1

12
δ jk
[
H4
]

j j − 1

3
Re
[
Hjk

[
H3
]

k j

]

+ 1

4

∣∣[H2
]

jk

∣∣2)+ O
(
t5
)
. (19)

From this, it follows that∑
k

|αk j (t )| =
√

1 − d jt2 + O(t4)

+ t
∑
k �= j

|Hjk|
√

1 − tIm
[
Hjk[H2]k j

]+ O(t2)

+ t2

2

∑
k �= j,Hjk=0

∣∣[H2
]

jk

∣∣+ O
(
t3
)
, (20)

where we split the initial sum over k in a first term with k = j,
a second sum with k �= j but which gets contributions only for
terms having Hjk �= 0, and a final sum that takes into account
the last terms with k �= j and Hjk = 0. Expanding the square
roots and collecting powers of t , one obtains

∑
k

|αk j (t )| = 1 + td j − 1

2
t2

⎛
⎜⎜⎝d j +

∑
k �= j

Im[Hjk[H2]k j]

+
∑
k �= j

Hjk=0

|[H2] jk|

⎞
⎟⎟⎠+ O(t3). (21)
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Now notice that∑
k �= j

Im
[
Hjk

[
H2
]

k j

] =
∑

k

Im
[
Hjk

[
H2
]

k j

]
= Im

[
H3
]

j j = 0.

Overall, for coherence we find

C j (t ) = 2d jt

+

⎡
⎢⎢⎣d j (d j − 1) −

∑
k �= j

Hjk=0

∣∣[H2
]

jk

∣∣
⎤
⎥⎥⎦t2 + O

(
t3
)
. (22)

One can appreciate the fact that coherence has a very similar
structure to quantum-classical distance at short times, but it is
affected by other degrees of freedom of H . Indeed, the term∑

k �= j
Hjk=0

|[H2] jk| has a simple graphical interpretation: |[H2] jk|
for k �= j and for Hjk = 0 it is a sum over all possible paths of
length 2 connecting vertex j with a vertex k at distance 2 from
j, where each path is weighted by the product of the phases of
its two links in the direction from j to k. Since this is the mod-
ulus of a sum of phases, interference may happen. Therefore
C j can get a phase-dependent second-order contribution in t
only if the graph contains a four-cycle passing through j and
bearing a nonzero overall phase, so that there will be at least
two paths joining the same k with j and weighted by different
phase factors.

To quantify the spreading in time of the QW from the initial
vertex, a useful figure of merit is provided by the inverse
participation ratio:

I j (t ) =
∑

k

|αk j (t )|4, (23)

which decreases while the QW spreads over the vertices of
the graph. The second-order short-time expansion of I j (t ) is
derived from Eq. (19):

I j (t ) = 1 − 2djt
2 + O

(
t4
)
. (24)

The above expression is clearly related to coherence and D j
QC,

but, unlike for coherence, the IPR is determined just by the
connectivity of the starting vertex at least up to second order
in t .

The conclusion we can draw is that the short-time ex-
pansion of the quantum-classical distance correlates with
coherence and IPR, but in a way that depends nontrivially
upon the topology; indeed DQC(t ), for a localized initial
condition, depends on the classical and quantum probability
distributions at a given time, and these can be similar irrespec-
tive of the coherences. In the following, we argue that this is
in fact a merit of DQC.

IV. CYCLE GRAPHS

The simplest example to investigate the role of phases in
the Hamiltonian of CTQW for quantum transport is provided
by cycle graphs. As discussed previously, by gauge invariance
we can write the generic Hamiltonian H for a chiral CTQW

on a cycle graph as follows:

H =

⎛
⎜⎜⎜⎜⎝

d1 eiθ 0 0 . . . e−iθ

e−iθ d2 eiθ 0 . . . 0
0 e−iθ d3 eiθ . . . 0
...

...
...

...

eiθ 0 0 . . . e−iθ dN

⎞
⎟⎟⎟⎟⎠, (25)

where θ ∈ [0, 2π ) is the only relevant phase, which has
been distributed equally over all links for convenience, while
d1, . . . , dN ∈ R+. In this work we focus on the role of phases,
hence we will take d1 = · · · = dN = d and further impose
d = 0 without loss of generality. The eigenvectors of H will
still be Bloch states:

|λ j〉 := 1√
N

N∑
k=1

ei 2π jk
N |k〉, (26)

while the eigenvalues will be shifted according to

λ j := 2 cos

(
θ + 2π j

N

)
, (27)

where j = 1, . . . , N . Notice that, although for θ = 0 the
spectrum is doubly degenerate, for almost every θ �= 0 the
degeneracy is lifted. Moreover, despite θ ∈ [0, 2π ), one can
always choose a representative phase in the reduced scheme,
that is, θ ∈ [0, 2π

N ), much like the first Brillouin zone for
crystal momentum, without affecting transition probabilities
between sites (see below). When N is large, the effect of θ

on the spectrum is clearly minor. The transition probabilities
associated with this chiral quantum walk on a cycle are

Pj→k (t ) := 1

N2

∣∣∣ N∑
s=1

e2i{ π (k− j)s
N −t cos (θ+ 2πs

N )}∣∣∣2. (28)

We again stress the fact that, by virtue of gauge invariance, all
the quantities that can be computed from these probabilities,
assuming a localized initial state as before, would be the same
for a more general H on the ring of the form:

H =

⎛
⎜⎜⎜⎜⎝

d eiφ1 0 0 . . . e−iφN

e−iφ1 d eiφ2 0 . . . 0
0 e−iφ2 d eiφ3 . . . 0
...

