
ARTICLE

Quantum compiling by deep reinforcement
learning
Lorenzo Moro1,2, Matteo G. A. Paris3, Marcello Restelli1 & Enrico Prati 2✉

The general problem of quantum compiling is to approximate any unitary transformation that

describes the quantum computation as a sequence of elements selected from a finite base of

universal quantum gates. The Solovay-Kitaev theorem guarantees the existence of such an

approximating sequence. Though, the solutions to the quantum compiling problem suffer

from a tradeoff between the length of the sequences, the precompilation time, and the

execution time. Traditional approaches are time-consuming, unsuitable to be employed

during computation. Here, we propose a deep reinforcement learning method as an alter-

native strategy, which requires a single precompilation procedure to learn a general strategy

to approximate single-qubit unitaries. We show that this approach reduces the overall

execution time, improving the tradeoff between the length of the sequence and execution

time, potentially allowing real-time operations.

https://doi.org/10.1038/s42005-021-00684-3 OPEN

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. 2 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale
delle Ricerche, Milano, Italy. 3 Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, Milano, Italy.
✉email: enrico.prati@cnr.it

COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

Quantum computation takes place at its lowest level by
means of physical operations described by unitary
matrices acting on the state of qubits. However, gate-

model quantum computers may in practice provide just a limited
set of transformations according to the constraints in their
architecture1–4. Therefore, the computation is achieved as circuits
of quantum gates, which are ordered sequences of unitary
operators, acting on a few qubits at once5. Although the Solovay
Kitaev theorem6 ensures that any computations can be approxi-
mated, within an arbitrary tolerance, as a circuit based on a finite
set of operators, there is no optimal strategy to establish how to
compute such a sequence. The problem is known as quantum
compiling and the algorithms to compute suitable approximating
circuits as quantum compilers.

Every quantum compiler has its own trade-off between the
length of the sequences, which should be as short as possible, the
precompilation time, i.e., the time taken by the algorithm to be
ready for use, and finally the execution time, i.e, the time the
algorithm takes to return the sequence7.

Previous works7–10, mostly based on the Solovay–Kiteav theorem,
addressed the problem by providing algorithms that return the
approximating sequence with lengths and execution times that scale
polylogarithmic as Oðlog cð1=δÞÞ, where δ is the accuracy and c is a
constant between 3 and 4. For instance, the Dawson–Nielsen
(DNSK) formulation11 provides sequences of length Oðlog 3:97ð1=δÞÞ
in a time of Oðlog 2:71ð1=δÞÞ. Additional performance gains can be
achieved by selecting unique sets of quantum gates7, reaching lengths
that scale as Oðlog log ð3Þ=log ð2Þð1=δÞÞ at the cost of increasing the
precompilation time. Hybrid approaches involving a planning
algorithm12, in some cases boosted by deep neural networks13, could
achieve better performance. However, the planning algorithm raises
the execution time, which could scale suboptimally for high accuracy.
Despite the strategy considered, no algorithm can return the
sequence using less than Oðlog ð1=δÞÞ gates, as shown in9 by a
geometrical proof. While existing quantum compilers are character-
ized by high execution and precompilation times7,11, which make
them impractical to compute during online operations, deep learning
suggests an alternative approach.

Deep reinforcement learning is a subset of machine learning
that exploits deep neural networks to learn optimal policies in
order to achieve specific goals in decision-making problems14–16.
Such techniques can be effective in high-dimensional control
tasks and to address problems where limited or no prior
knowledge of the configuration space of the system is available.

The fundamental assumptions and concepts in the reinforce-
ment learning theory are built upon the idea of continuous
interactions between a decision-maker called agent and a con-
trolled system named environment, typically defined in the form
of a Markov decision process17 (MDP). According to a policy
function that fully determines its behavior, the former interacts
with the latter at discrete time steps, performing an action based
on an observation related to the current state of the environment.
Therefore, the environment evolves changing its state and
returning a reward signal that can be interpreted as a measure of
the adequateness of the action the agent has performed. The only
purpose of the agent is to learn a policy to maximize the reward
over time. The learning procedure can be a highly time-
consuming task, but it has to be performed once. Then, it is
possible to exploit the policy encoded in the deep neural network,
with low computational resources in minimal time.