...
...

...

eiφN 0 0 . . . e−iφN−1 d

⎞
⎟⎟⎟⎟⎠,

by simply putting θ = 1
N

∑N
j=1 φ j in Eq. (28).

In the large-ring limit, N → ∞, since the single relevant
phase θ can be concentrated as Nθ on any single link at will by
leveraging gauge invariance, the transition probabilities will
be the same as for the standard continuous-time quantum walk
on a ring:

lim
N→∞

Pj→k (t ) = |J|k− j|(2t )|2, (29)

where Jn(x) is the nth Bessel function. The same result can
also be derived directly from Eq. (28). This also implies that
the effect of phases on the quantum evolution starting on any
fixed vertex will show up only when the probability will have
reached the opposite side of the cycle, so that phase-dependent
interference can happen. Since the initial propagation on the
cycle is known to be ballistic with velocity 2, in order to
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FIG. 1. Transition probability from initial site 1 to site 5 of an 8-cycle (left) and to site 6 of a 10-cycle (right) as functions of time and for
different values of the phases. The nonchiral θ = 0 case is plotted in black. For the 8-cycle the other phases are θ = 0.04 (solid light green),
θ = 0.13 (dashed orange), and θ = 0.23 (dotted-dashed blue). For the 10-cycle we chose θ = 0.027 (solid, light green), θ = 0.13 (dashed,
orange) and θ = 0.28 (dot-dashed, blue). Notice that the probability axis plot range is restricted to [0.7,1] because it is the most informative
region for quantum transport.

reach the opposite side of the cycle the walker will take a
time approximately given by τ = N/4, which therefore is also
the time it takes for θ �= 0 to have some appreciable effect
on the on-site probabilities. However, this prediction can be
inaccurate for small rings, because of the non-negligible tails
of the ballistic wavefronts.

To understand the influence of phases on quantum transport
on the cycle after this minimal time, let us first consider the
standard θ = 0 case. Here, starting with an initially localized
state | j〉, all sites that are symmetrical with respect to the
initial vertex must have the same occupation probability at
all times, since the symmetry is preserved by the nonchi-
ral Hamiltonian. In particular, the probability of finding the
walker on each site except the starting one (and the one
opposite to it in the case of even cycles) cannot exceed 1

2 at
any time. When the phase is added and N is even, for any θ

one can show that this symmetry is preserved. Indeed, even
cycles belong to the family of bipartite graphs, defined as
those graphs whose vertices can be divided into two sets such
that two vertices in the same set are never connected by an
edge. For such graphs, one can apply a gauge transformation
that flips the sign of all the basis elements of one set, while
leaving the other set untouched, thereby implementing the
transformation H → −H , equivalent to time reversal, without
affecting the transition probabilities. In particular, for even
cycles, this implies that the probability of landing at site k
or at its symmetric counterpart N − k + 1 is the same at all
times also for θ �= 0. Therefore, any chiral quantum walk on
an even cycle with N sites starting at site j can never be
localized with probability greater than 1

2 on any site different
from the initial one and its opposite at k = j + N

2 . As for the
opposite site, which can be interesting as a target for transport,
the situation is less clear. At fixed time, the optimal phase to
maximize the probability Pj→ j+N/2(t ) can be different from
zero. However, it seems that the highest peaks of Pj→ j+N/2(t )
for a wide range of times are always attained for θ = 0. This
can be appreciated in Fig. 1, where we plotted the transition
probabilities between opposite sites vs time for cycles of 8 and
10 sites and for different values of θ . We restricted the plotting

region to probability values in [0.7,1] because we considered
0.7 as a lower bound to the acceptable fidelity of transport.
Again, transition probabilities between other pairs of sites are
neglected because they are always upper-bounded by 1

2 .
These observations suggest that chiral CTQWs provide no

advantage for optimal quantum transport on even cycles over
their nonchiral counterparts. Nevertheless, we highlight the
fact that Pj→ j+N/2(t ) can be completely suppressed at all times
by choosing θ = π/N (or, equivalently, a phase of π on a
single, generic link), a phenomenon that, together with the
unbroken reflection symmetry for generic θ , has already been
attributed to the fact that even cycles are bipartite graphs. We
notice that, in the context of excitonic transport in biochemical
complexes, this sets a possible prediction to be contrasted with
observations, since finding a ring-like structure with an even
number of units could exclude that phases play a role.

When the cycle is odd, the conclusion can change dramat-
ically. Here there is no opposite vertex to the starting one
and, by the previous argument, the nonchiral QW (θ = 0)
can never localize on a site different from the initial one
with probability greater than 1

2 . However, almost every θ �= 0
breaks the reflection symmetry with respect to the starting
point, opening the possibility for enhanced quantum site-to-
site transport. In Fig. 2 we plotted the transition probabilities
from site 1 to various other sites of a 5-cycle and a 7-cycle for
values of θ = π

10 , π
14 , respectively [Figs. 2(a) and 2(b)]. For

any other value of the phase in the relevant range [0, 2π
N ], in

each case the highest peaks are considerably lowered. It seems
that the value π

2N (where N = 5, 7 respectively) is resonant,
although the pattern is very disordered and small changes in
the precise value of the phase induce considerable shifts in
the peaks at long times, which is a signature of chaos. This is
illustrated by Figs. 2(c) and 2(d), where we displayed the same
set of transition probabilities for the same cycles, but with a
slightly off-resonant value of θ (θ = 0.29 for the 5-cycle to be
compared with the resonant value of π