Recently, deep learning has been successfully applied to
physics18–21, where unprecedented advancements have been
achieved by combining reinforcement learning22 with deep neural
networks into deep reinforcement learning (DRL). DRL, thanks
to its ability to identify strategies for achieving a goal in complex

configuration spaces without prior knowledge of the system23–28,
has recently been proposed for the control of quantum
systems15,18,29–33. In this context, some of us previously applied
deep reinforcement learning to control and initialize qubits by
continuous pulse sequences34,35 for coherent transport by adia-
batic passage (CTAP)36 and by digital pulse sequences for sti-
mulated Raman passage (STIRAP)37,38, respectively.
Furthermore, it has proven effective as a control framework for
optimizing the speed and fidelity of quantum computation39 and
in control of quantum gates40.

In this work, we propose an approach to quantum compiling,
exploiting deep reinforcement learning to approximate single-qubit
unitary operators as circuits made by an arbitrary initial set of
elementary quantum gates. As examples, we show how to steer
quantum compiling for small rotations of π/128 around the three-
axis of the Bloch sphere and for the Harrow–Recht–Chuang effi-
ciently universal gates (HRC)9, by employing two alternative DRL
algorithms, depending on the nature of the base. After training,
agents can generate single-qubit logic circuits within a tolerance of
0.99 average-gate fidelity (AGF). The adopted strategy for training
the agent consists of generating a uniform distribution of single-
qubit unitary matrices, where to sample the training targets. The
agents are not told how to approximate such targets, but instead,
they are asked to establish a suitable policy to complete the task.
The agents’ final performance is then measured using a validation
set of unitary operators not previously seen by the agent.

To summarize, the DRL agents learn a policy to approximate
single-qubit unitary transformation at the cost of a precompila-
tion procedure, which is done only once. The method is effective
for both sets of small-angle rotations and sparse sets of unitary
operators. Average gate fidelity achieves ε= 0.9999 in the best
cases for small rotations, for which the execution time empirically
scales as Oðlog 1:25ð1=ð1# εÞÞÞ. Although the method does not
guarantee finding the solution, it has the advantage of operating
independently from the specific hardware and that its speed
would enable real-time computing.

Results and discussion
Deep reinforcement learning as quantum compiler. The
quantum compilation is a fundamental problem in the quantum
computation theory, consisting of approximating any unitary
transformation as a finite sequence of unitary operators Aj is
chosen from a universal set of gates B.

In this work, we ask the agent to approximate any single-qubit
unitary matrix U , within a fixed tolerance ε. Therefore, the goal of
the agent is to find a unitary matrix Un ¼

Qn
j¼1 Aj, resulting from

the composition of the elements in the sequence, that is sufficiently
close to U . Although the DRL framework allows exploiting any
distance between matrices to evaluate the accuracy of the solutions,
the average gate fidelity is wildly used for the purpose, mainly due
to the modest computational demands needed to compute it.
Alternative choices are possible, such as the diamond norm41,42.

In the framework of quantum compiling, the environment
consists of a quantum circuit that starts as the identity at the
beginning of each episode. It is built incrementally at each time
step by the agent, choosing a gate from B according to the policy
π encoded in the deep neural network, as shown in Fig. 1.
Therefore, the available actions that the agent can perform
correspond to the gates in the base B.

The observation used as input at time step n corresponds to the
vector of the real and imaginary parts of the elements of the
matrix On, where U ¼ Un % On. Such representation encodes all
the information needed by the agent to build a suitable
approximating sequence of gates, i.e., the current composition

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3

2 COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys

of gates and the unitary target to approximate. No information on
the tolerance is given to the agent since it is fixed and thus it can
be learned indirectly during the training.

Designing a suitable reward function is challenging, potentially
leading to unexpected or unwanted behavior if not defined
accurately. Therefore, two reward functions have been designed,
depending on the different characteristics of the gate base
considered, which can be identified as quasi-continuous-like sets
of small rotations and discrete sets. The former are inspired by
gates available on superconductive and trapped ions
architecture1,2,4, where the latter is the standard set of logic
gates, typically used to write quantum algorithms, e.g., the
Clifford+T library43,44. Both reward functions are negative at
each time step, so that the agent will prefer shorter episodes.

In this work, we exploit Deep Q-Learning (DQL)45 and
Proximal Policy Optimization (PPO)46 algorithms to train the
agents, depending on the reward function. Such algorithms differ
in many aspects, as described in Supplementary Note 1. The
former is mandatory for the case of sparse reward, since such
reward requires off-policy methods to be exploited, while the
latter has been chosen for its robustness and tunability. More
details on the rewards are given in Supplementary Note 2.