10 
 0.31 and θ = 0.21
for the 7-cycle to be compared with the resonant value of
π
14 
 0.22). We stress that all these peaks displayed in the
plots for odd cycles are entirely due to the introduction of
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FIG. 2. Transition probability from initial site 1 to site n on a (a), (c) 5-cycle and on a (b), (d) 7-cycle as functions of time, for the resonant
phase values [ π

10 for the (a) 5-cycle and π

14 for the (b) 7-cycle) and for slightly off-resonant phase values (0.29 for the (c) 5-cycle and 0.21 for
the (d) 7-cycle). Different stroke styles represent different target sites: n = 2 in solid black, n = 3 in gray, n = 4 in dashed black, and n = 5 in
dotted black.

the phase degree of freedom, since nonchiral CTQWs on odd
cycles starting in a localized state will never be found with
probability higher than 1

2 on other sites.
We will now see how the quantum-classical distance can

capture these results for the prototypical example of cycle
graphs and how it can indicate the optimal phase, putting order
to the opaque relationship between the values of θ and the
transition probabilities. A reasonably compact expression for
the quantum-classical distance at time t as a function of θ

can be derived from Eq. (28) and the standard formulas for
a continuous-time classical random walk on cycles:

DQC(t ; θ ) : = 1 − e−2t

N2

N∑
k,s=1

exp

[
2t cos

2πk

N

− 4it sin

(
θ + π (2s + k)

N

)
sin

πk

N

]
. (30)

Since the dynamics is the same independently of the start-
ing vertex, the expression for the quantum-classical distance
can be computed for any localized initial state | j〉 and max-
imization over j is not necessary. It is a simple task to show

that

DQC

(
t ;

π

N
+ φ

)
= DQC

(
t ;

π

N
− φ

)
,

and, when N is odd, also

DQC

(
t ;

π

2N
+ φ

)
= DQC

(
t ;

π

2N
− φ

)
.

Therefore, when N is even, DQC(t ; θ ) attains all its possible
values at fixed t and for θ in the range [0, π

N ], and when
N is odd for θ in the range [0, π

2N ]. Already for modestly
sized polygons (N � 7), the variations of DQC(t ) with θ are
very small. Indeed one can expand DQC(t ) around t = 0 and
notice that all terms up to order N − 1 in t when N is even,
and up to order 2N − 1 in t when N is odd, are independent
of θ , while an oscillatory θ dependence starts at higher or-
ders. Because of this feeble θ dependence, we consider the
difference between the quantum-classical distance with phase
θ and the same quantity with zero phase, i.e., �DQC (t ; θ ) =
DQC (t ; θ ) − DQC (t ; 0). As can be appreciated in Fig. 3, this
quantity brings a clear order to the irregular behavior that was
seen in the transition probabilities.

This ordering is also insightful when one considers the fol-
lowing: for even cycles, DQC (t ; θ ) − DQC (t ; 0) has a negative,
significant dip at approximately the same time for all values
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FIG. 3. Gain in quantum-classical distance �DQC (t ) vs time for a 10-cycle (left) and a 7-cycle (right) with respect to the quantum-classical
distance for the standard evolutions generated by the Laplacian (blue, horizontal baseline in both plots). For the 10-cycle, phases are increasing
in the relevant range [0, π

10 ] with a corresponding color hue from blue to green (from darker to lighter shade). For the 7-cycle, the relevant
range of phases is [0, π

14 ] and θ increases from blue to red hues (from darker to lighter shade). Notice that the maximum in time of DQC is
not necessarily related with the time at which transport occurs because the former quantity is also influenced by the timescale of the classical
evolution.

of θ , and it is the lowest at θ = π
N , the phase which fully

suppresses transport to the opposite vertex; conversely, for
odd cycles we find that the same quantity peaks at approxi-
mately the same time, with the highest peak for θ = π

2N , again
the resonant phase, which optimizes transport for odd cycles.
Moreover, the heights of the peaks are monotonically increas-
ing in absolute value with θ ∈ [0, π

2N ), while the depths of the
dips for even N are monotonically increasing with θ ∈ [0, π

N ).
Therefore, we see that finding the global maximum of �DQC ,
with respect to θ and t , at a maximum (minimum) of DQC (t ; θ )
in time, correctly spots the least classical (the nearest to
classical) evolution among all possible chiral CTQW on the
same cycle. Intuitively, we can understand the reason for its
effectiveness: DQC (t ) is maximized for the quantum evolution
that departs the most from the classical one, the latter being
slowly and diffusively spreading towards the homogeneous
distribution. Therefore, a chiral CTQW which evolves to
nearly localized states and could be optimal for transport will
also maximize DQC (t ). To further support this claim, we can

look at the phase dependence of the functions C(t ) and I (t ),
as in Fig. 4 for a 5-cycle. Again, the resonant phase (black
line, θ = π

10 ) is associated with higher localization (lower co-
herence and higher IPR values) especially at short times, and
also the overall trend seen for the quantum-classical distance
is respected at least at short times, with values of θ close
to zero leading to the opposite behavior. We conclude this
section by noting that some results about so-called pretty good
universal transport for chiral CTQW on cycles with a prime
number of vertices are known in the mathematical literature
[29], although they have little role in a physical context since
no bound on the time needed for transport is considered there.

V. COMPLETE GRAPHS

Having discussed cycle graphs characterized by minimal
connectivity, we will now examine the regular graphs with
maximal connectivity, i.e., complete graphs. In a complete
graph just a minority of phases of H can be ignored by gauge

FIG. 4. Coherence and IPR vs time for a 5-cycle and for different values of θ ∈ [0, π

10 ), corresponding to color shades from blue to orange
(from darker to lighter shade). The black (solid) line represents the resonant phase π

10 .
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FIG. 5. IPR I(t ) and coherence C(t ) vs time of a continuous-time quantum walker on a complete graph with N = 13 sites with localized
initial condition. The standard evolution generated by H = L is depicted by the blue curves (space-dashed). The orange curves (dot-dashed)
are averages over 400 Hamiltonians with a single, randomly generated phase attached to all links in the “positive” direction. The dark-green
curves (dashed) resulted from the average of 400 Hamiltonians with two, independent, randomly generated phases randomly attributed to each
link in the positive direction. Black curves (solid) correspond to the random assignment of independent phases to each link, still averaged over
400 runs.

invariance, and we expect that the role played by the new
degrees of freedom will be major for this topology.

At this point it is worth mentioning that, for standard quan-
tum walks with real Hamiltonian generators, the dynamics
of the walker on a complete graph with localized starting
condition is equivalent to the dynamics on a star graph with
the same number of vertices, when starting at the core vertex
[30]. In other words, if the Hamiltonian is real, many links
of the complete graph can be eliminated without changing
the evolution. This is intuitive by symmetry arguments: since
all vertices are connected to the initial one, the amplitudes
in all the vertices except the first will be equal at all times
and probability will never flow through links that connect
these vertices, therefore they are irrelevant for the dynamics.
Interestingly, the addition of phases radically changes this
conclusion since, as we shall see, search for the quantum
speed limit and without an oracle can be achieved on a com-
plete graph with appropriately chosen phases, while this is
clearly impossible with the star graph which has no nontrivial
phase degrees of freedom, being a tree graph. The upshot is
that the generalization to Hermitian Hamiltonians and chiral
CTQWs is more powerful than previously imagined because
it explicitly differentiates between graph topologies that, for
some initial conditions, would be completely equivalent for
evolutions generated by the simple Laplacians.

A. Random chiral Hamiltonians for complete graphs

We initially investigated the effect of randomly added
phases on quantum-classical distance, 1-norm of coherence
and IPR. Because of the large number of free parameters, we
adopted different strategies to better explore the parameters
space. Figure 5 compares the averaged coherence with the
IPR for different phase choices on the complete graph with
N = 13. The blue curves corresponds to the nonchiral choice
with H = L. The orange curves are averages over 400 con-
figurations where a single phase eiφ is generated randomly
and then attached to all the links of the complete graph in

the direction j → k for k > j. We infer that a typical phase
different from φ = 0 attached to each link increases the aver-
age coherence and decreases the IPR with respect to H = L.
If, instead, we stochastically distribute two random phases
eiφ1 , eiφ2 among the edges in the given direction, there is an
even greater increase in the coherence and decrease in the IPR
(dark green curves, again resulting from an average of 400
random configurations). Finally, if an independent, randomly
generated phase is attached to each link, the resulting average
behavior is described by the black curves. Notice that the
order is now irrelevant, since all orders will be explored if
the phase of each link is independent and sampled in the full
range [0, 2π ). Clearly this rule entails all the previous ones,
but the typical configuration contributing to the black curve
will be one in which there is no correlation between phases
on different links and there is essentially full disorder in the
phase degrees of freedom of the Hamiltonian. Now the IPR
stabilizes to the lowest values between the examined ones,
while the coherence is maximal with respect to the previous
cases. These two quantities therefore hint at a phase-disorder-
induced delocalization in the evolution of a localized state on a
complete graph.4 These results were checked also for N = 16
and N = 17 and appear robust irrespective of the number of
sites.

Let us now look at the difference �DQC between the
quantum-classical distance for these different averaged evo-
lutions and the quantum-classical distance for the reference
case H = L (Fig. 6, same color code). We see a glaring
relation between this quantity and IPR or coherence: any ad-
dition of nonzero phase seems to add to the quantum-classical
distance (at least on average), and the increase goes along
with the higher delocalization, as signaled by large values of

4Here, by phase disorder, we mean the randomness in the choice of
phases for each link, much like the disorder in the on-site potential
in Anderson localization and not the disorder induced by uncertainty
in the values of the Hamiltonian’s parameters.
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FIG. 6. Difference �DQC (t ) between the quantum-classical dis-
tances of the various, averaged chiral evolutions and the nonchiral
H = L one, for a complete graph with N = 13 sites and localized
initial condition of the CTQW. Color code and meaning as for Fig. 5.
The reference case with H = L is the base line in blue.

the coherence and low values of the IPR. Mind that, strictly
speaking, we are considering the quantum-classical distance
at fixed initial state | j〉, since the full DQC (t ) would require
maximization over all initial states at each time, once H
and its phases have been specified. A crucial point here is
the correlation between �DQC and localization (high values
of I and low values of C), which is opposite with respect
to the relation found for cycle graphs. Here those dynamics
leading to less localized states are more quantum, according
to the quantum-classical distance. This fact could be partially
predicted from the short-time expansion of Eq. (17) which is
not monotonic in the connectivity dj , unlike the expansions
for C(t ) and I (t ) to the same order in t . This is more evidence
that DQC (t ) stands out against other dynamical quantities in
the successful recognition of optimal chiral quantum evolu-
tions. Of course, the relevant task is graph-dependent, being
either a hitting-type or a mixing-type task, but remarkably
the quantum-classical distance seems able to optimize the
parameters in both scenarios.