Training neural networks for approximating a single-qubit
gate. To demonstrate the exploitation of DRL as a quantum
compiler, we first considered the problem of decomposing a
single-qubit gate U , into a circuit of unitary transformations that
can be implemented directly on quantum hardware. The base of
gates corresponds to six small rotations of π/128 around the three-
axis of the Bloch sphere, i.e., B ¼ ðRx̂ð± π

128Þ; Rŷð± π
128Þ; Rẑð± π

128ÞÞ.
It is essential to choose the tolerance ε and the fixed target

accurately to appreciate the learning procedure. The former
should be small enough and the latter sufficiently far from the
identity not to be solved by chance. However, if the target is too
difficult to approximate, the agent will fail and no learning occurs.
To be sure that at least one solution does exist, we build U as a
composition of 87 elements selected from B. The resulting
unitary target is

U ¼
0:76749896# 0:43959894i #0:09607122þ 0:45658344i

0:09607122þ 0:45658344i 0:76749896þ 0:43959894i

! "
:

ð1Þ

We tested a nonlearning agent that acts randomly to ensure
not to deal with a trivial task, setting the tolerance at 0.99 average
gate fidelity and limiting the maximum length of the episode at
130. No solution was found after 104 episodes. Then, the problem
was addressed by exploiting a DQL agent, using the same
thresholds for the tolerance and the length of the episode. We
exploited the dense reward function

rðSn; anÞ ¼
ðL# nÞ þ 1 if dðUn;UÞ< ε

#dðUn;UÞ=L otherwise

#
ð2Þ

where L is the maximum length of the episode, an, Sn, and
dðUn;UÞ are the action performed, the state of the environment,
and the distance between the target and the approximating
sequence at time n, respectively. Such reward performs
adequately if small rotations are used as base only.

Table 1 reports some additional information about the network
architecture and the hyperparameter set, while Fig. 2 shows the
performance and the solutions found by the agent during the
training time. The agent learns how to approximate the target
after about 104 episodes, while improving the solution over time.
At the end of the learning, the agent discovered an approximating
circuit made by 76 gates only, within the target tolerance.

Fig. 1 The deep reinforcement learning (DRL) architecture. a The DRL environment can be described as a quantum circuit modeled by the approximating
sequence Un, the fixed tolerance ε, and the unitary target to approximate U , that generally changes at each episode. At each time step n, the agent receives
the current observation On and based on that information, it chooses from the base B the next gate an to apply on the quantum circuit. Therefore, the
environment returns the real-valued reward rn to the agent, which is a function of the state Sn and the action an. b The policy π of the agent is encoded in a
deep neural network (DNN). The policy of the agent is encoded in a deep neural network. At each time-step, the DNN receives as input a vector made by
the real and imaginary parts of the observation On. Such information is processed by the hidden layers and returned through the output layer. The neurons
in the output layer are associated with the action the agent will perform in the next time step. In the bottom-right corner is reported an example of the
nonlinear activation function, i.e., the rectified linear unit function RELU.

Table 1 List of the hyperparameters and their values used in
the fixed-target problem. We used the scaled exponential
linear units (SELU) as nonlinear activation functions in the
hidden layers of the neural network.

Area Hyperparameter Value

Neural network # hidden layers 128, 128
activations SELU, SELU, linear
initializers lecun, lecun, glorot

Training optimizer Adam
learning rate 0.0005
batch size 103

training frequency every one episode
Algorithm epsilon decay 0.99976

memory size 104 experiences
max length episode 130

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3 ARTICLE

COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys 3

Quantum compiling by rotation operators. The DRL approach
can be generalized to the quantum compilation of a larger class of
unitary transformations. Instead of limiting to approximating one
matrix only, we aim at exploiting the knowledge of a trained
agent to approximate any single-qubit unitary transformation,
without requiring additional training. Therefore, we used as
training targets Haar unitary matrices, since they form an
unbiased and a general data set which is ideal to train neural
networks, as described in the “Methods” section. If additional
information on the type and distribution of targets is known, it is
possible to choose a different set of gates for training, potentially
increasing the performance of the agent as described in Supple-
mentary Note 3.1.

Such task is tougher to solve compared with the fixed-target
problem. Therefore, we exploited the Proximal Policy Optimiza-
tion algorithm (PPO)46 being more robust and easy to tune than
DQL. We fixed the tolerance ε at 0.99 AGF and limited the
maximum length of the approximating circuits (time step per

episode) at 300 gates, as reported in Table 2. Figure 3b shows the
performance of the agent during the training time (blue lines).
The agent starts to approximate unitaries after 105 episodes, but it
requires much more time to achieve satisfactory performance.

We tested the performance of the agents at the end of the
learning, using a validation set of 106 Haar unitary targets. The
agent is able to approximate more than 96% of the targets within
the tolerance requested. Complete results are reported in Table 3.

Quantum compiling by the HRC efficiently universal base of
gates. In order to fully exploit the power of DRL, we now turn to
the problem of compiling single-qubit unitary matrices using a
base of discrete gates. The agent can perform the set of HRC
efficiently universal base of gates9:

V1 ¼
1ffiffiffi
5

p
1 2i

2i 1

! "
V2 ¼

1ffiffiffi
5

p
1 2

#2 1

! "
V3 ¼

1ffiffiffi
5

p
1þ 2i 0

0 1# 2i

! "

ð3Þ

Fig. 2 The deep reinforcement learning agent learns how to approximate a single-qubit gate. a Best sequences of gates discovered by the agent during
the training at different epochs. The dashed lines connecting the Bloch spheres to the Episode axis indicate the episode at which the sequences were found
for the first time. Each approximating sequence is represented by two trajectories of states (colored points) on the Bloch sphere. They are obtained by
applying the unitary transformations associated with the circuit at the time step n on two representative states, namely 0j i and þj i respectively. The agent
is asked to transform the starting state (green arrows) in the corresponding ending state (red arrows), i.e., 0j i to U 0j i and þj i to U þj i respectively, where
U corresponds to the unitary target. b Performance of the agent during training. The plot represents the percentage of episodes for which the agent was
able to find a solution (blue line) and the average number of the sequence of gates (orange line). The agent learns how to approximate the target after
about 104 episodes and then improves the solution over time.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3

4 COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys

Such unitary matrices implement quantum transformations that
are very different from the ones performed by small rotations.
The agent has to learn how to navigate in the high-dimensional
space of unitary matrices, exploiting counterintuitive movements
that could lead it close to the target at the last time step of the
episode only. Therefore, the dense reward function (2) is no
longer useful to guide the agent toward the targets. We exploited
a “sparse” reward (binary reward):

rðSn; anÞ ¼
0 if dðUn;UÞ< ε

#1=L otherwise:

#
ð4Þ

Such function lowers the reward of the agent equally for every
action it takes, bringing no information to the agent on how to
find the solution. Therefore, it requires advanced generalization
techniques to be effective, such as Hindsight Experience Replay
(HER)47. Since HER requires an off-policy reinforcement

learning algorithm, we chose the DQL agent to address the
problem using the hyperparameters reported in Table 4.

We fixed the tolerance ε at 0.99 AGF and limited the maximum
length of the approximating circuits at 130 gates. Figure 3 shows
the performance of the agent during the training time (orange
lines) and the length distribution of the solved sequences
obtained using a validation set of 106 Haar random unitaries.
Although the agent receives a noninformative reward signal at
each time-step, it surprisingly succeeds to solve roughly more
than 95% of the targets, using on average less than 36 gates as
reported in Table 3. It is worth noting that the agent can build
significantly shorter circuits, compared with the case of rotation
matrices. It is not unexpected, since the HRC base allows to
explore the space of unitary matrices quite efficiently.

Performances of the DRL quantum compiler. Our results show
that deep reinforcement learning-based quantum compilers can
approximate single-qubit gates by a set of quantum gates without
prior knowledge. We now turn to the evaluation of the perfor-
mances demonstrated by our method.

We point out that our method differs from existing quantum
compilers for its flexibility since it can be applied to any basis.
Indeed, Y–Z–Y gate decomposition can only manage a basis
consisting of y and z rotations, while KAK decomposition48 is
limited to two-qubits and CNOT and y and z rotations. Machine-
learning methods based on A*49 algorithms could suffer from
high execution time that could scale suboptimally for high
accuracy12,13. Instead of designing a tailored quantum compiling
algorithm, we exploited a DRL agent to learn a general strategy to
approximate single-qubit unitary matrices and store it within an
artificial neural network.