B. Optimization of quantum-classical distance

Guided by these observations, the next natural step is to
maximize DQC (t ) over all possible phase degrees of freedom
in H for the complete graph. This has to be performed at a
fixed time, which we chose afterwards by identifying the time
at which DQC attains its maximum; however, it seems that
the increasing order of DQC curves is time independent for
complete graphs (as suggested by Fig. 6) and the result is the
same if another time is set for the numerical maximization.
Starting with random guesses, the optimization converges to
different Hamiltonians each time. However, a common feature
of these optimal matrices is easy to spot:

(1) The first column of an optimal HO on the complete
graph of N sites is orthogonal, with respect to the Hermitian
product on CN , to all the rows of H except the first one
(assuming that all the diagonal elements have been fixed to
zero, without loss of generality).

The first column is singled out because of the choice of |1〉
as the (arbitrary) initial condition. Let us call h the first column
of an optimal Hamiltonian HO. Because of the topology and
the choice of diagonal elements, its entries will be

h1 = 0 , h j = eiφ j ∀ j = 2, . . . , N, (31)

and, since HO is Hermitian, its first row will be (h∗)T , so that
the scalar product between the first row and the first column
is N − 1. Let us denote by e1 the localized state |1〉 in matrix
notation, which is the first vector of the canonical basis. Then
we have

H2n
O e1 = (N − 1)ne1,

H2n+1
O e1 = (N − 1)n HOe1 = (N − 1)nh.

(32)

The evolution of the initial state localized at site 1 then follows
immediately:

e−itHO e1 = cos
(√

N − 1t
)
e1 − i√

N − 1
sin

(√
N − 1t

)
h.

(33)
Notice that h, as a vector of amplitudes, represents a state
which is balanced between all sites except the first, to which it
is orthogonal. Therefore, the evolution of Eq. (33) is a cyclic
rotation between the initial state localized at site 1 and the
equally spread state over all other sites except the initial one,
necessarily passing through an intermediate flat state:

| f 〉 = 1√
N

(
|1〉 +

N∑
j=2

eiφ j | j〉
)

, (34)

where the amplitude to find the walker in any site of the graph
is equal to N−1/2. The time needed to reach | f 〉 for the first
time is given by

t f = 1√
N − 1

arccos
1√
N

, (35)

while the time needed to reach the state |h〉 =
1√

N−1

∑N
j=2 h j | j〉 associated with the vector h and orthogonal

to the initial state |1〉 is

th = π

2
√

N − 1
. (36)

It should be emphasized that | f 〉, as for any flat state, has
maximal coherence value of N − 1 and minimal IPR value of
1
N . Exploiting the simple structure of these optimal evolutions,
an exact expression for their quantum-classical distance can
also be derived:

DO
QC (t ) = 1 − 1 − e−Nt

N
− e−Nt 1 + cos

(
2
√

N − 1t
)

2
. (37)

C. Search for the quantum speed limit without an oracle

Another interesting property of the “optimal” evolution
described by Eq. (33) can be appreciated if we choose |h〉 =

i√
N−1

∑N
j=1 | j〉, i.e., all the phases of the first column of HO

equal to i. This can always be achieved by an appropriate
gauge transformation on any Hamiltonian that already fulfills
Condition 1. In this case, | f 〉 = 1√

N

∑N
j=1 | j〉 is the flat state
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with relative phases all equal, therefore the backwards evolu-
tion from | f 〉 is a solution to the search problem with target
vertex 1, starting from the unbiased state and without an oracle
(but with biased phases), in a time t f , i.e., eiHOt f | f 〉 = |1〉.

Since coherence and IPR for a localized initial condition
are gauge-invariant quantities, the blue curves in Fig. 5 imply
that it is not possible to reach a flat state from a localized state
with any H which is gauge-equivalent to L. Thus, Condition
1 and our result for the search problem require a nontrivial
configuration of the phase degrees of freedom. It is interesting
to compare our search time t f with Grover’s time and with
the quantum speed limit for this evolution. Grover’s time tg
is the time required for the Grover’s Hamiltonian HG = L −
N |1〉〈1| to search for the state |1〉 when starting from the flat
state | f 〉. The operator N |1〉〈1|, called the oracle, is needed to
break the symmetry between all the vertices of the complete
graph and to guide the evolution towards the target vertex. For
a complete graph with N vertices, Grover’s time is

tg = π

2
√

N
. (38)

For any N > 2 one has t f < tg < th, therefore our search
Hamiltonian is faster than Grover’s one, and does not require
an oracle. Of course, in order for this result to hold, a bias
has to be present in the phases of our optimal H so that the
target vertex can be singled out during the evolution. This
bias is in fact embodied by Condition 1. In particular, one
can contrast this result with the one in Ref. [31], where the
oracle was preserved but only unbiased choices of phases
were considered, concluding that no improvement of search
time was possible. It is now meaningful to ask whether this
time t f reaches the ultimate time bound allowed by quantum
mechanics for the evolution between these initial and final
states. To this end, we briefly recall the notion of quantum
speed limits [32–35]. Consider two states |a〉, |b〉 on a Hilbert
space H ∼ CN that have the same average energy5 with re-
spect to a time-independent Hamiltonian operator Ĥ on H.
Then the quantum speed limit τQSL is a lower bound on the
time needed for the unitary evolution e−it Ĥ to rotate |a〉 to |b〉,
and it is provided by the following expression:

τQSL := max

{
arccos |〈b|a〉|

�Ĥ
,

2(arccos |〈b|a〉|)2

π
(〈Ĥ〉 − E0

) }
, (39)

where �Ĥ = (〈Ĥ2〉 − 〈Ĥ〉2)1/2 is the standard deviation of
energy of the states(|a〉 or |b〉), 〈Ĥ〉 is their average energy,
and E0 is the ground-state energy. The first quantity inside the
max of the quantum speed limit can be readily computed in
our case, for |a〉 = | f 〉 and |b〉 = |1〉; indeed, the variance �Ĥ
does not depend on the phases and it is equal to

√
N − 1 for

any Hamiltonian with constant diagonal terms and compatible
with the complete graph’s topology. Therefore,

arccos |〈1| f 〉|
�Ĥ

= 1√
N − 1

arccos
1√
N

= t f . (40)

Since we already know that t f cannot be smaller than τQSL, the
max in the definition (39) of τQSL and the result of Eq. (40)

5This is clearly a necessary condition in order for the unitary
evolution generated by Ĥ to bring |a〉 to |b〉.

FIG. 7. Optimal search time exploiting phases t f (black line) and
Grover’s time tG as functions of the number of sites N , with log scale
on both axes. t f is always smaller than tG, and it is also equal to the
quantum speed limit τQSL.

already imply that τQSL = t f . This was verified by computing
the second quantity in Eq. (39) and checking that it is always
smaller than the first for N > 3.6 It can be shown that τQSL

is also the quantum speed limit for Grover’s Hamiltonian.
Indeed, we highlight that �Ĥ attains its largest value for
the complete graph, among all the topologies that connect
N vertices in a simple, connected graph. We conclude that
our construction exploits phases to achieve a quantum search
between N orthogonal states without an oracle and in the
least possible time allowed by quantum mechanics, without
altering the on-site energies at will. We remark that the scaling
behavior O(N−1/2) of Grover’s time is known to be already
the best one, and indeed our search time t f follows the same
asymptotic scaling for large N . The construction that we
provided, on the other hand, achieves the goal of optimizing
the constant prefactor, which is suboptimal for Grover’s algo-
rithm. The comparison in log-scale is shown in Fig. 7.

To further illustrate the differences between the evolution
induced by Grover’s Hamiltonian HG and the optimal solution
HO that we found, we plotted in Fig. 8 the time behavior of the
quantities C(t ), I (t ) and also the gain in quantum-classical
distance �DQC with respect to the reference H = L, again
for a complete graph with N = 13 sites and starting at ver-
tex |1〉. Black curves depict the evolution generated by HO,
while Grover’s evolution is in light-green. The blue curves
correspond to the nonchiral H = L choice. The insets show a
magnification of the regions where the relevant times happen:
the red circle indicates the time t f , the red square designates
time tG and finally the rotated square indicates th.

Importantly, the gain in quantum-classical distance with
respect to the nonchiral H = L choice is also maximal for
the evolution generated by HO, even when compared with
Grover’s evolution, a nonobvious fact since the maximization
was performed without considering diagonal degrees of free-
dom. Moreover, the optimal evolution outperforms the best

6The check was performed numerically because E0 depends on the
phases in a nontrivial way, so that the second quantity is harder to
compute in general.
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FIG. 8. Comparison for coherence C(t ), IPR I(t ), and gain �DQC (t ) in quantum-classical distance for evolutions generated by HO (black
curves), HG (light-green curves), and H = L (blue curves) for a complete graph of N = 13 sites and starting with a localized state. The insets
in plots of C(t ) and I(t ) show a magnification of the region for 0.3 < t < 0.5, where times t f (red circle), tG (red square), and th (rotated red
square) are located.

evolutions found in Fig. 5 by randomly generating phases
according to IPR and coherence, and correspondingly �DQC

is, in fact, higher at all times.
It remains to be shown that Condition 1 can indeed be

fulfilled by some choice of phases for any N without relying
on the optimization of DQC . This is carried out in detail in
Appendix, but it should be clear that Condition 1 arose solely
from the maximization of the quantum-classical distance,
thereby corroborating the power of this method.

To conclude with this class of examples, let us remark
that, with nonchiral CTQWs on complete graphs with N ver-
tices, it is impossible to observe instantaneous uniform mixing
[26], where the walker completely delocalizes to a uniform
superposition of all basis states at a certain instant during
its evolution, except for N = 2, 3, 4. Our result shows that,
with the generalization to chiral quantum walks, but retain-
ing unitarity, instantaneous uniform mixing is achievable on
any complete graph in a remarkably short time t f given by
Eq. (35), which is O(1/

√
N ) for large N . Importantly, this

is a quadratic speedup with respect to the O(1) scaling of
mixing on hypercube graphs [25]7 and it also holds for generic
number of sites, whereas the hypercube protocol applies only
if N is a power of 2.

VI. QUANTUM SWITCHES

Here we consider graphs like the one depicted in Fig. 9,
which are seldom referred to as quantum switches. Since the
graph is planar and there is a single loop, just one phase will
affect transition probabilities between sites, and we attach it
on the link which closes the triangle and is opposite to vertex
1, calling it eiφ in the direction specified in the figure.