Fig. 3 Deep reinforcement learning agents learn how to approximate single-qubit unitaries using different base of gates. A proximal policy-
optimization agent (PPO) (blue color) and a deep Q-learning hindsight-experience replay agent DQL+HER (orange color) were trained to approximate
single-qubit unitaries using two different bases of gates, i.e., six small rotations of π/128 around the three-axis of the Bloch sphere and the
Harrow–Recht–Chuang efficient base of gates (HRC), respectively. The tolerance was fixed to 0.99 average gate fidelity. a The length distributions of the
gates sequences discovered by the agents at the end of the learning. The HRC base generates shorter circuits as expected. b Performance of the agent
during training on the tasks.

Table 2 List of the hyperparameters and their values used in
the problem of quantum compiling by rotations operators.
The proximal policy optimization agent (PPO) exploits
scaled exponential linear units (SELU) as nonlinear
activation functions in the hidden layers of the neural
network.

Area Hyperparameter Value

Neural network # hidden layers 128, 128
activations SELU, SELU

Training learning rate 0.0001
batch size 128
agents 40

Algorithm max length episode 300

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3 ARTICLE

COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys 5

One of the critical questions to consider when measuring the
performance of a quantum compiler is how a classical computer
can efficiently return the sequence of gates. Inefficient strategies50
can neutralize any quantum advantage over classical counterparts
if the execution time and the length of the sequence scale
suboptimally with the accuracy.

Our DRL quantum compiler can produce sequences that
length scales as Oðlog 1:25ð1=δÞÞ, as demonstrated by empirically
measuring the performance on a specific task and shown in Fig. 4.
Although such an approach has no guarantee to return a suitable
solution, DRL quantum compilers can return solutions after a
precompilation procedure to be performed once, improving the
execution time and potentially enabling online quantum
compilation. In fact, by writing the policy into a deep neural
network, the execution time depends on the complexity of the
network and the episode length only. Therefore, it scales
proportionally to the sequence length, i.e., as Oðlog 1:25ð1=δÞÞ.
At the end of the training procedure, the agent returns the whole
approximating sequence in a fraction of a second (5.4 ⋅ 10−4s per
time step) on a single CPU core. The speed-up gain could be
further enhanced by reducing the size of the neural networks and
being easily parallelizable by exploiting specialized hardware to
run them, such as GPUs or Tensor Processing Unit51.

As examples, we trained and employed two deep reinforcement
learning quantum compilers to build quantum circuits within a
final tolerance of 0.99 AGF, using two different sets of quantum
logic gates. We accounted for the diverse characteristics of the
bases designing a dense and a sparse reward function. We
addressed Haar distributed unitary matrices as targets to be as
general as possible, but if additional information on the targets is
available, it is possible to achieve higher tolerance without fine-

tuning neural network architectures or the RL hyperparameters,
as shown in Supplementary Note 3.1.

Our method could be employed in larger qubit spaces, as
shown by an early prototype in Supplementary Note 3.2. The
DRL compiler can approximate two-qubit logic gates with
consistent performance compared with the one-qubit gates of
0.99 AGF. Supplementary Note 4 reports examples of single and
two-qubit circuits discovered by the DRL quantum compilers.

As a concluding remark, we observe that this approach can be
specialized, taking into account any hardware constraints that
limit operations, integrating them directly into the environments.
These tests, as well as the extension of this approach to n-qubits,
will be the objective of future work.

Methods
Generation of Haar random unitary matrices. The strategy used to generate the
training data set should be chosen opportunely, depending on the particular set of
gates of interest, since deep neural networks are very susceptible both to the range
and the distribution of the inputs. Therefore, Haar random unitaries have been
used as training targets. Pictorially, picking a Haar unitary matrix from the space of
unitaries can be thought as choosing a random number from a uniform
distribution52. More precisely, the probability of selecting a particular unitary
matrix from some region in the space of all unitary matrices is directly proportional
to the volume of the region itself. Such matrices form an unbiased data set that is
ideal to train neural networks.

Learning by HER. Many RL problems may be efficiently addressed employing
sparse rewards only, since engineering efficient and well-shaped reward functions
can be extremely challenging. Such rewards are binary, i.e., the agent receives a
constant signal until it achieves the goal. However, if the agent gets the same
reward almost every time, it cannot learn any relationships of cause and effect that
its actions have on the environment. Therefore, it might take an extremely long
time to learn something, if anything at all.