These graphs were considered in Ref. [21] as examples of
the advantage provided by chiral quantum walks over those
defined by the Laplacian or the adjacency matrix. Indeed, it
was shown that a resonant value of φ = π

2 suppresses trans-

7In the literature on quantum algorithms, it is common wisdom to
rescale the adjacency matrix of regular graphs by their connectivity
to compare evolution times. With that convention, the time needed
to achieve uniform mixing with the scaled adjacency matrix on
hypercube graphs is O(N ), while the time to perform the same task
on complete graphs with our chiral protocol is O(

√
N ).

port from vertex 1 to vertex 11, with reference to Fig. 9,
while enhancing transport from vertex 1 to vertex 12. Unlike
all the other graphs considered so far, the quantum switch is
nonregular, meaning that the connectivity is not the same for
all sites and the Laplacian or the adjacency matrix of the graph
generates different quantum evolutions. Here we first consider
the adjacency matrix A for a 12-site switch, and then attach a
phase to the link between vertex 5 and vertex 6. In Fig. 10 we
again plot the difference between DQC (t ) for the Hamiltonian
with such a phase and the same quantity without the phase.
The value of φ is increasing between 0 and π

2 from light gray
to black curves, and we checked that larger values of φ are
redundant.

The comparison with coherence and IPR shows a similar
relation to that seen for cycle graphs: more localized evolu-
tions, leading to higher values of IPR and lower values of
coherence, are associated with higher gains in �DQC . The
resonant phase φ = π

2 is clearly identified as the black curve
which maximizes �DQC . It achieves a transport fidelity of
≈0.77 to the target state |12〉 when starting in |1〉 in a time
t ≈ 5. Surprisingly, this transport probability is considerably
higher than the value that would be reached in a comparable
time range for a simple chain of eight sites, i.e., if the third
arm of the triangle (composed of vertices 6, 7, 9, and 11) were

FIG. 9. Graph of the quantum switch with 12 sites. The walker
starts at site 1 (boxed in blue) and the link between site 5 and site 6
bears a phase of eiφ in the Hamiltonian (black arrow).
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FIG. 10. Difference between DQC for the adjacency matrix of the
12-site quantum switch with an adjoined phase and the same quantity
for the standard adjacency matrix. The value of φ ranges from 0 to π

2
for increasingly darker shades of gray. The black line results from the
resonant phase π

2 and the blue baseline (horizontal) is the nonchiral
evolution.

not there to begin with, assuming the Laplacian as generator
in this latter case.

When we take the Laplacian in place of the adjacency
matrix as the starting point, instead, the result differs quali-
tatively. Now for any choice of the free phase, localization on
one branch of the switch is never as effective as the previ-
ous case. Accordingly, DQC attains lower values now and its
variations with phases are smaller, favoring the choice H = A
for quantum transport on this topology. This example also
provides further motivation in favor of the use of the adjacency
matrix in place of the Laplacian for CTQWs on finite, non-
regular graphs. Indeed, while having the connectivities on the
diagonal is natural if the differential form of the Laplacian has
to be recovered in the continuum limit (without an additional
potential field landscape), this request is not so meaningful for
small, nonregular graphs that do not embody a discretization
of a continuous space in any obvious way.

VII. CUBE GRAPH

On the cube graph, perfect transport between opposite
vertices is possible with a standard CTQW [12]. Moreover,
being part of the hypercubes family, the CTQW starting from
any localized state will evolve unitarily towards a maximally
coherent state, exhibiting instantaneous uniform mixing [25].
In other words, both goals considered in this work are already
achieved by a standard, nonchiral CTQW on the cube graph.
Notice also that, once the phase degrees of freedom are taken
into account, instantaneous uniform mixing and search with-
out an oracle become equivalent: if the former is possible,
starting from a localized state, the final uniform state will in
general encode the information about the starting vertex in the
relative phases. These can be transferred to the Hamiltonian
with a gauge transformation, then by reversing the sign of H
one obtains a chiral CTQW which evolves the uniform state
with no relative phases toward a localized one, effectively
performing a search without an oracle. However, since this is
achieved just by a gauge transformation, it will not affect DQC

and it is for all purposes equivalent to the initial nonchiral
CTQW. In accordance with these observations, the optimiza-
tion of the quantum-classical distance over the phase degrees
of freedom on the cube graph does not provide better options:
the best case for quantum hitting and mixing is already the
nonchiral one. On the other hand, by minimizing DQC (t ) at
short times, one finds a choice of phases that completely
suppresses transport to half of the vertices of the cube, more
precisely to those that are not connected to the starting one.

VIII. CONCLUSION

The opportunities stemming from a generalization of the
dynamical generator of continuous-time quantum walks to a
generic Hermitian matrix compatible with the graph topology
have just begun to be explored and recognized in the quantum
information literature. Together with the new phase degrees of
freedom that permit this generalization, also comes the issue
of finding the best Hamiltonian for a certain quantum task
on a given graph topology. After defining continuous-time
classical and (chiral) quantum walks on graphs and gauge
transformations on the latter, we put at the center three gauge-
invariant dynamical quantities that should help the exploration
of the effects of the phase degrees of freedom on the evolution
of chiral CTQW. The first two, namely the 1-norm of coher-
ence in the on-site basis and the inverse participation ratio,
quantify the degree of quantum coherence and of localization
of quantum walker’s state at any given time, the former being
relevant because it is an inherently quantum property, while
the latter can spot quantum transport. The third dynamical
indicator is the quantum-classical distance, which aims at
gauging the difference between a (possibly chiral) quantum
evolution and the unique classical one on the same graph.
Comparing the short-time expansions of the three indicators,
we see that there is a correlation between them, but with no
unambiguous common structure. Relying on four significant
examples of graphs (some of which are actually infinite graph
families) we argue that the quantum-classical distance effec-
tively spots the “optimal” chiral quantum walk from the point
of view of different tasks, depending on the topology.