HER is a technique introduced by OPENAI that allows to mitigate the sparse-
reward problem47. The basic idea of HER is to exploit the ability that humans have
to learn from failure. Specifically, even if the agent always failed to solve the task, it
can reach different objectives. Exploiting this information, it is possible to train the
agent to reach different targets. Although the agent receives a reward signal to
achieve a distinct goal from the original one, this procedure, if iterated, can help the
agent to learn how to generalize the policy to reach the primary task we want
to solve.

The implementation of HER in the Q-learning algorithm is straightforward.
After an entire episode is completed, the experiences associated with that episode
are modified selecting a new goal. Then, the q-function is updated as usual. There
are several strategies to choose the goals47. We designed a strategy to select the new
goals, consisting in randomly selecting k-percent of the states that come from the
same episode.

Table 4 List of the hyperparameters and their values used in
the Harrow–Recht–Chuang efficient base of gates (HRC)
problem. The deep Q-learning agent employs scaled
exponential linear units (SELU) as nonlinear activation
functions in the hidden layers of the neural network.

Area Hyperparameter Value

Neural network # hidden layers 128, 128
activations SELU, SELU, linear
initializers lecun, lecun, glorot

Training optimizer Adam
learning rate 0.0001
batch size 200
training frequency every one episode

Algorithm epsilon decay 0.99931
memory size 5 ⋅ 105 experiences
max length episode 130

Fig. 4 Relation between sequence length and tolerance. Each data point is
obtained by averaging the length of the approximating sequence of gates
found by a trained agent using a validation set of 107 unitary targets. The
error bars report the standard deviation. The agent was trained to achieve a
final tolerance of 0.9999 average gate fidelity (AGF). The targets are built
as compositions of small rotations around the three axes of the Bloch
sphere, as described in Supplementary Note 3.1. The data are fitted by a
polylogarithmic function (dashed blue line) with R2= 0.986 and RMSE=
0.26.

Table 3 Performance of the proximal policy optimization
(PPO) and deep Q-learning (DQL) agents in approximating
Haar unitary matrices. The performances are measured
after the training procedures over a validation set of 106

targets. We exploit the Harrow-Recht-Chuang efficient base
of gates (HRC) and the rotations gates. The 95th and 95th

columns refer to the 95th and 95th percentile of the
distribution of the length of the solved sequences.

Base Solved (%) Mean length 95th

percentile
99th

percentile

HRC 95.0 35 94 120
Rotations 96.4 124 204 245

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3

6 COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys

Average gate fidelity. The average fidelity !FðU;UÞ between two gates U and U is
defined by

!FðU;UÞ ¼
Z

ψ
% &&UyU ψ

&& '
ψ
% &&UyU ψ

&& '
dψ;

Z
dψ ¼ 1 ð5Þ

where the integral is over all the state spaces using a Haar measure.

Neural network architectures. The architecture of the deep neural network
directly affects the performance of the DRL agent. However, choosing the optimal
architecture is a trial-and-error task and can be an exceptionally time-consuming
procedure, since it depends on the specific problem the agent is addressing.
Therefore, in this work, we did not focus on the optimization, but on finding the
smallest neural network architecture that can lead to satisfactory performance. We
started with one hidden layer only and a few neurons, gradually increasing the
depth and the width of the network. We found that a relatively small architecture
made by two hidden layers of 128 neurons is sufficient to achieve the tasks.

Software and hardware. All the code in this work was developed using Python
language. The Stable Baseline53 library has been employed for the implementation
of PPO agent only. Most of the simulation has been run by using GNU parallel54
on an Intel Xeon W-2195 and a Nvidia GV100.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code and the algorithm used in this study are available from the corresponding
author upon reasonable request.

Received: 22 February 2021; Accepted: 20 July 2021;

References
1. Linke, N. M. et al. Experimental comparison of two quantum computing

architectures. Proc. Natl Acad. Sci. USA 114, 3305–3310 (2017).
2. Maslov, D. Basic circuit compilation techniques for an ion-trap quantum

machine. New J. Phys. 19, 023035 (2017).
3. Leibfried, D., Knill, E., Ospelkaus, C. & Wineland, D. J. Transport quantum

logic gates for trapped ions. Phys. Rev. A 76, 032324 (2007).
4. Debnath, S. et al. Demonstration of a small programmable quantum computer

with atomic qubits. Nature 536, 63 (2016).
5. Maronese, M. & Prati, E. A continuous rosenblatt quantum perceptron. Int. J.