Cycle graphs provide the first example and a test bed for the
proposal, since some analytical results can be derived in this
simple case. The maximization of DQC (t ) with respect to the
phase correctly suggests that quantum transport on odd cycles
is enhanced for a resonant value of the phase, while confirm-
ing that on even cycles the standard choice of the Laplacian is
already the best one. For complete graphs, the number of rele-
vant phases is very large, and a preliminary exploration of the
parameters space by randomly generating chiral Hamiltonians
suggests a clear correlation between greater values of DQC

and phase-disorder-induced delocalization, witnessed by low
values of IPR and high values of coherence when all phases
are random and independent. A systematic maximization of
DQC (t ) (at short, fixed times) indeed identifies a chiral quan-
tum evolution on the complete graph which achieves maximal
coherence and lowest IPR in very short times. A neat property
of these optimal Hamiltonians is recognized, allowing us to
show that they can be used for quantum search for the optimal
quantum speed limit and without an oracle, outperforming
Grover’s algorithm in the constant prefactor.
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The third example is already known from the literature on
chiral CTQWs as a quantum switch. Again, maximization of
DQC (t ) identifies the best phase for directional transport on
these topologies. Also, since these graphs are not regular, an
ambiguity between the use of the Laplacian or of the adja-
cency matrix arises, and we argue that the latter is better for
directional transport and perhaps more natural.

Finally, we examined the cube graph, which is known
to exhibit perfect quantum transport for H = L, as part of
the family of hypercubes. Numerical simulations suggest that
indeed, for this topology, the standard nonchiral case has
already the highest value of DQC (t ) against all other possible
choices of phases, indicating that faster quantum transport
could be impossible here (without ad hoc modifications of
on-site energies). However, the minimal value of the quantum-
classical distance also spots an interesting chiral dynamics,
where half of the vertices of the cube, namely, those disjoint
from the initial one, are never visited by the walker. Together
with analogous conclusions for even cycles, this suggests that
minimization of DQC (t ) can identify suppression of transport
whenever this can happen.

In conclusion, it is worth emphasizing that an easy, gen-
eral way to design new quantum algorithms with quantum
walks is still missing, also because the characterization of
the tasks that can be achieved efficiently on each topology
is incomplete. In this light, the fact that a single quantity
such as the DQC (t ) can reliably identify peculiar quantum
evolutions even in the presence of a large parameters space
is quite remarkable, and the a posteriori selection of the task
should not be seen as a drawback, but rather as an opportunity
to discover new phenomena, as we clearly showed with the ex-
ample of search for the quantum speed limit on the complete
graph. More generally, in this work we argued that if certain
phases configurations do not affect much the value of DQC

then the corresponding chiral QW cannot have a significantly
greater advantage with respect to the nonchiral QW, whereas
another phases configuration which attains larger values of
the quantum-classical distance will exhibit a more peculiar
departure from the classical evolution and, therefore, possi-
bly a stronger quantum advantage. In the future, we foresee
the possibility that the quantum-classical distance could be
adopted also as a cost function in a machine learning approach
to design new quantum algorithms based on CTQWs.

APPENDIX: EXPLICIT CONSTRUCTION OF COMPLETE
GRAPH CHIRAL HAMILTONIANS FOR QUANTUM

SEARCH FOR THE SPEED LIMIT

First notice that, for any N � 4, Condition 1 cannot be
fulfilled by simply filling the off-diagonal entries of H with
any combination of ±1 and zeros on the diagonal (with the
constraint of having a Hermitian matrix compatible with the
complete graph’s topology). One has necessarily to resort to
complex numbers. When N is even, a combination of ±i does
the trick. Indeed, by choosing

[H]1 j = i, [H] j j = [H]11 = 0 ∀ j = 2, . . . , N,

[H] jk = (−1) j+ki ∀ k > j > 1,
(A1)

and with the Hermitian constraint [H] jk = [H]∗k j ∀ j, k =
1, . . . , N . It is immediate to check that indeed, for N even,
the first column of H is orthogonal to all the rows except the
first one, with which it has an inner product of N − 1. For
example, for N = 6,

H =

⎛
⎜⎜⎜⎜⎜⎝

0 i i i i i
−i 0 −i i −i i
−i i 0 −i i −i
−i −i i 0 −i i
−i i −i i 0 −i
−i −i i −i i 0

⎞
⎟⎟⎟⎟⎟⎠. (A2)

For odd N , we found the following construction:

[H]1 j = −i, [H] j j = [H]11 = 0 ∀ j = 2, . . . , N,

[H] jk = exp

{
2π i

N − 2

[
k − j + N − 3

2

]}
∀ k > j > 1.

(A3)
For example, for N = 5,

H =

⎛
⎜⎜⎜⎜⎜⎝

0 i i i i
−i 0 e− 2iπ

3 1 e
2iπ

3

−i e
2iπ
3 0 e−2i π

3 1
−i 1 e

2iπ
3 0 e− 2iπ

3

−i e− 2iπ
3 1 e

2iπ
3 0

⎞
⎟⎟⎟⎟⎟⎠. (A4)
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