Quantum Inf. https://doi.org/10.1142/S0219749921400025 (2021).
6. Kitaev, A. Y. Quantum computations: algorithms and error correction.

Russian Math. Surv. 52, 1191–1249 (1997).
7. Zhiyenbayev, Y., Akulin, V. & Mandilara, A. Quantum compiling with

diffusive sets of gates. Phys. Rev. A 98, 012325 (2018).
8. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52,

3457 (1995).
9. Harrow, A. W., Recht, B. & Chuang, I. L. Efficient discrete approximations of

quantum gates. J. Math. Phys. 43, 4445–4451 (2002).
10. Kitaev, A. Y., Shen, A., Vyalyi, M. N. & Vyalyi, M. N. Classical and quantum

computation. 47 (American Mathematical Soc., 2002).
11. Dawson, C. M. & Nielsen, M. A. The solovay-kitaev algorithm. Quantum Info.

Comput. 6, 81–95 (2006).
12. Davis, M. G. et al. In 2020 IEEE International Conference on Quantum

Computing and Engineering (QCE), 223–234 (IEEE, 2020).
13. Zhang, Y.-H., Zheng, P.-L., Zhang, Y. & Deng, D.-L. Topological quantum

compiling with reinforcement learning. Phys. Rev. Lett. 125, 170501 (2020).
14. Tognetti, S., Savaresi, S. M., Spelta, C. & Restelli, M. In 2009 IEEE Control

Applications,(CCA) & Intelligent Control (ISIC), 582–587 (IEEE, 2009).
15. Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. Universal quantum

control through deep reinforcement learning. npj Quantum Inf. 5, 1–8 (2019).
16. Castelletti, A., Pianosi, F. & Restelli, M. A multiobjective reinforcement

learning approach to water resources systems operation: Pareto frontier
approximation in a single run. Water Resour. Res. 49, 3476–3486
(2013).

17. Sutton, R. S., Barto, A. G. et al. Introduction to reinforcement learning, vol. 135
(MIT press Cambridge, 1998).

18. Fösel, T., Tighineanu, P., Weiss, T. & Marquardt, F. Reinforcement learning
with neural networks for quantum feedback. Phys. Rev. X 8, 031084 (2018).

19. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the
quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001
(2018).

20. Sarma, S., Deng, D.-L. & Duan, L.-M. Machine learning meets quantum
physics. Phys. Today 72, 48–54 (2019).

21. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys.
91, 045002 (2019).

22. Sutton, R. S., Barto, A. G. et al. Reinforcement learning: An introduction (MIT
press, 1998).

23. Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529 (2015).

24. Melnikov, A. A. et al. Active learning machine learns to create new quantum
experiments. Proc. Natl Acad. Sci. 115, 1221–1226 (2018).

25. Nautrup, H. P., Delfosse, N., Dunjko, V., Briegel, H. J. & Friis, N. Optimizing
quantum error correction codes withreinforcement learning. Quantum 3, 215
(2019).

26. Sweke, R., Kesselring, M. S., van Nieuwenburg, E. P. & Eisert, J.
Reinforcement learning decoders for fault-tolerantquantum computation.
Mach. Learn. Sci. Technol. 2, 025005 (2020).

27. Reddy, G., Celani, A., Sejnowski, T. J. & Vergassola, M. Learning to soar in
turbulent environments. Proc. Natl Acad. Sci. USA 113, E4877–E4884 (2016).

28. Colabrese, S., Gustavsson, K., Celani, A. & Biferale, L. Flow navigation by
smart microswimmers via reinforcement learning. Phys. Rev. Lett. 118, 158004
(2017).

29. August, M. & Hernández-Lobato, J. M. Taking gradients through
experiments: Lstms and memory proximal policy optimization for black-box
quantum control. In International Conference on High Performance
Computing, 591–613 (Springer, 2018).

30. Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. Universal quantum
control through deep reinforcement learning. npj Quantum Inf., 5, 33 (2019).

31. Albarrán-Arriagada, F., Retamal, J. C., Solano, E. & Lamata, L. Measurement-
based adaptation protocol with quantum reinforcement learning. Phys. Rev. A
98, 042315 (2018).

32. Andreasson, P., Johansson, J., Liljestrand, S. & Granath, M. Quantum error
correction for the toric code using deep reinforcement learning. Quantum 3,
183 (2019).

33. Prati, E. Quantum neuromorphic hardware for quantum artificial intelligence.
J. Phys. Conf. Ser, 880, 012018 (2017).

34. Porotti, R., Tamascelli, D., Restelli, M. & Prati, E. Coherent transport of
quantum states by deep reinforcement learning. Commun. Phys. 2, 61 (2019).

35. Porotti, R., Tamascelli, D., Restelli, M. & Prati, E. Reinforcement learning
based control of coherent transport by adiabatic passage of spin qubits. J. Phys.
Conf. Ser. 1275, 012019 (2019).

36. Ferraro, E., De Michielis, M., Fanciulli, M. & Prati, E. Coherent tunneling by
adiabatic passage of an exchange-only spin qubit in a double quantum dot
chain. Phys. Rev. B 91, 075435 (2015).

37. Paparelle, I., Moro, L. & Prati, E. Digitally stimulated Raman passage by deep
reinforcement learning. Phys. Lett. A 384, 126266 (2020).

38. Moro, L., Paparelle, I. & Prati, E. Using deep learning for digitally controlled
STIRAP. Int. J. Quantum Inf. https://doi.org/10.1142/S0219749921410021
(2021).

39. Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. Universal quantum
control through deep reinforcement learning. npj Quantum Inf. 5, 1–8 (2019).

40. An, Z. & Zhou, D. Deep reinforcement learning for quantum gate control.
EPL 126, 60002 (2019).

41. Aharonov, D., Kitaev, A. & Nisan, N. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, 20–30 (Association for
Computing Machinery, 1998).

42. Watrous, J. Semidefinite programs for completely bounded norms. Theory
Comput. 5, 217–238 (2009).

43. Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information.
Cambridge Series on Information and the Natural Sciences (Cambridge
University Press, 2002). https://books.google.it/books?id=xnI9PgAACAAJ.

44. Tolar, J. In Journal of Physics: Conference Series, vol. 1071, 012022 (IOP
Publishing, 2018).

45. Watkins, C. J. & Dayan, P. Q-learning. Mach. Learn. 8, 279–292 (1992).
46. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal

policy optimization algorithms. CoRRabs/1707.06347 (2017).
47. Andrychowicz, M. et al. In Advances in Neural Information Processing

Systems, 5048–5058 (NIPS, 2017).
48. Vatan, F. & Williams, C. Optimal quantum circuits for general two-qubit

gates. Phys. Rev. A 69, 032315 (2004).
49. Hart, P. E., Nilsson, N. J. & Raphael, B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4,
100–107 (1968).

50. Lloyd, S. Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346
(1995).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3 ARTICLE

COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys 7

51. Dean, J. & Hölzle, U. Build and train machine learning models on our new
google cloud TPUs, 2017. https://www.blog.google/topics/google-cloud/
google-cloud-offer-tpus-machine-learning (2017).

52. Russell, N. J., Chakhmakhchyan, L., O’Brien, J. L. & Laing, A. Direct dialling of
haar random unitary matrices. New J. Phys. 19, 033007 (2017).

53. Hill, A. et al. Stable baselines. https://github.com/hill-a/stable-baselines (2018).
54. Tange, O. Gnu parallel-the command-line power tool. The USENIX Magazine

36, 42–47 (2011).

Acknowledgements
L.M. and E.P. gratefully thank Vista Technology SRL for having partially supported this
research. E.P. gratefully acknowledges the support of NVIDIA Corporation for the
donation of the Titan Xp GPU used for this research.

Author contributions
L.M. wrote all the codes and performed the experiments, M.P. contributed to the
quantum mechanical environment of the RL agent, M.R. contributed to the development
of the RL agents, and E.P. conceived and coordinated this research. All the authors
contributed to discuss the results and to the writing of the paper.

Competing interests
Lorenzo Moro, Enrico Prati, Marcello Restelli, have submitted an application for patent
of a computed implemented method for real time quantum compiling based on artificial
intelligence. Application number \num{102021000006179}, 16 March 2021 Italy. Matteo
G.A. Paris declare declares that he has no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-021-00684-3.

Correspondence and requests for materials should be addressed to E.P.

Peer review information Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00684-3

8 COMMUNICATIONS PHYSICS | ����������(2021)�4:178� | https://doi.org/10.1038/s42005-021-00684-3 | www.nature.com/commsphys

